1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
//! Geometric queries for computing information about contacts between two [`Collider`]s.
//!
//! This module contains the following contact queries:
//!
//! | Contact query | Description |
//! | --------------------- | ------------------------------------------------------------------------- |
//! | [`contact`] | Computes one pair of contact points between two [`Collider`]s. |
//! | [`contact_manifolds`] | Computes all [`ContactManifold`]s between two [`Collider`]s. |
//! | [`closest_points`] | Computes the closest points between two [`Collider`]s. |
//! | [`distance`] | Computes the minimum distance separating two [`Collider`]s. |
//! | [`intersection_test`] | Tests whether two [`Collider`]s are intersecting each other. |
//! | [`time_of_impact`] | Computes when two moving [`Collider`]s hit each other for the first time. |
//!
//! For geometric queries that query the entire world for intersections, like raycasting, shapecasting
//! and point projection, see [spatial queries](spatial_query).
use crate::prelude::*;
use bevy::prelude::*;
use parry::query::{PersistentQueryDispatcher, ShapeCastOptions, Unsupported};
/// An error indicating that a [contact query](contact_query) is not supported for one of the [`Collider`] shapes.
pub type UnsupportedShape = Unsupported;
/// Computes one pair of contact points between two [`Collider`]s.
///
/// Returns `None` if the colliders are separated by a distance greater than `prediction_distance`
/// or if the given shapes are invalid.
///
/// ## Example
///
/// ```
/// # #[cfg(feature = "2d")]
/// # use avian2d::prelude::{contact_query::contact, *};
/// # #[cfg(feature = "3d")]
/// use avian3d::prelude::{contact_query::contact, *};
/// use bevy::prelude::*;
///
/// # #[cfg(all(feature = "3d", feature = "f32"))]
/// # {
/// let collider1 = Collider::sphere(0.5);
/// let collider2 = Collider::cuboid(1.0, 1.0, 1.0);
///
/// // Compute a contact that should have a penetration depth of 0.5
/// let contact = contact(
/// // First collider
/// &collider1,
/// Vec3::default(),
/// Quat::default(),
/// // Second collider
/// &collider2,
/// Vec3::X * 0.5,
/// Quat::default(),
/// // Prediction distance
/// 0.0,
/// )
/// .expect("Unsupported collider shape");
///
/// assert_eq!(
/// contact.is_some_and(|contact| contact.penetration == 0.5),
/// true
/// );
/// # }
/// ```
pub fn contact(
collider1: &Collider,
position1: impl Into<Position>,
rotation1: impl Into<Rotation>,
collider2: &Collider,
position2: impl Into<Position>,
rotation2: impl Into<Rotation>,
prediction_distance: Scalar,
) -> Result<Option<SingleContact>, UnsupportedShape> {
let rotation1: Rotation = rotation1.into();
let rotation2: Rotation = rotation2.into();
let isometry1 = make_isometry(position1.into(), rotation1);
let isometry2 = make_isometry(position2.into(), rotation2);
parry::query::contact(
&isometry1,
collider1.shape_scaled().0.as_ref(),
&isometry2,
collider2.shape_scaled().0.as_ref(),
prediction_distance,
)
.map(|contact| {
if let Some(contact) = contact {
// Transform contact data into local space
let point1: Vector = rotation1.inverse() * Vector::from(contact.point1);
let point2: Vector = rotation2.inverse() * Vector::from(contact.point2);
let normal1: Vector = (rotation1.inverse() * Vector::from(contact.normal1)).normalize();
let normal2: Vector = (rotation2.inverse() * Vector::from(contact.normal2)).normalize();
// Make sure normals are valid
if !normal1.is_normalized() || !normal2.is_normalized() {
return None;
}
Some(SingleContact::new(
point1,
point2,
normal1,
normal2,
-contact.dist,
))
} else {
None
}
})
}
// TODO: Add a persistent version of this that tries to reuse previous contact manifolds
// by exploiting spatial and temporal coherence. This is supported by Parry's contact_manifolds,
// but requires using Parry's ContactManifold type.
/// Computes all [`ContactManifold`]s between two [`Collider`]s.
///
/// Returns an empty vector if the colliders are separated by a distance greater than `prediction_distance`
/// or if the given shapes are invalid.
