avian2d/dynamics/ccd/
mod.rs

1//! Contains components and functionality for Continuous Collision Detection.
2//!
3//! # What Is CCD?
4//!
5//! Physics simulation is typically done in a discrete manner.
6//! At the beginning of each physics frame, the simulation checks for collisions,
7//! and if none are found for a given rigid body, it is free to move according to
8//! its velocity and the size of the timestep.
9//!
10//! This generally works well for large or slowly moving objects, but fast and small
11//! objects can pass through thin geometry such as walls and triangle meshes.
12//! This phenomenon is often called **tunneling**.
13//!
14//! <svg width="300" height="350" viewBox="0 0 300 350" fill="none" xmlns="http://www.w3.org/2000/svg">
15//!     <rect x="141" y="1" width="18" height="298" fill="#64C850" stroke="black" stroke-width="2"/>
16//!     <circle cx="275" cy="150" r="24" stroke="#5064C8" stroke-width="2" stroke-dasharray="4 4"/>
17//!     <circle cx="25" cy="150" r="24" fill="#5064C8" stroke="black" stroke-width="2"/>
18//!     <path d="M275.707 150.707C276.098 150.317 276.098 149.683 275.707 149.293L269.343 142.929C268.953 142.538 268.319 142.538 267.929 142.929C267.538 143.319 267.538 143.953 267.929 144.343L273.586 150L267.929 155.657C267.538 156.047 267.538 156.681 267.929 157.071C268.319 157.462 268.953 157.462 269.343 157.071L275.707 150.707ZM25 151L275 151L275 149L25 149L25 151Z" fill="#E19664"/>
19//!     <text x="150" y="325" style="fill: #b4b4b4; font: 18px monospace; text-anchor: middle;">Discrete</text>
20//! </svg>
21//!
22//! **Continuous Collision Detection** (CCD) aims to prevent tunneling.
23//! Currently, two approaches are supported: [Speculative Collision](#speculative-collision) and [Swept CCD](#swept-ccd).
24//! Speculative collision is enabled by default, but swept CCD is opt-in with the [`SweptCcd`] component.
25//! The two approaches can also be used together.
26//!
27//! ## Speculative Collision
28//!
29//! **Speculative collision** is a form of Continuous Collision Detection
30//! where contacts are predicted before they happen. The contacts are only
31//! solved if the entities are expected to come into contact within the next frame.
32//!
33//! To determine whether two bodies may come into contact, their [AABBs](ColliderAabb) are expanded
34//! based on their velocities. Additionally, a **speculative margin** is used to determine
35//! the maximum distance at which a collision pair can generate speculative contacts.
36//!
37//! <svg width="335" height="400" viewBox="0 0 335 400" fill="none" xmlns="http://www.w3.org/2000/svg">
38//!     <rect x="36" y="266" width="298" height="18" fill="#64C850" stroke="black" stroke-width="2"/>
39//!     <circle cx="210" cy="375" r="24" stroke="#5064C8" stroke-width="2" stroke-dasharray="4 4"/>
40//!     <circle cx="210" cy="240" r="24" stroke="#5064C8" stroke-width="2" stroke-dasharray="4 4"/>
41//!     <circle cx="160" cy="160" r="24" fill="#5064C8" stroke="black" stroke-width="2"/>
42//!     <path d="M209.471 375.849C209.94 376.141 210.557 375.997 210.849 375.529L215.606 367.888C215.898 367.42 215.754 366.803 215.286 366.511C214.817 366.219 214.2 366.363 213.908 366.831L209.68 373.623L202.888 369.394C202.42 369.102 201.803 369.246 201.511 369.714C201.219 370.183 201.363 370.8 201.831 371.092L209.471 375.849ZM159.026 160.227L159.472 162.146L161.42 161.693L160.974 159.773L159.026 160.227ZM160.365 165.985L161.258 169.825L163.206 169.372L162.313 165.532L160.365 165.985ZM162.151 173.664L163.044 177.503L164.992 177.05L164.099 173.211L162.151 173.664ZM163.937 181.343L164.83 185.182L166.778 184.729L165.885 180.89L163.937 181.343ZM165.722 189.021L166.615 192.86L168.563 192.407L167.67 188.568L165.722 189.021ZM167.508 196.7L168.401 200.539L170.349 200.086L169.456 196.247L167.508 196.7ZM169.294 204.378L170.187 208.218L172.135 207.765L171.242 203.925L169.294 204.378ZM171.08 212.057L171.972 215.896L173.92 215.443L173.028 211.604L171.08 212.057ZM172.865 219.735L173.758 223.575L175.706 223.122L174.813 219.282L172.865 219.735ZM174.651 227.414L175.544 231.253L177.492 230.8L176.599 226.961L174.651 227.414ZM176.437 235.093L177.33 238.932L179.278 238.479L178.385 234.64L176.437 235.093ZM178.222 242.771L179.115 246.61L181.063 246.157L180.17 242.318L178.222 242.771ZM180.008 250.45L180.901 254.289L182.849 253.836L181.956 249.997L180.008 250.45ZM181.794 258.128L182.687 261.968L184.635 261.515L183.742 257.675L181.794 258.128ZM183.58 265.807L184.472 269.646L186.42 269.193L185.528 265.354L183.58 265.807ZM185.365 273.485L186.258 277.325L188.206 276.872L187.313 273.032L185.365 273.485ZM187.151 281.164L188.044 285.003L189.992 284.55L189.099 280.711L187.151 281.164ZM188.937 288.843L189.83 292.682L191.778 292.229L190.885 288.39L188.937 288.843ZM190.722 296.521L191.615 300.36L193.563 299.907L192.67 296.068L190.722 296.521ZM192.508 304.2L193.401 308.039L195.349 307.586L194.456 303.747L192.508 304.2ZM194.294 311.878L195.187 315.718L197.135 315.265L196.242 311.425L194.294 311.878ZM196.08 319.557L196.972 323.396L198.92 322.943L198.028 319.104L196.08 319.557ZM197.865 327.235L198.758 331.075L200.706 330.622L199.813 326.782L197.865 327.235ZM199.651 334.914L200.544 338.753L202.492 338.3L201.599 334.461L199.651 334.914ZM201.437 342.593L202.33 346.432L204.278 345.979L203.385 342.14L201.437 342.593ZM203.222 350.271L204.115 354.111L206.063 353.657L205.17 349.818L203.222 350.271ZM205.008 357.95L205.901 361.789L207.849 361.336L206.956 357.497L205.008 357.95ZM206.794 365.628L207.687 369.468L209.635 369.015L208.742 365.175L206.794 365.628ZM208.58 373.307L209.026 375.226L210.974 374.773L210.528 372.854L208.58 373.307ZM209.471 375.849C209.94 376.141 210.557 375.997 210.849 375.529L215.606 367.888C215.898 