avian2d/dynamics/solver/contact/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
//! Constraints and other types used for solving contacts.
mod normal_part;
mod tangent_part;
pub use normal_part::ContactNormalPart;
pub use tangent_part::ContactTangentPart;
use crate::prelude::*;
use bevy::{
ecs::entity::{Entity, EntityMapper, MapEntities},
reflect::Reflect,
utils::default,
};
// TODO: One-body constraint version
/// Data and logic for solving a single contact point for a [`ContactConstraint`].
#[derive(Clone, Debug, PartialEq, Reflect)]
pub struct ContactConstraintPoint {
/// The normal part of the contact constraint.
pub normal_part: ContactNormalPart,
/// The tangential friction part of the contact constraint.
///
/// `None` if the coefficient of friction is zero.
pub tangent_part: Option<ContactTangentPart>,
// TODO: This could probably just be a boolean?
/// The largest incremental contact impulse magnitude along the contact normal during this frame.
///
/// This is used for determining whether restitution should be applied.
pub max_normal_impulse: Scalar,
// TODO: If a rotation delta was used for bodies, these local anchors could be removed.
/// The local contact point relative to the center of mass of the first body.
pub local_anchor1: Vector,
/// The local contact point relative to the center of mass of the second body.
pub local_anchor2: Vector,
/// The world-space contact point relative to the center of mass of the first body.
pub anchor1: Vector,
/// The world-space contact point relative to the center of mass of the second body.
pub anchor2: Vector,
/// The relative velocity of the bodies along the normal at the contact point.
pub normal_speed: Scalar,
/// The pre-solve separation distance between the bodies.
///
/// A negative separation indicates penetration.
pub initial_separation: Scalar,
}
/// A contact constraint used for resolving inter-penetration between two bodies.
///
/// Each constraint corresponds to a [`ContactManifold`] indicated by the `manifold_index`.
/// The contact points are stored in `points`, and they all share the same `normal`.
#[derive(Clone, Debug, PartialEq, Reflect)]
pub struct ContactConstraint {
/// The first rigid body entity in the contact.
pub body1: Entity,
/// The second rigid body entity in the contact.
pub body2: Entity,
/// The first collider entity in the contact.
pub collider1: Entity,
/// The second collider entity in the contact.
pub collider2: Entity,
/// The combined coefficient of dynamic [friction](Friction) of the bodies.
pub friction: Scalar,
/// The combined coefficient of [restitution](Restitution) of the bodies.
pub restitution: Scalar,
/// The desired relative linear speed of the bodies along the surface,
/// expressed in world space as `tangent_speed2 - tangent_speed1`.
///
/// Defaults to zero. If set to a non-zero value, this can be used to simulate effects
/// such as conveyor belts.
#[cfg(feature = "2d")]
pub tangent_speed: Scalar,
/// The desired relative linear velocity of the bodies along the surface,
/// expressed in world space as `tangent_velocity2 - tangent_velocity1`.
///
/// Defaults to zero. If set to a non-zero value, this can be used to simulate effects
/// such as conveyor belts.
#[cfg(feature = "3d")]
pub tangent_velocity: Vector,
/// The world-space contact normal shared by all points in the contact manifold.
pub normal: Vector,
/// The contact points in the manifold. Each point shares the same `normal`.
pub points: Vec<ContactConstraintPoint>,
/// The index of the [`ContactPair`] in the [`ContactGraph`].
///
/// This is primarily used for ordering contact constraints deterministically
/// when parallelism is enabled. The index may be invalidated by contact removal.
// TODO: We should figure out a better way to handle deterministic constraint generation.
