avian2d/dynamics/solver/contact/normal_part.rs
1use crate::{dynamics::solver::softness_parameters::SoftnessCoefficients, prelude::*};
2use bevy::reflect::Reflect;
3#[cfg(feature = "serialize")]
4use bevy::reflect::{ReflectDeserialize, ReflectSerialize};
5
6pub type NormalImpulse = Scalar;
7
8// TODO: Block solver for solving two contact points simultaneously
9// TODO: One-body constraint version
10/// The normal part of a [`ContactConstraintPoint`](super::ContactConstraintPoint).
11/// Aims to resolve overlap.
12#[derive(Clone, Debug, PartialEq, Reflect)]
13#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
14#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
15#[reflect(Debug, PartialEq)]
16pub struct ContactNormalPart {
17 /// The magnitude of the contact impulse along the contact normal.
18 pub impulse: NormalImpulse,
19
20 /// The total normal impulse applied across substeps and restitution.
21 /// The unit is typically N⋅s or kg⋅m/s.
22 ///
23 /// This is used by the solver to identify speculative contacts that did not generate
24 /// an impulse, but is also useful for users to determine how "strong" the contact is.
25 /// This is stored for contact manifolds as [`ContactPoint::normal_impulse`].
26 pub total_impulse: Scalar,
27
28 /// The inertial properties of the bodies projected onto the contact normal,
29 /// or in other words, the mass "seen" by the constraint along the normal.
30 pub effective_mass: Scalar,
31
32 /// The softness parameters used for tuning contact response.
33 pub softness: SoftnessCoefficients,
34}
35
36impl ContactNormalPart {
37 /// Generates a new [`ContactNormalPart`].
38 #[allow(clippy::too_many_arguments)]
39 pub fn generate(
40 effective_inverse_mass_sum: Vector,
41 inverse_angular_inertia1: &SymmetricTensor,
42 inverse_angular_inertia2: &SymmetricTensor,
43 r1: Vector,
44 r2: Vector,
45 normal: Vector,
46 warm_start_impulse: Option<NormalImpulse>,
47 softness: SoftnessCoefficients,
48 ) -> Self {
49 let i1 = inverse_angular_inertia1;
50 let i2 = inverse_angular_inertia2;
51
52 // Derivation for the projected normal mass. This is for 3D, but the 2D version is basically equivalent.
53 //
54 // The penetration constraint function is the following:
55 //
56 // C(s) = dot(p2 - p1, n) = dot(x2 + r2 - x1 - r1, n)
57 //
58 // where
59 // - p1 and p2 are world-space contact points for each body
60 // - n is the surface normal pointing from the first body towards the second (the order matters)
61 // - x1 and x2 are the centers of mass
62 // - r1 and r2 are vectors from the centers of mass to the corresponding contact points
63 //
64 // The contact constraint is satisfied when the bodies are not penetrating:
65 //
66 // C(s) >= 0
67 //
68 // We can compute the velocity constraint by getting the time derivative:
69 //
70 // C_vel(s) = d/dt(dot(x2 + r2 - x1 - r1, n))
71 // = dot(d/dt(x2 + r2 - x1 - r1), n) + dot(x2 + r2 - x1 - r1, d/dt(n))
72 //
73 // The penetration is assumed to be small, so we can ignore the second term:
74 //
75 // C_vel(s) = dot(d/dt(x2 + r2 - x1 - r1), n)
76 // = dot(lin_vel2 + ang_vel2 x r2 - lin_vel1 - ang_vel1 x r1, n)
77 // = dot(lin_vel2, n) + dot(ang_vel2, r2 x n) - dot(v1, n) - dot(ang_vel1, r1 x n)
78 //
79 // By inspection, we can see that the Jacobian is the following:
80 //
81 // linear1 angular1 linear2 angular2
82 // J = [ -normal, -(r1 x n), n, r2 x n ]
83 //
84 // From this, we can derive the effective inverse mass:
85 //
86 // K = J_x * M^-1 * J_x^T
87 // = 1/m1 + 1/m2 + (r1 x n)^T * I1^-1 * (r1 x n) + (r2 x n)^T * I2^-1 * (r2 x n)
88 //
89 // See "Constraints Derivation for Rigid Body Simulation in 3D" section 2.1.3
90 // by Daniel Chappuis for the full derivation of the effective inverse mass.
91 //
92 // Finally, the transposes can be simplified with dot products, because a^T * b = dot(a, b),
93 // where a and b are two column vectors.
94 //
95 // K = 1/m1 + 1/m2 + dot(r1 x n, I1^-1 * (r1 x n)) + dot(r2 x n, I2^-1 * (r2 x n))
96
97 let r1_cross_n = cross(r1, normal);
98 let r2_cross_n = cross(r2, normal);
99
100 let k_linear = normal.dot(effective_inverse_mass_sum * normal);
101 #[cfg(feature = "2d")]
102 let k = k_linear + i1 * r1_cross_n * r1_cross_n + i2 * r2_cross_n * r2_cross_n;
103 #[cfg(feature = "3d")]
104 let k = k_linear + r1_cross_n.dot(i1 * r1_cross_n) + r2_cross_n.dot(i2 * r2_cross_n);
105
106 Self {
107 impulse: warm_start_impulse.unwrap_or_default(),
108 total_impulse: 0.0,
109 effective_mass: k.recip_or_zero(),
110 softness,
111 }
112 }
113
114 /// Solves the non-penetration constraint, updating the total impulse in `self` and returning
115 /// the incremental impulse to apply to each body.
116 pub fn solve_impulse(
117 &mut self,
118 separation: Scalar,
119 relative_velocity: Vector,
120 normal: Vector,
121 use_bias: bool,
122 max_overlap_solve_speed: Scalar,
123 delta_secs: Scalar,
124 ) -> Scalar {
125 // Compute the relative velocity along the normal.
126 let normal_speed = relative_velocity.dot(normal);
127
128 // Compute the incremental normal impulse.
129 let mut impulse = if separation > 0.0 {
130 // Speculative contact: Push back the part of the velocity that would cause penetration.
131 -self.effective_mass * (normal_speed + separation / delta_secs)
132 } else if use_bias {
133 // Contact using bias: Incorporate softness parameters.
134 //
135 // 1. Velocity bias: Allows the constraint to solve overlap by boosting
136 // the constraint response a bit, taking into account the current overlap.
137 // This is known as Baumgarte stabilization.
138 //
139 // 2. Mass coefficient: Scales the effective mass "seen" by the constraint.
140 //
141 // 3. Impulse coefficient: Scales the accumulated impulse that is subtracted
142 // from the total impulse to prevent the total impulse from becoming too large.
143 //
144 // See the `softness_parameters` module for more details and references.
145
146 // TODO: We might want optional slop, a small amount of allowed penetration.
147 let bias = (self.softness.bias * separation).max(-max_overlap_solve_speed);
148 let scaled_mass = self.softness.mass_scale * self.effective_mass;
149 let scaled_impulse = self.softness.impulse_scale * self.impulse;
150
151 -scaled_mass * (normal_speed + bias) - scaled_impulse
152 } else {
153 // Contact without bias: Solve normally without softness parameters.
154 // This is useful for a "relaxation" phase which helps get rid of overshoot.
155 -self.effective_mass * normal_speed
156 };
157
158 // Clamp the accumulated impulse.
159 let new_impulse = (self.impulse + impulse).max(0.0);
160 impulse = new_impulse - self.impulse;
161 self.impulse = new_impulse;
162 self.total_impulse += new_impulse;
163
164 // Return the clamped incremental normal impulse.
165 impulse
166 }
167}