367.42 215.754 366.803 215.286 366.511C214.817 366.219 214.2 366.363 213.908 366.831L209.68 373.623L202.888 369.394C202.42 369.102 201.803 369.246 201.511 369.714C201.219 370.183 201.363 370.8 201.831 371.092L209.471 375.849ZM159.026 160.227L159.472 162.146L161.42 161.693L160.974 159.773L159.026 160.227ZM160.365 165.985L161.258 169.825L163.206 169.372L162.313 165.532L160.365 165.985ZM162.151 173.664L163.044 177.503L164.992 177.05L164.099 173.211L162.151 173.664ZM163.937 181.343L164.83 185.182L166.778 184.729L165.885 180.89L163.937 181.343ZM165.722 189.021L166.615 192.86L168.563 192.407L167.67 188.568L165.722 189.021ZM167.508 196.7L168.401 200.539L170.349 200.086L169.456 196.247L167.508 196.7ZM169.294 204.378L170.187 208.218L172.135 207.765L171.242 203.925L169.294 204.378ZM171.08 212.057L171.972 215.896L173.92 215.443L173.028 211.604L171.08 212.057ZM172.865 219.735L173.758 223.575L175.706 223.122L174.813 219.282L172.865 219.735ZM174.651 227.414L175.544 231.253L177.492 230.8L176.599 226.961L174.651 227.414ZM176.437 235.093L177.33 238.932L179.278 238.479L178.385 234.64L176.437 235.093ZM178.222 242.771L179.115 246.61L181.063 246.157L180.17 242.318L178.222 242.771ZM180.008 250.45L180.901 254.289L182.849 253.836L181.956 249.997L180.008 250.45ZM181.794 258.128L182.687 261.968L184.635 261.515L183.742 257.675L181.794 258.128ZM183.58 265.807L184.472 269.646L186.42 269.193L185.528 265.354L183.58 265.807ZM185.365 273.485L186.258 277.325L188.206 276.872L187.313 273.032L185.365 273.485ZM187.151 281.164L188.044 285.003L189.992 284.55L189.099 280.711L187.151 281.164ZM188.937 288.843L189.83 292.682L191.778 292.229L190.885 288.39L188.937 288.843ZM190.722 296.521L191.615 300.36L193.563 299.907L192.67 296.068L190.722 296.521ZM192.508 304.2L193.401 308.039L195.349 307.586L194.456 303.747L192.508 304.2ZM194.294 311.878L195.187 315.718L197.135 315.265L196.242 311.425L194.294 311.878ZM196.08 319.557L196.972 323.396L198.92 322.943L198.028 319.104L196.08 319.557ZM197.865 327.235L198.758 331.075L200.706 330.622L199.813 326.782L197.865 327.235ZM199.651 334.914L200.544 338.753L202.492 338.3L201.599 334.461L199.651 334.914ZM201.437 342.593L202.33 346.432L204.278 345.979L203.385 342.14L201.437 342.593ZM203.222 350.271L204.115 354.111L206.063 353.657L205.17 349.818L203.222 350.271ZM205.008 357.95L205.901 361.789L207.849 361.336L206.956 357.497L205.008 357.95ZM206.794 365.628L207.687 369.468L209.635 369.015L208.742 365.175L206.794 365.628ZM208.58 373.307L209.026 375.226L210.974 374.773L210.528 372.854L208.58 373.307Z" fill="#AF644B"/>
43//!     <path d="M209.775 240.974C210.313 241.099 210.85 240.763 210.974 240.225L212.998 231.455C213.122 230.917 212.787 230.38 212.249 230.256C211.71 230.132 211.174 230.467 211.049 231.006L209.25 238.801L201.455 237.002C200.917 236.878 200.38 237.213 200.256 237.751C200.132 238.29 200.467 238.826 201.006 238.951L209.775 240.974ZM159.152 160.53L209.152 240.53L210.848 239.47L160.848 159.47L159.152 160.53Z" fill="#E19664"/>
44//!     <circle cx="160" cy="265" r="4" fill="#a874d8"/>
45//!     <path d="M160 160V265" stroke="#a874d8" stroke-width="2" stroke-dasharray="5 5"/>
46//!     <rect x="135" y="135" width="99" height="264" stroke="#db9010" stroke-width="1"/>
47//!     <circle cx="160" cy="160" r="159" stroke="#eb4a5a" stroke-width="1"/>
48//!     <text x="184" y="125" style="fill: #db9010; font: 16px monospace; text-anchor: middle;">Collision AABB</text>
49//!     <text x="160" y="40" style="fill: #eb4a5a; font: 16px monospace; text-anchor: middle;">Speculative Margin</text>
50//!     <text x="210" y="340" style="fill: #b4b4b4; font: 16px monospace; text-anchor: start;">Unconstrained</text>
51//!     <text x="210" y="205" style="fill: #b4b4b4; font: 16px monospace; text-anchor: start;">Constrained</text>
52//!     <text y="240" style="fill: #a874d8; font: 16px monospace; font-weight: bold; text-anchor: end;">
53//!         <tspan x="155">Speculative</tspan><tspan x="155" dy="18">Contact</tspan>
54//!     </text>
55//! </svg>
56//!
57//! The current "effective" speculative margin for a body is determined by its velocity
58//! clamped by the specified maximum bound. By default, the maximum bound is infinite,
59//! but it can be configured for all entities using the [`NarrowPhaseConfig`] resource,
60//! and for individual entities using the [`SpeculativeMargin`] component.
61//!
62//! ```
63#![cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
64#![cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
65//! use bevy::prelude::*;
66//!
67//! fn setup(mut commands: Commands) {
68//!     // Spawn a rigid body with a maximum bound for the speculative margin.
69//!     commands.spawn((
70//!         RigidBody::Dynamic,
71//!         Collider::capsule(0.5, 2.0),
72//!         SpeculativeMargin(2.0),
73//!     ));
74//! }
75//! ```
76//!
77//! Speculative collisions are an efficient and generally robust approach
78//! to Continuous Collision Detection. They are enabled for all bodies by default,
79//! provided that the default maximum speculative margin is greater than zero.
80//!
81//! However, speculative collisions aren't entirely without issues,
82//! and there are some cases where large speculative margins can cause undesired behavior.
83//!
84//! ### Caveats of Speculative Collision
85//!
86//! Speculative contacts are approximations. They typically have good enough accuracy,
87//! but when bodies are moving past each other at high speeds, the prediction can sometimes
88//! fail and lead to **ghost collisions**. This happens because contact surfaces are treated
89//! like infinite planes from the point of view of the solver. Ghost collisions typically manifest
90//! as objects bumping into seemingly invisible walls.
91//!