#[cfg(feature = "parallel")]
pub pair_index: usize,
/// The index of the [`ContactManifold`] in the [`ContactPair`] stored for the two bodies.
pub manifold_index: usize,
}
impl ContactConstraint {
/// Warm starts the contact constraint by applying the impulses from the previous frame or substep.
pub fn warm_start(
&self,
body1: &mut RigidBodyQueryItem,
body2: &mut RigidBodyQueryItem,
normal: Vector,
tangent_directions: [Vector; DIM - 1],
warm_start_coefficient: Scalar,
) {
let inv_mass1 = body1.effective_inverse_mass();
let inv_mass2 = body2.effective_inverse_mass();
let inv_inertia1 = body1.effective_global_angular_inertia().inverse();
let inv_inertia2 = body2.effective_global_angular_inertia().inverse();
for point in self.points.iter() {
// Fixed anchors
let r1 = point.anchor1;
let r2 = point.anchor2;
let tangent_impulse = point
.tangent_part
.as_ref()
.map_or(default(), |part| part.impulse);
#[cfg(feature = "2d")]
let p = warm_start_coefficient
* (point.normal_part.impulse * normal + tangent_impulse * tangent_directions[0]);
#[cfg(feature = "3d")]
let p = warm_start_coefficient
* (point.normal_part.impulse * normal
+ tangent_impulse.x * tangent_directions[0]
+ tangent_impulse.y * tangent_directions[1]);
if body1.rb.is_dynamic() && body1.dominance() <= body2.dominance() {
body1.linear_velocity.0 -= p * inv_mass1;
body1.angular_velocity.0 -= inv_inertia1 * cross(r1, p);
}
if body2.rb.is_dynamic() && body2.dominance() <= body1.dominance() {
body2.linear_velocity.0 += p * inv_mass2;
body2.angular_velocity.0 += inv_inertia2 * cross(r2, p);
}
}
}
/// Solves the [`ContactConstraint`], applying an impulse to the given bodies.
pub fn solve(
&mut self,
body1: &mut RigidBodyQueryItem,
body2: &mut RigidBodyQueryItem,
delta_secs: Scalar,
use_bias: bool,
max_overlap_solve_speed: Scalar,
) {
let inv_mass1 = body1.effective_inverse_mass();
let inv_mass2 = body2.effective_inverse_mass();
let inv_inertia1 = body1.effective_global_angular_inertia().inverse();
let inv_inertia2 = body2.effective_global_angular_inertia().inverse();
let delta_translation = body2.accumulated_translation.0 - body1.accumulated_translation.0;
// Normal impulses
for point in self.points.iter_mut() {
let r1 = *body1.rotation * point.local_anchor1;
let r2 = *body2.rotation * point.local_anchor2;
// TODO: Consider rotation delta for anchors
let delta_separation = delta_translation + (r2 - r1);
let separation = delta_separation.dot(self.normal) + point.initial_separation;
// Fixed anchors
let r1 = point.anchor1;
let r2 = point.anchor2;
// Relative velocity at contact point
let relative_velocity = body2.velocity_at_point(r2) - body1.velocity_at_point(r1);
// Compute the incremental impulse. The clamping and impulse accumulation is handled by the method.
let impulse_magnitude = point.normal_part.solve_impulse(
separation,
relative_velocity,
self.normal,
use_bias,
max_overlap_solve_speed,
delta_secs,
);
// Store the maximum impulse for restitution.
point.max_normal_impulse = impulse_magnitude.max(point.max_normal_impulse);
if impulse_magnitude == 0.0 {
continue;
}
let impulse = impulse_magnitude * self.normal;
// Apply the impulse.
if body1.rb.is_dynamic() && body1.dominance() <= body2.dominance() {
body1.linear_velocity.0 -= impulse * inv_mass1;
body1.angular_velocity.0 -= inv_inertia1 * cross(r1, impulse);
}
if body2.rb.is_dynamic() && body2.dominance() <= body1.dominance() {
body2.linear_velocity.0 += impulse * inv_mass2;
body2.angular_velocity.0 += inv_inertia2 * cross(r2, impulse);
}
}
let tangent_directions =
self.tangent_directions(body1.linear_velocity.0, body2.linear_velocity.0);
// Friction
for point in self.points.iter_mut() {
let Some(ref mut friction_part) = point.tangent_part else {
continue;
};
// Fixed anchors
let r1 = point.anchor1;
let r2 = point.anchor2;
// Relative velocity at contact point
let relative_velocity = body2.velocity_at_point(r2) - body1.velocity_at_point(r1);
// Compute the incremental impulse. The clamping and impulse accumulation is handled by the method.