///
/// ## Example
///
/// ```
/// # #[cfg(feature = "2d")]
/// # use avian2d::prelude::{contact_query::contact_manifolds, *};
/// # #[cfg(feature = "3d")]
/// use avian3d::prelude::{contact_query::contact_manifolds, *};
/// use bevy::prelude::*;
///
/// # #[cfg(all(feature = "3d", feature = "f32"))]
/// # {
/// let collider1 = Collider::sphere(0.5);
/// let collider2 = Collider::cuboid(1.0, 1.0, 1.0);
///
/// // Compute contact manifolds a collision that should be penetrating
/// let manifolds = contact_manifolds(
/// // First collider
/// &collider1,
/// Vec3::default(),
/// Quat::default(),
/// // Second collider
/// &collider2,
/// Vec3::X * 0.25,
/// Quat::default(),
/// // Prediction distance
/// 0.0,
/// );
///
/// assert_eq!(manifolds.is_empty(), false);
/// # }
/// ```
pub fn contact_manifolds(
collider1: &Collider,
position1: impl Into<Position>,
rotation1: impl Into<Rotation>,
collider2: &Collider,
position2: impl Into<Position>,
rotation2: impl Into<Rotation>,
prediction_distance: Scalar,
) -> Vec<ContactManifold> {
let isometry1 = make_isometry(position1.into(), rotation1.into());
let isometry2 = make_isometry(position2.into(), rotation2.into());
let isometry12 = isometry1.inv_mul(&isometry2);
// TODO: Reuse manifolds from previous frame to improve performance
let mut manifolds: Vec<parry::query::ContactManifold<(), ()>> = vec![];
let result = parry::query::DefaultQueryDispatcher.contact_manifolds(
&isometry12,
collider1.shape_scaled().0.as_ref(),
collider2.shape_scaled().0.as_ref(),
prediction_distance,
&mut manifolds,
&mut None,
);
// Fall back to support map contacts for unsupported (custom) shapes.
if result.is_err() {
if let (Some(shape1), Some(shape2)) = (
collider1.shape_scaled().as_support_map(),
collider2.shape_scaled().as_support_map(),
) {
if let Some(contact) = parry::query::contact::contact_support_map_support_map(
&isometry12,
shape1,
shape2,
prediction_distance,
) {
let normal1 = Vector::from(contact.normal1);
let normal2 = Vector::from(contact.normal2);
// Make sure normals are valid
if !normal1.is_normalized() || !normal2.is_normalized() {
return vec![];
}
return vec![ContactManifold {
normal1,
normal2,
contacts: vec![ContactData::new(
contact.point1.into(),
contact.point2.into(),
normal1,
normal2,
-contact.dist,
)],
index: 0,
}];
}
}
}
let mut manifold_index = 0;
manifolds
.iter()
.filter_map(|manifold| {
let subpos1 = manifold.subshape_pos1.unwrap_or_default();
let subpos2 = manifold.subshape_pos2.unwrap_or_default();
let normal1: Vector = subpos1
.rotation
.transform_vector(&manifold.local_n1)
.normalize()
.into();
let normal2: Vector = subpos2
.rotation
.transform_vector(&manifold.local_n2)
.normalize()
.into();
// Make sure normals are valid
if !normal1.is_normalized() || !normal2.is_normalized() {
return None;
}
let manifold = ContactManifold {
normal1,
normal2,
contacts: manifold
.contacts()
.iter()
.map(|contact| {
ContactData::new(
subpos1.transform_point(&contact.local_p1).into(),
subpos2.transform_point(&contact.local_p2).into(),
normal1,
normal2,
-contact.dist,
)
.with_feature_ids(contact.fid1.into(), contact.fid2.into())
})
.collect(),
index: manifold_index,
};
manifold_index += 1;
Some(manifold)
})
.collect()
}
/// Information about the closest points between two [`Collider`]s.
///
/// The closest points can be computed using [`closest_points`].
#[derive(Reflect, Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, PartialEq)]
pub enum ClosestPoints {
/// The two shapes are intersecting each other.
Intersecting,
/// The two shapes are not intersecting each other but the distance between the closest points
/// is below the user-defined maximum distance.
///
/// The points are expressed in world space.
WithinMargin(Vector, Vector),
/// The two shapes are not intersecting each other and the distance between the closest points
/// exceeds the user-defined maximum distance.
OutsideMargin,
}
/// Computes the [`ClosestPoints`] between two [`Collider`]s.
///
/// Returns `Err(UnsupportedShape)` if either of the collider shapes is not supported.