92//! <svg width="475" height="400" viewBox="0 0 475 400" fill="none" xmlns="http://www.w3.org/2000/svg">
93//!     <rect x="36" y="266" width="148" height="18" fill="#64C850" stroke="black" stroke-width="2"/>
94//!     <circle cx="345" cy="375" r="24" stroke="#5064C8" stroke-width="2" stroke-dasharray="4 4"/>
95//!     <circle cx="345" cy="236" r="24" stroke="#5064C8" stroke-width="2" stroke-dasharray="4 4"/>
96//!     <circle cx="160" cy="160" r="24" fill="#5064C8" stroke="black" stroke-width="2"/>
97//!     <path d="M344.925 375.997C345.476 376.038 345.956 375.626 345.997 375.075L346.67 366.1C346.712 365.549 346.299 365.069 345.748 365.028C345.197 364.987 344.717 365.4 344.676 365.95L344.078 373.928L336.1 373.33C335.549 373.288 335.069 373.701 335.028 374.252C334.987 374.803 335.4 375.283 335.95 375.324L344.925 375.997ZM159.242 160.652L160.563 162.188L162.079 160.883L160.758 159.348L159.242 160.652ZM163.206 165.259L165.849 168.331L167.365 167.026L164.722 163.955L163.206 165.259ZM168.492 171.402L171.135 174.474L172.651 173.169L170.008 170.098L168.492 171.402ZM173.778 177.545L176.421 180.617L177.937 179.312L175.294 176.241L173.778 177.545ZM179.063 183.688L181.706 186.759L183.222 185.455L180.579 182.383L179.063 183.688ZM184.349 189.831L186.992 192.902L188.508 191.598L185.865 188.526L184.349 189.831ZM189.635 195.974L192.278 199.045L193.794 197.741L191.151 194.669L189.635 195.974ZM194.921 202.117L197.563 205.188L199.079 203.883L196.437 200.812L194.921 202.117ZM200.206 208.259L202.849 211.331L204.365 210.026L201.722 206.955L200.206 208.259ZM205.492 214.402L208.135 217.474L209.651 216.169L207.008 213.098L205.492 214.402ZM210.778 220.545L213.421 223.617L214.937 222.312L212.294 219.241L210.778 220.545ZM216.063 226.688L218.706 229.759L220.222 228.455L217.579 225.383L216.063 226.688ZM221.349 232.831L223.992 235.902L225.508 234.598L222.865 231.526L221.349 232.831ZM226.635 238.974L229.278 242.045L230.794 240.741L228.151 237.669L226.635 238.974ZM231.921 245.117L234.563 248.188L236.079 246.883L233.437 243.812L231.921 245.117ZM237.206 251.259L239.849 254.331L241.365 253.026L238.722 249.955L237.206 251.259ZM242.492 257.402L245.135 260.474L246.651 259.169L244.008 256.098L242.492 257.402ZM247.778 263.545L250.421 266.617L251.937 265.312L249.294 262.241L247.778 263.545ZM253.063 269.688L255.706 272.759L257.222 271.455L254.579 268.383L253.063 269.688ZM258.349 275.831L260.992 278.902L262.508 277.598L259.865 274.526L258.349 275.831ZM263.635 281.974L266.278 285.045L267.794 283.741L265.151 280.669L263.635 281.974ZM268.921 288.116L271.563 291.188L273.079 289.883L270.437 286.812L268.921 288.116ZM274.206 294.259L276.849 297.331L278.365 296.026L275.722 292.955L274.206 294.259ZM279.492 300.402L282.135 303.474L283.651 302.169L281.008 299.098L279.492 300.402ZM284.778 306.545L287.421 309.616L288.937 308.312L286.294 305.241L284.778 306.545ZM290.063 312.688L292.706 315.759L294.222 314.455L291.579 311.383L290.063 312.688ZM295.349 318.831L297.992 321.902L299.508 320.598L296.865 317.526L295.349 318.831ZM300.635 324.974L303.278 328.045L304.794 326.741L302.151 323.669L300.635 324.974ZM305.921 331.116L308.563 334.188L310.079 332.883L307.437 329.812L305.921 331.116ZM311.206 337.259L313.849 340.331L315.365 339.026L312.722 335.955L311.206 337.259ZM316.492 343.402L319.135 346.474L320.651 345.169L318.008 342.098L316.492 343.402ZM321.778 349.545L324.421 352.616L325.937 351.312L323.294 348.241L321.778 349.545ZM327.063 355.688L329.706 358.759L331.222 357.455L328.579 354.383L327.063 355.688ZM332.349 361.831L334.992 364.902L336.508 363.598L333.865 360.526L332.349 361.831ZM337.635 367.974L340.278 371.045L341.794 369.741L339.151 366.669L337.635 367.974ZM342.921 374.117L344.242 375.652L345.758 374.348L344.437 372.812L342.921 374.117ZM344.925 375.997C345.476 376.038 345.956 375.626 345.997 375.075L346.67 366.1C346.712 365.549 346.299 365.069 345.748 365.028C345.197 364.987 344.717 365.4 344.676 365.95L344.078 373.928L336.1 373.33C335.549 373.288 335.069 373.701 335.028 374.252C334.987 374.803 335.4 375.283 335.95 375.324L344.925 375.997ZM159.242 160.652L160.563 162.188L162.079 160.883L160.758 159.348L159.242 160.652ZM163.206 165.259L165.849 168.331L167.365 167.026L164.722 163.955L163.206 165.259ZM168.492 171.402L171.135 174.474L172.651 173.169L170.008 170.098L168.492 171.402ZM173.778 177.545L176.421 180.617L177.937 179.312L175.294 176.241L173.778 177.545ZM179.063 183.688L181.706 186.759L183.222 185.455L180.579 182.383L179.063 183.688ZM184.349 189.831L186.992 192.902L188.508 191.598L185.865 188.526L184.349 189.831ZM189.635 195.974L192.278 199.045L193.794 197.741L191.151 194.669L189.635 195.974ZM194.921 202.117L197.563 205.188L199.079 203.883L196.437 200.812L194.921 202.117ZM200.206 208.259L202.849 211.331L204.365 210.026L201.722 206.955L200.206 208.259ZM205.492 214.402L208.135 217.474L209.651 216.169L207.008 213.098L205.492 214.402ZM210.778 220.545L213.421 223.617L214.937 222.312L212.294 219.241L210.778 220.545ZM216.063 226.688L218.706 229.759L220.222 228.455L217.579 225.383L216.063 226.688ZM221.349 232.831L223.992 235.902L225.508 234.598L222.865 231.526L221.349 232.831ZM226.635 238.974L229.278 242.045L230.794 240.741L228.151 237.669L226.635 238.974ZM231.921 245.117L234.563 248.188L236.079 246.883L233.437 243.812L231.921 245.117ZM237.206 251.259L239.849 254.331L241.365 253.026L238.722 249.955L237.206 251.259ZM242.492 257.402L245.135 260.474L246.651 259.169L244.008 256.098L242.492 257.402ZM247.778 263.545L250.421 266.617L251.937 265.312L249.294 262.241L247.778 263.545ZM253.063 269.688L255.706 272.759L257.222 271.455L254.579 268.383L253.063 