let impulse = friction_part.solve_impulse(
tangent_directions,
relative_velocity,
#[cfg(feature = "2d")]
self.tangent_speed,
#[cfg(feature = "3d")]
self.tangent_velocity,
self.friction,
point.normal_part.impulse,
);
// Apply the impulse.
if body1.rb.is_dynamic() && body1.dominance() <= body2.dominance() {
body1.linear_velocity.0 -= impulse * inv_mass1;
body1.angular_velocity.0 -= inv_inertia1 * cross(r1, impulse);
}
if body2.rb.is_dynamic() && body2.dominance() <= body1.dominance() {
body2.linear_velocity.0 += impulse * inv_mass2;
body2.angular_velocity.0 += inv_inertia2 * cross(r2, impulse);
}
}
}
/// Applies [restitution](`Restitution`) for the given bodies if the relative speed
/// along the contact normal exceeds the given `threshold`.
pub fn apply_restitution(
&mut self,
body1: &mut RigidBodyQueryItem,
body2: &mut RigidBodyQueryItem,
threshold: Scalar,
) {
for point in self.points.iter_mut() {
// Skip restitution for speeds below the threshold.
// We also skip contacts that don't apply an impulse to account for speculative contacts.
if point.normal_speed > -threshold || point.max_normal_impulse == 0.0 {
continue;
}
// Fixed anchors
let r1 = point.anchor1;
let r2 = point.anchor2;
let inv_mass1 = body1.effective_inverse_mass();
let inv_mass2 = body2.effective_inverse_mass();
let inv_inertia1 = body1.effective_global_angular_inertia().inverse();
let inv_inertia2 = body2.effective_global_angular_inertia().inverse();
// Relative velocity at contact point
let relative_velocity = body2.velocity_at_point(r2) - body1.velocity_at_point(r1);
let normal_speed = relative_velocity.dot(self.normal);
// Compute the incremental normal impulse to account for restitution.
let mut impulse = -point.normal_part.effective_mass
* (normal_speed + self.restitution * point.normal_speed);
// Clamp the accumulated impulse.
let new_impulse = (point.normal_part.impulse + impulse).max(0.0);
impulse = new_impulse - point.normal_part.impulse;
point.normal_part.impulse = new_impulse;
point.max_normal_impulse = impulse.max(point.max_normal_impulse);
// Apply the impulse.
let impulse = impulse * self.normal;
if body1.rb.is_dynamic() && body1.dominance() <= body2.dominance() {
body1.linear_velocity.0 -= impulse * inv_mass1;
body1.angular_velocity.0 -= inv_inertia1 * cross(r1, impulse);
}
if body2.rb.is_dynamic() && body2.dominance() <= body1.dominance() {
body2.linear_velocity.0 += impulse * inv_mass2;
body2.angular_velocity.0 += inv_inertia2 * cross(r2, impulse);
}
}
}
/// Computes `DIM - 1` tangent directions.
#[allow(unused_variables)]
pub fn tangent_directions(&self, velocity1: Vector, velocity2: Vector) -> [Vector; DIM - 1] {
#[cfg(feature = "2d")]
{
[Vector::new(self.normal.y, -self.normal.x)]
}
#[cfg(feature = "3d")]
{
let force_direction = -self.normal;
let relative_velocity = velocity1 - velocity2;
let tangent_velocity =
relative_velocity - force_direction * force_direction.dot(relative_velocity);
let tangent = tangent_velocity
.try_normalize()
.unwrap_or(force_direction.any_orthonormal_vector());
let bitangent = force_direction.cross(tangent);
[tangent, bitangent]
}
}
}
impl MapEntities for ContactConstraint {
fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) {
self.body1 = entity_mapper.get_mapped(self.body1);
self.body2 = entity_mapper.get_mapped(self.body2);
self.collider1 = entity_mapper.get_mapped(self.collider1);
self.collider2 = entity_mapper.get_mapped(self.collider2);
}
}