269.688ZM258.349 275.831L260.992 278.902L262.508 277.598L259.865 274.526L258.349 275.831ZM263.635 281.974L266.278 285.045L267.794 283.741L265.151 280.669L263.635 281.974ZM268.921 288.116L271.563 291.188L273.079 289.883L270.437 286.812L268.921 288.116ZM274.206 294.259L276.849 297.331L278.365 296.026L275.722 292.955L274.206 294.259ZM279.492 300.402L282.135 303.474L283.651 302.169L281.008 299.098L279.492 300.402ZM284.778 306.545L287.421 309.616L288.937 308.312L286.294 305.241L284.778 306.545ZM290.063 312.688L292.706 315.759L294.222 314.455L291.579 311.383L290.063 312.688ZM295.349 318.831L297.992 321.902L299.508 320.598L296.865 317.526L295.349 318.831ZM300.635 324.974L303.278 328.045L304.794 326.741L302.151 323.669L300.635 324.974ZM305.921 331.116L308.563 334.188L310.079 332.883L307.437 329.812L305.921 331.116ZM311.206 337.259L313.849 340.331L315.365 339.026L312.722 335.955L311.206 337.259ZM316.492 343.402L319.135 346.474L320.651 345.169L318.008 342.098L316.492 343.402ZM321.778 349.545L324.421 352.616L325.937 351.312L323.294 348.241L321.778 349.545ZM327.063 355.688L329.706 358.759L331.222 357.455L328.579 354.383L327.063 355.688ZM332.349 361.831L334.992 364.902L336.508 363.598L333.865 360.526L332.349 361.831ZM337.635 367.974L340.278 371.045L341.794 369.741L339.151 366.669L337.635 367.974ZM342.921 374.117L344.242 375.652L345.758 374.348L344.437 372.812L342.921 374.117Z" fill="#AF644B"/>
98//!     <path d="M345.385 236.923C345.895 236.71 346.136 236.124 345.923 235.615L342.454 227.31C342.242 226.8 341.656 226.56 341.146 226.772C340.637 226.985 340.396 227.571 340.609 228.08L343.692 235.463L336.31 238.546C335.8 238.758 335.56 239.344 335.772 239.854C335.985 240.363 336.571 240.604 337.08 240.391L345.385 236.923ZM159.62 160.925L344.62 236.925L345.38 235.075L160.38 159.075L159.62 160.925Z" fill="#E19664"/>
99//!     <circle cx="160" cy="265" r="4" fill="#a874d8"/>
100//!     <path d="M160 160V265" stroke="#a874d8" stroke-width="2" stroke-dasharray="5 5"/>
101//!     <rect x="135" y="135" width="235" height="264" stroke="#db9010" stroke-width="1"/>
102//!     <circle cx="160" cy="160" r="159" stroke="#eb4a5a" stroke-width="1"/>
103//!     <line x1="160" y1="264" x2="400" y2="264" stroke="#a874d8" stroke-width="2" stroke-dasharray="6 6"/>
104//!     <text x="184" y="125" style="fill: #db9010; font: 16px monospace; text-anchor: middle;">Collision AABB</text>
105//!     <text x="160" y="40" style="fill: #eb4a5a; font: 16px monospace; text-anchor: middle;">Speculative Margin</text>
106//!     <text x="345" y="340" style="fill: #b4b4b4; font: 16px monospace; text-anchor: start;">Unconstrained</text>
107//!     <text x="345" y="205" style="fill: #b4b4b4; font: 16px monospace; text-anchor: start;">Constrained</text>
108//!     <text x="190" y="280" style="fill: #a874d8; font: 16px monospace; font-weight: bold; text-anchor: start;">Ghost Collision Plane</text>
109//! </svg>
110//!
111//! Ghost collisions can be mitigated by using a smaller [`SpeculativeMargin`]
112//! or a higher [`Physics`] timestep rate.
113//!
114//! Another caveat of speculative collisions is that they can still occasionally miss contacts,
115//! especially for thin objects spinning at very high speeds. This is typically quite rare however,
116//! and speculative collision should work fine for the majority of cases.
117//!
118//! Speculative collisions can also absorb some energy in contacts, causing even perfectly elastic
119//! objects to lose kinetic energy over several bounces.
120//!
121//! For an approach that is more expensive but doesn't suffer from ghost collisions,
122//! missed collisions, or inaccurate restitution, consider using swept CCD,
123//! which is described in the following section.
124//!
125//! ## Swept CCD
126//!
127//! *Note: Swept CCD currently only supports the built-in `Collider`.*
128//!
129//! **Swept CCD** is a form of Continuous Collision Detection that sweeps potentially colliding objects
130//! from their previous positions to their current positions, and if a collision is found, moves the bodies
131//! back to the time of impact. This way, the normal collision algorithms will be able to detect and handle
132//! the collision during the next frame.
133//!
134//! There are two variants of swept CCD: [`Linear`](SweepMode::Linear)
135//! and [`NonLinear`](SweepMode::Linear). The difference between the two
136//! is that [`Linear`](SweepMode::Linear) only considers translational motion,
137//! so bodies can still pass through objects that are spinning at high speeds,
138//! while [`NonLinear`](SweepMode::NonLinear) also considers rotational motion,
139//! but is more expensive.
140//!
141//! <svg width="300" height="350" viewBox="0 0 300 350" fill="none" xmlns="http://www.w3.org/2000/svg">
142//!     <rect x="141" y="1" width="18" height="298" fill="#64C850" stroke="black" stroke-width="2"/>
143//!     <circle cx="115" cy="150" r="24" stroke="#5064C8" stroke-width="2" stroke-dasharray="4 4"/>
144//!     <circle cx="25" cy="150" r="24" fill="#5064C8" stroke="black" stroke-width="2"/>
145//!     <path d="M115.707 150.707C116.098 150.317 116.098 149.683 115.707 149.293L109.343 142.929C108.953 142.538 108.319 142.538 107.929 142.929C107.538 143.319 107.538 143.953 107.929 144.343L113.586 150L107.929 155.657C107.538 156.047 107.538 156.681 107.929 157.071C108.319 157.462 108.953 157.462 109.343 157.071L115.707 150.707ZM25 151H115V149H25V151Z" fill="#E19664"/>
146//!     <text x="150" y="325" style="fill: #b4b4b4; font: 18px monospace; text-anchor: middle;">Linear / NonLinear</text>
147//! </svg>
148//!
149//! <svg width="600" height="350" viewBox="0 0 600 350" fill="none" xmlns="http://www.w3.org/2000/svg">
150//!     <rect x="438.95" y="25.3488" width="18" height="298" transform="rotate(27.5 438.95 25.3488)" stroke="#64C850" stroke-width="2" stroke-dasharray="4 4"/>
151//!     <rect x="301" y="1" width="18" height="298" fill="#64C850" stroke="black" stroke-width="2"/>
152//!     <circle cx="425" cy="150" r="24" fill="#5064C8" stroke="black" stroke-width="2"/>
153//!     <text x="150" y="325" style="fill: #b4b4b4; font: 18px monospace; text-anchor: middle;">Linear</text>
154//!     <circle cx="310" cy="290" r="5" fill="#D9D9D9" stroke="black" stroke-width="2"/>
155//!     <path d="M322.96 148.816L323.331 149.745L323.331 149.745L322.96 148.816ZM361.786 156.786L361.078 157.493L361.078 157.493L361.786 156.786ZM365 161C365.552 161 366 160.552 366 160L366 151C366 150.448 365.552 150 365 150C364.448 150 364 150.448 364 151L364 159L356 159C355.448 159 355 159.448 355 160C355 160.552 355.448 161 356 161L365 161ZM320.371 150.928L323.331 149.745L322.588 147.888L319.629 149.072L320.371 150.928ZM361.078 157.493L364.293 160.707L365.707 159.293L362.493 156.078L361.078 157.493ZM323.331 149.745C336.331 144.545 351.178 147.592 361.078 157.493L362.493 156.078C352.027 145.612 336.331 142.391 322.588 147.888L323.331 149.745Z" fill="#E19664"/>
156//!     <rect x="259.442" y="133.366" width="18" height="298" transform="rotate(60 259.442 133.366)" stroke="#64C850" stroke-width="2" stroke-dasharray="4 4"/>
157//!     <rect x="1" y="1" width="18" height="298" fill="#64C850" stroke="black" stroke-width="2"/>
158//!     <circle cx="125" cy="150" r="24" fill="#5064C8" stroke="black" stroke-width="2"/>
159//!     <text x="450" y="325" style="fill: #b4b4b4; font: 18px monospace; text-anchor: middle;">NonLinear</text>
160//!     <circle cx="10" cy="290" r="5" fill="#D9D9D9" stroke="black" stroke-width="2"/>
161//!     <path d="M54.0561 245.357L53.1144 245.694L53.1144 245.694L54.0561 245.357ZM54.5719 248.904C55.071 249.14 55.6673 248.927 55.9037 248.428L59.7565 240.294C59.9929 239.795 59.7799 239.199 59.2808 238.963C58.7817 238.726 58.1854 238.939 57.949 239.438L54.5243 246.668L47.2944 243.243C46.7953 243.007 46.199 243.22 45.9626 243.719C45.7261 244.218 45.9391 244.815 46.4382 245.051L54.5719 248.904ZM53.1144 245.694L54.0582 248.336L55.9417 247.664L54.9978 245.021L53.1144 245.694ZM20.3714 230.928C33.4979 225.678 48.3594 232.379 53.1144 245.694L54.9978 245.021C49.8615 230.639 33.808 223.4 19.6286 229.071L20.3714 230.928Z" fill="#E19664"/>
162//! </svg>
163//!
164//! To enable swept CCD for a rigid body, simply add the [`SweptCcd`] component
165//! and make sure that the [`CcdPlugin`] is enabled. The plugin is included
166//! in the [`PhysicsPlugins`] plugin group.
167//!
168//! ```
169#![cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
170#![cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
171//! use bevy::prelude::*;
172//!
173//! fn setup(mut commands: Commands) {
174//!     // Spawn a rigid body with swept CCD enabled.
175//!     // `SweepMode::NonLinear` is used by default.
176//!     commands.spawn((
177//!         RigidBody::Dynamic,
178//!         Collider::capsule(0.5, 2.0),
179//!         SweptCcd::default(),
180//!     ));
181//! }
182//! ```
183//!
184//! See the [documentation](SweptCcd) of the component for more details
185//! and configuration options.
186//!
187//! Swept CCD is more expensive than [Speculative Collision](#speculative-collision),
188//! but it doesn't have the same issues with ghost collisions or missed collisions.
189//! It is primarily intended as a safety net when it is crucial that a body never
190//! tunnels through geometry. Swept CCD should only be used when necessary,
191//! as it also has its own set of problems.
192//!
193//! ### Caveats of Swept CCD
194//!
195//! The [`Linear`](SweepMode::Linear) and [`NonLinear`](SweepMode::Linear)
196//! approaches can lead to *time loss* or *time stealing*, where bodies appear to momentarily
197//! move slower when Swept CCD is active. This happens because they are essentially moved
198//! backwards in time to avoid missing the collision.
199//!
200//! Swept CCD might also not account for chain reactions properly, so if a fast-moving body
201//! bumps into another body, making it a fast-moving body that potentially bumps into
202//! even more bodies, the collisions might not propagate accurately.
203//! However, speculative contacts do detect secondary collisions quite well,
204//! so using the two together can help mitigate the issue.
205//!
206//! Time loss and chain reactions could also be better accounted for with a substepped
207//! time-of-impact solver, but that would be much more expensive and complex,
208//! so it is not yet supported.
209//!
210//! ## Other Ways to Avoid Tunneling
211//!
212//! CCD is one way to prevent objects from tunneling through each other,
213//! but it should only be used when necessary. There are several other approaches
214//! worth considering to help avoid the issue.
215//!
216//! The most obvious way is to simply avoid small or thin geometry such as triangle meshes,
217//! and to make colliders for objects like walls slightly thicker than necessary.
218//! This is of course typically not possible everywhere, but it is good to keep in mind
219//! when authoring levels.
220//!
221//! Triangle mesh colliders are especially prone to tunneling for dynamic rigid bodies.
222//! For shapes that are intended to be solid from the inside, it is recommended
223//! to use convex decomposition instead.
224//!
225//! If you must use triangle mesh colliders and are having stability issues, consider
226//! giving them a small amount of extra thickness using the [`CollisionMargin`] component.
227//! This helps prevent objects from passing through the surface while also reducing
228//! numerical errors and improving performance.
229//!
230//! Finally, making the [physics timestep](Physics) smaller can also help.
231//! However, this comes at the cost of worse performance for the entire simulation.
232
233#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
234use super::solver::solver_body::SolverBody;
235use crate::prelude::*;
236#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
237use bevy::ecs::query::QueryData;
238use bevy::prelude::*;
239use derive_more::From;
240#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
241use dynamics::solver::SolverDiagnostics;
242#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
243use parry::query::{
244    NonlinearRigidMotion, ShapeCastHit, ShapeCastOptions, cast_shapes, cast_shapes_nonlinear,
245};
246
247/// A plugin for [Continuous Collision Detection](self).
248pub struct CcdPlugin;
249
250impl Plugin for CcdPlugin {
251    fn build(&self, app: &mut App) {
252        // Get the `PhysicsSchedule`, and panic if it doesn't exist.
253        let physics = app
254            .get_schedule_mut(PhysicsSchedule)
255            .expect("add PhysicsSchedule first");
256
257        physics.configure_sets(
258            SweptCcdSystems
259                .after(SolverSystems::PostSubstep)
260                .before(SolverSystems::Restitution),
261        );
262
263        #[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
264        physics.add_systems(solve_swept_ccd.in_set(SweptCcdSystems));
265    }
266}
267
268/// A system set for [Continuous Collision Detection](self) systems.
269#[derive(SystemSet, Clone, Copy, Debug, PartialEq, Eq, Hash)]
270pub struct SweptCcdSystems;
271
272/// A deprecated alias for [`SweptCcdSystems`].
273#[deprecated(since = "0.4.0", note = "Renamed to `SweptCcdSystems`")]
274pub type SweptCcdSet = SweptCcdSystems;
275
276/// The maximum distance at which [speculative contacts](self#speculative-collision)
277/// are generated for this entity. A value greater than zero helps prevent missing
278/// contacts for moderately fast-moving and thin objects.
279///
280/// In general, this component should not be needed. The default speculative margin
281/// for all objects is defined in the [`NarrowPhaseConfig`] resource, and it is unbounded
282/// by default, meaning that the margin can extend infinitely. The margin can be bounded
283/// for individual entities using this component in case speculative contacts are causing
284/// issues like the ones outlined [here](self#caveats-of-speculative-collision).
285///
286/// See the [module-level documentation](self) for information about
287/// Speculative Conllision and Continuous Collision Detection in general.
288///
289/// # Example
290///
291/// ```
292#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
293#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
294/// use bevy::prelude::*;
295///
296/// fn setup(mut commands: Commands) {
297///     // Spawn a rigid body with an unbounded speculative margin.
298///     commands.spawn((
299///         RigidBody::Dynamic,
300///         Collider::capsule(0.5, 2.0),
301///         SpeculativeMargin::MAX,
302///     ));
303/// }
304/// ```
305#[derive(Component, Clone, Copy, Debug, Deref, DerefMut, PartialEq, Reflect, From)]
306#[reflect(Component)]
307#[doc(alias = "SweptCcdPredictionDistance")]
308pub struct SpeculativeMargin(pub Scalar);
309
310impl SpeculativeMargin {
311    /// A zero speculative margin. Disables speculative collision for this entity.
312    pub const ZERO: Self = Self(0.0);
313
314    /// An unbounded speculative margin.
315    pub const MAX: Self = Self(Scalar::MAX);
316}
317
318/// A component that enables sweep-based [Continuous Collision Detection](self) (CCD)
319/// for a [`RigidBody`]. This helps prevent missed collisions for small and fast-moving objects.
320///
321/// By default, swept CCD considers both translational and rotational motion, and is used
322/// against all types of rigid bodies and colliders. This behavior can be modified
323/// by changing [`SweptCcd::mode`] and other properties.
324///
325/// CCD is generally not useful for large or slow objects, as they are less likely
326/// to miss collisions. It is recommended to only use swept CCD when necessary,
327/// as it is more expensive than [speculative collision](self#speculative-collision) and discrete collision detection.
328///
329/// Read the [module-level documentation](self) for more information about what CCD is,
330/// what it is used for, and what limitations and tradeoffs it can have.
331///
332/// # Example
333///
334/// ```
335#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
336#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
337/// use bevy::prelude::*;
338///
339/// # #[cfg(feature = "f32")]
340/// fn setup(mut commands: Commands) {
341///     // Spawn a dynamic rigid body with swept CCD, travelling towards the right at a high speed.
342///     // The default CCD configuration considers both translational and rotational motion.
343///     commands.spawn((
344///         RigidBody::Dynamic,
345///         SweptCcd::default(),
346#[cfg_attr(feature = "2d", doc = "        LinearVelocity(Vec2::X * 100.0),")]
347#[cfg_attr(feature = "3d", doc = "        LinearVelocity(Vec3::X * 100.0),")]
348#[cfg_attr(feature = "2d", doc = "        Collider::circle(0.1),")]
349#[cfg_attr(feature = "3d", doc = "        Collider::sphere(0.1),")]
350///         Transform::from_xyz(-10.0, 3.0, 0.0),
351///     ));
352///
353///     // Spawn another dynamic rigid body with swept CCD, but this time only considering
354///     // linear motion and not rotation.
355///     commands.spawn((
356///         RigidBody::Dynamic,
357///         SweptCcd::LINEAR, // or `SweptCcd::new_with_mode(SweepMode::Linear)`
358#[cfg_attr(feature = "2d", doc = "        LinearVelocity(Vec2::X * 100.0),")]
359#[cfg_attr(feature = "3d", doc = "        LinearVelocity(Vec3::X * 100.0),")]
360#[cfg_attr(feature = "2d", doc = "        Collider::circle(0.1),")]
361#[cfg_attr(feature = "3d", doc = "        Collider::sphere(0.1),")]
362///         Transform::from_xyz(-10.0, -3.0, 0.0),
363///     ));
364///
365///     // Spawn a thin, long object rotating at a high speed.
366///     // The first ball should hit it, but the second one does not consider
367///     // rotational motion, and most likely passes through.
368///     commands.spawn((
369///         RigidBody::Dynamic,
370///         LockedAxes::TRANSLATION_LOCKED,
371#[cfg_attr(feature = "2d", doc = "        AngularVelocity(100.0),")]
372#[cfg_attr(feature = "3d", doc = "        AngularVelocity(Vec3::Z * 100.0),")]
373#[cfg_attr(feature = "2d", doc = "        Collider::rectangle(0.2, 10.0),")]
374#[cfg_attr(feature = "3d", doc = "        Collider::cuboid(0.2, 10.0, 10.0),")]
375///     ));
376///
377///     // Spawn another thin, long object, this time not rotating.
378///     // The second ball should now hit this.
379///     commands.spawn((
380///         RigidBody::Static,
381#[cfg_attr(feature = "2d", doc = "        Collider::rectangle(0.2, 10.0),")]
382#[cfg_attr(feature = "3d", doc = "        Collider::cuboid(0.2, 10.0, 10.0),")]
383///         Transform::from_xyz(15.0, 0.0, 0.0),
384///     ));
385/// }
386/// ```
387#[derive(Component, Clone, Copy, Debug, PartialEq, Reflect)]
388#[reflect(Component)]
389pub struct SweptCcd {
390    /// The type of sweep used for swept CCD.
391    ///
392    /// If two entities with different sweep modes collide, [`SweepMode::NonLinear`]
393    /// is preferred.
394    ///
395    /// The default is [`SweepMode::NonLinear`], which considers both translational
396    /// and rotational motion.
397    pub mode: SweepMode,
398    /// If `true`, swept CCD is performed against dynamic rigid bodies.
399    /// Otherwise, it is only performed against static geometry and kinematic bodies.
400    ///
401    /// The default is `true`.
402    pub include_dynamic: bool,
403    /// Determines how fast two bodies must be moving relative to each other
404    /// for swept CCD to be activated for them.
405    ///
406    /// If the linear velocity is below this threshold, CCD is skipped,
407    /// unless the angular velocity exceeds the `angular_threshold`.
408    ///
409    /// The default is `0.0`, meaning that CCD is performed regardless of the relative velocity.
410    pub linear_threshold: Scalar,
411    /// Determines how fast two bodies must be rotating relative to each other
412    /// for swept CCD to be activated for them.
413    ///
414    /// If the angular velocity is below this threshold, CCD is skipped,
415    /// unless the linear velocity exceeds the `linear_threshold`.
416    ///
417    /// The default is `0.0`, meaning that CCD is performed regardless of the relative velocity.
418    pub angular_threshold: Scalar,
419}
420
421impl Default for SweptCcd {
422    fn default() -> Self {
423        Self::NON_LINEAR
424    }
425}
426
427impl SweptCcd {
428    /// Continuous Collision Detection with [`SweepMode::Linear`].
429    ///
430    /// This only takes into account translational motion, and can lead to tunneling
431    /// against thin, fast-spinning objects.
432    pub const LINEAR: Self = Self::new_with_mode(SweepMode::Linear);
433
434    /// Continuous Collision Detection with [`SweepMode::NonLinear`].
435    ///
436    /// This takes into account both translational and rotational motion.
437    pub const NON_LINEAR: Self = Self::new_with_mode(SweepMode::NonLinear);
438
439    /// Creates a new [`SweptCcd`] configuration with the given [`SweepMode`].
440    #[inline]
441    pub const fn new_with_mode(mode: SweepMode) -> Self {
442        Self {
443            mode,
444            include_dynamic: true,
445            linear_threshold: 0.0,
446            angular_threshold: 0.0,
447        }
448    }
449
450    /// Sets the linear and angular velocity thresholds in `self`,
451    /// determining how fast two bodies must be moving relative to each other
452    /// for swept CCD to be activated for them.
453    ///
454    /// CCD will be active if either of the two thresholds is exceeded.
455    #[inline]
456    pub const fn with_velocity_threshold(mut self, linear: Scalar, angular: Scalar) -> Self {
457        self.linear_threshold = linear;
458        self.angular_threshold = angular;
459        self
460    }
461
462    /// Sets whether swept CCD is performed against dynamic rigid bodies.
463    /// If `false`, it is only performed against static geometry and kinematic bodies.
464    #[inline]
465    pub const fn include_dynamic(mut self, should_include: bool) -> Self {
466        self.include_dynamic = should_include;
467        self
468    }
469}
470
471/// The algorithm used for [Swept Continuous Collision Detection](self#swept-ccd).
472///
473/// If two entities with different sweep modes collide, [`SweepMode::NonLinear`]
474/// is preferred.
475///
476/// The default is [`SweepMode::NonLinear`], which considers both translational
477/// and rotational motion.
478#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, Reflect)]
479pub enum SweepMode {
480    /// [Swept CCD](self#swept-ccd) is performed using linear time-of-impact queries
481    /// from the previous positions of [`SweptCcd`] bodies to their current positions,
482    /// stopping the bodies at the first time of impact.
483    ///
484    /// This mode only considers translational motion, and can lead to tunneling
485    /// against thin, fast-spinning objects. For the more expensive version
486    /// that also considers rotational motion, consider using [`SweepMode::NonLinear`].
487    Linear,
488
489    /// [Swept CCD](self#swept-ccd) is performed using non-linear time-of-impact queries
490    /// from the previous positions of [`SweptCcd`] bodies to their current positions,
491    /// stopping the bodies at the first time of impact.
492    ///
493    /// This mode considers both translational and rotational motion.
494    /// For the cheaper version that only considers translational motion,
495    /// consider using [`SweepMode::Linear`].
496    #[default]
497    NonLinear,
498}
499
500#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
501#[derive(QueryData)]
502#[query_data(mutable)]
503struct SweptCcdBodyQuery {
504    entity: Entity,
505    solver_body: Option<&'static mut SolverBody>,
506    rb: &'static RigidBody,
507    pos: &'static Position,
508    rot: &'static Rotation,
509    ccd: Option<&'static SweptCcd>,
510    collider: &'static Collider,
511    com: &'static ComputedCenterOfMass,
512}
513
514/// Performs [sweep-based mContinuous Collision Detection](self#swept-ccd)
515/// by performing time-of-impact queries from the previous positions of [`SweptCcd`] bodies
516/// to their current positions, stopping the bodies at the first time of impact.
517///
518/// This approach can lead to "time loss" or "time stealing", because the bodies
519/// are essentially moved back in time, making them appear to momentarily move slower.
520/// Secondary contacts are also not accounted for.
521#[allow(clippy::useless_conversion)]
522#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
523fn solve_swept_ccd(
524    ccd_query: Query<Entity, With<SweptCcd>>,
525    bodies: Query<SweptCcdBodyQuery>,
526    colliders: Query<(&Collider, &ColliderOf)>,
527    time: Res<Time>,
528    contact_graph: Res<ContactGraph>,
529    narrow_phase_config: Res<NarrowPhaseConfig>,
530    mut diagnostics: ResMut<SolverDiagnostics>,
531) {
532    let start = crate::utils::Instant::now();
533
534    let delta_secs = time.delta_seconds_adjusted();
535
536    let mut dummy_body = SolverBody::default();
537
538    // TODO: Parallelize.
539    for entity in &ccd_query {
540        // Get the CCD body.
541        let Ok(SweptCcdBodyQueryItem {
542            solver_body: Some(mut solver_body1),
543            pos: &prev_pos1,
544            rot: &prev_rot1,
545            ccd: Some(ccd1),
546            collider: collider1,
547            com: com1,
548            ..
549        }) = (
550            // Safety: `get_unchecked` is only unsafe if there are multiple mutable references
551            //         to the same component, and this is ensured not to happen when iterating
552            //         over the AABB intersections below.
553            unsafe { bodies.get_unchecked(entity) }
554        )
555        else {
556            continue;
557        };
558
559        let lin_vel1 = solver_body1.linear_velocity;
560        let ang_vel1 = solver_body1.angular_velocity;
561
562        // The smallest time of impact found. Starts at the largest value,
563        // how long a body moves during a single frame due to position integration.
564        let (mut min_toi, mut min_toi_entity) = (delta_secs, None);
565
566        // Iterate through colliders intersecting the AABB of the CCD body.
567        let intersecting_entities = contact_graph.entities_colliding_with(entity);
568        for (collider2, &ColliderOf { body: entity2 }) in colliders.iter_many(intersecting_entities)
569        {
570            debug_assert_ne!(entity, entity2, "collider AABB cannot intersect itself");
571
572            // Get the body associated with the collider.
573            // Safety: `AabbIntersections` should never contain the entity of a collider
574            //         attached to the first body, and the entities are also ensured to be different above.
575            if let Ok(body2) = unsafe { bodies.get_unchecked(entity2) } {
576                if !ccd1.include_dynamic && body2.rb.is_dynamic() {
577                    continue;
578                }
579
580                // Get the solver body associated with the second body.
581                let solver_body2 = body2
582                    .solver_body
583                    .map_or(&dummy_body, |body| body.into_inner());
584
585                let prev_pos2 = *body2.pos;
586                let prev_rot2 = *body2.rot;
587                let lin_vel2 = solver_body2.linear_velocity;
588                let ang_vel2 = solver_body2.angular_velocity;
589
590                #[cfg(feature = "2d")]
591                let ang_vel_below_threshold = (ang_vel1 - ang_vel2).abs() < ccd1.angular_threshold;
592                #[cfg(feature = "3d")]
593                let ang_vel_below_threshold =
594                    (ang_vel1 - ang_vel2).length_squared() < ccd1.angular_threshold.powi(2);
595
596                // If both the relative linear and relative angular velocity
597                // are below the defined thresholds, skip this body.
598                if ang_vel_below_threshold
599                    && (lin_vel1 - lin_vel2).length_squared() < ccd1.linear_threshold.powi(2)
600                {
601                    continue;
602                }
603
604                let iso1 = make_isometry(prev_pos1, prev_rot1);
605                let iso2 = make_isometry(prev_pos2, prev_rot2);
606
607                // TODO: Support child colliders
608                let motion1 = NonlinearRigidMotion::new(
609                    iso1,
610                    com1.0.into(),
611                    lin_vel1.into(),
612                    ang_vel1.into(),
613                );
614                let motion2 = NonlinearRigidMotion::new(
615                    iso2,
616                    body2.com.0.into(),
617                    lin_vel2.into(),
618                    ang_vel2.into(),
619                );
620
621                let sweep_mode = if ccd1.mode == SweepMode::Linear
622                    && body2.ccd.is_none_or(|ccd| ccd.mode == SweepMode::Linear)
623                {
624                    SweepMode::Linear
625                } else {
626                    SweepMode::NonLinear
627                };
628
629                if let Some(toi) = compute_ccd_toi(
630                    sweep_mode,
631                    &motion1,
632                    collider1,
633                    &motion2,
634                    collider2,
635                    min_toi,
636                    narrow_phase_config.default_speculative_margin,
637                ) {
638                    min_toi = toi;
639                    min_toi_entity = Some(entity2);
640                }
641            }
642        }
643
644        // Advance the bodies from the previous poses to the first time of impact.
645        if let Some(Ok(body2)) =
646            min_toi_entity.map(|entity| unsafe { bodies.get_unchecked(entity) })
647        {
648            // Get the solver body for the entity that was hit.
649            let solver_body2 = body2
650                .solver_body
651                .map_or(&mut dummy_body, |body| body.into_inner());
652
653            let lin_vel2 = solver_body2.linear_velocity;
654            let ang_vel2 = solver_body2.angular_velocity;
655
656            // Overshoot slightly to make sure the bodies advance and don't get stuck.
657            let min_toi = min_toi * 1.0001;
658
659            solver_body1.delta_position = min_toi * lin_vel1;
660
661            // TODO: Abstract the integration logic to reuse it here
662            #[cfg(feature = "2d")]
663            {
664                solver_body1.delta_rotation = Rotation::radians(ang_vel1 * min_toi);
665            }
666            #[cfg(feature = "3d")]
667            {
668                let delta_rot = Quaternion::from_scaled_axis(ang_vel1 * min_toi);
669                solver_body1.delta_rotation.0 = delta_rot * solver_body1.delta_rotation.0;
670            }
671
672            solver_body2.delta_position = min_toi * lin_vel2;
673
674            #[cfg(feature = "2d")]
675            {
676                solver_body2.delta_rotation = Rotation::radians(ang_vel2 * min_toi);
677            }
678            #[cfg(feature = "3d")]
679            {
680                let delta_rot = Quaternion::from_scaled_axis(ang_vel2 * min_toi);
681                solver_body2.delta_rotation.0 = delta_rot * solver_body2.delta_rotation.0;
682            }
683        }
684    }
685
686    diagnostics.swept_ccd += start.elapsed();
687}
688
689/// Computes the time of impact for the motion of two objects for Continuous Collision Detection.
690/// If the TOI is larger than `min_toi` or the shapes never touch, `None` is returned.
691#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
692fn compute_ccd_toi(
693    mode: SweepMode,
694    motion1: &NonlinearRigidMotion,
695    collider1: &Collider,
696    motion2: &NonlinearRigidMotion,
697    collider2: &Collider,
698    min_toi: Scalar,
699    prediction_distance: Scalar,
700) -> Option<Scalar> {
701    if mode == SweepMode::Linear {
702        let hit = cast_shapes(
703            &motion1.start,
704            &motion1.linvel,
705            collider1.shape_scaled().as_ref(),
706            &motion2.start,
707            &motion2.linvel,
708            collider2.shape_scaled().as_ref(),
709            ShapeCastOptions {
710                max_time_of_impact: min_toi,
711                stop_at_penetration: false,
712                ..default()
713            },
714        )
715        .ok()??;
716        let toi = hit.time_of_impact;
717        if toi > 0.0 && toi < min_toi {
718            // New smaller time of impact found
719            return Some(toi);
720        } else if toi == 0.0 {
721            // If the time of impact is zero, fall back to computing the TOI of a small circle
722            // around the centroid of the first body.
723            let hit = cast_shapes(
724                &motion1.start,
725                &motion1.linvel,
726                collider1.shape_scaled().as_ref(),
727                &motion2.start,
728                &motion2.linvel,
729                &parry::shape::Ball::new(prediction_distance),
730                ShapeCastOptions {
731                    max_time_of_impact: min_toi,
732                    stop_at_penetration: false,
733                    ..default()
734                },
735            )
736            .ok()??;
737            let toi = hit.time_of_impact;
738            if toi > 0.0 && toi < min_toi {
739                // New smaller time of impact found
740                return Some(toi);
741            }
742        }
743    } else if let Ok(Some(ShapeCastHit {
744        time_of_impact: toi,
745        ..
746    })) = cast_shapes_nonlinear(
747        motion1,
748        collider1.shape_scaled().as_ref(),
749        motion2,
750        collider2.shape_scaled().as_ref(),
751        0.0,
752        min_toi,
753        false,
754    ) {
755        if toi > 0.0 && toi < min_toi {
756            // New smaller time of impact found
757            return Some(toi);
758        } else if toi == 0.0 {
759            // If the time of impact is zero, fall back to computing the TOI of a small circle
760            // around the centroid of the first body.
761            let hit = cast_shapes_nonlinear(
762                motion1,
763                collider1.shape_scaled().as_ref(),
764                motion2,
765                &parry::shape::Ball::new(prediction_distance),
766                0.0,
767                min_toi,
768                false,
769            )
770            .ok()??;
771            let toi = hit.time_of_impact;
772            if toi > 0.0 && toi < min_toi {
773                // New smaller time of impact found
774                return Some(toi);
775            }
776        }
777    }
778
779    None
780}