///
/// ## Example
///
/// ```
/// # #[cfg(feature = "2d")]
/// # use avian2d::prelude::{contact_query::*, *};
/// # #[cfg(feature = "3d")]
/// use avian3d::prelude::{contact_query::*, *};
/// use bevy::prelude::*;
///
/// # #[cfg(all(feature = "3d", feature = "f32"))]
/// # {
/// let collider1 = Collider::sphere(0.5);
/// let collider2 = Collider::cuboid(1.0, 1.0, 1.0);
///
/// // The shapes are intersecting
/// assert_eq!(
/// closest_points(
/// &collider1,
/// Vec3::default(),
/// Quat::default(),
/// &collider2,
/// Vec3::default(),
/// Quat::default(),
/// 2.0,
/// )
/// .expect("Unsupported collider shape"),
/// ClosestPoints::Intersecting,
/// );
///
/// // The shapes are not intersecting but the distance between the closest points is below 2.0
/// assert_eq!(
/// closest_points(
/// &collider1,
/// Vec3::default(),
/// Quat::default(),
/// &collider2,
/// Vec3::X * 1.5,
/// Quat::default(),
/// 2.0,
/// )
/// .expect("Unsupported collider shape"),
/// ClosestPoints::WithinMargin(Vec3::X * 0.5, Vec3::X * 1.0),
/// );
///
/// // The shapes are not intersecting and the distance between the closest points exceeds 2.0
/// assert_eq!(
/// closest_points(
/// &collider1,
/// Vec3::default(),
/// Quat::default(),
/// &collider2,
/// Vec3::X * 5.0,
/// Quat::default(),
/// 2.0,
/// )
/// .expect("Unsupported collider shape"),
/// ClosestPoints::OutsideMargin,
/// );
/// # }
/// ```
pub fn closest_points(
collider1: &Collider,
position1: impl Into<Position>,
rotation1: impl Into<Rotation>,
collider2: &Collider,
position2: impl Into<Position>,
rotation2: impl Into<Rotation>,
max_distance: Scalar,
) -> Result<ClosestPoints, UnsupportedShape> {
let rotation1: Rotation = rotation1.into();
let rotation2: Rotation = rotation2.into();
let isometry1 = make_isometry(position1.into(), rotation1);
let isometry2 = make_isometry(position2.into(), rotation2);
parry::query::closest_points(
&isometry1,
collider1.shape_scaled().0.as_ref(),
&isometry2,
collider2.shape_scaled().0.as_ref(),
max_distance,
)
.map(|closest_points| match closest_points {
parry::query::ClosestPoints::Intersecting => ClosestPoints::Intersecting,
parry::query::ClosestPoints::WithinMargin(point1, point2) => {
ClosestPoints::WithinMargin(point1.into(), point2.into())
}
parry::query::ClosestPoints::Disjoint => ClosestPoints::OutsideMargin,
})
}
/// Computes the minimum distance separating two [`Collider`]s.
///
/// Returns `0.0` if the colliders are touching or penetrating, and `Err(UnsupportedShape)`
/// if either of the collider shapes is not supported.
///
/// ## Example
///
/// ```
/// # #[cfg(feature = "2d")]
/// # use avian2d::prelude::{contact_query::distance, *};
/// # #[cfg(feature = "3d")]
/// use avian3d::prelude::{contact_query::distance, *};
/// use bevy::prelude::*;
///
/// # #[cfg(all(feature = "3d", feature = "f32"))]
/// # {
/// let collider1 = Collider::sphere(0.5);
/// let collider2 = Collider::cuboid(1.0, 1.0, 1.0);
///
/// // The distance is 1.0
/// assert_eq!(
/// distance(
/// &collider1,
/// Vec3::default(),
/// Quat::default(),
/// &collider2,
/// Vec3::X * 2.0,
/// Quat::default(),
/// )
/// .expect("Unsupported collider shape"),
/// 1.0,
/// );
///
/// // The colliders are penetrating, so the distance is 0.0
/// assert_eq!(
/// distance(
/// &collider1,
/// Vec3::default(),
/// Quat::default(),
/// &collider2,
/// Vec3::default(),
/// Quat::default(),
/// )
/// .expect("Unsupported collider shape"),
/// 0.0,
/// );
/// # }
/// ```
pub fn distance(
collider1: &Collider,
position1: impl Into<Position>,
rotation1: impl Into<Rotation>,
collider2: &Collider,
position2: impl Into<Position>,
rotation2: impl Into<Rotation>,
) -> Result<Scalar, UnsupportedShape> {
let rotation1: Rotation = rotation1.into();
let rotation2: Rotation = rotation2.into();
let isometry1 = make_isometry(position1.into(), rotation1);
let isometry2 = make_isometry(position2.into(), rotation2);
parry::query::distance(
&isometry1,
collider1.shape_scaled().0.as_ref(),
&isometry2,
collider2.shape_scaled().0.as_ref(),
)
}
/// Tests whether two [`Collider`]s are intersecting each other.
///
/// Returns `Err(UnsupportedShape)` if either of the collider shapes is not supported.
///
/// ## Example
///
/// ```
/// # #[cfg(feature = "2d")]
/// # use avian2d::prelude::{contact_query::intersection_test, *};
/// # #[cfg(feature = "3d")]
/// use avian3d::prelude::{contact_query::intersection_test, *};
/// use bevy::prelude::*;
///
/// # #[cfg(all(feature = "3d", feature = "f32"))]
/// # {
/// let collider1 = Collider::sphere(0.5);
/// let collider2 = Collider::cuboid(1.0, 1.0, 1.0);
///
/// // These colliders should be intersecting
/// assert_eq!(
/// intersection_test(
/// &collider1,
/// Vec3::default(),
/// Quat::default(),
/// &collider2,
/// Vec3::default(),
/// Quat::default(),
/// )
/// .expect("Unsupported collider shape"),
/// true,
/// );
///
/// // These colliders shouldn't be intersecting
/// assert_eq!(
/// intersection_test(
/// &collider1,
/// Vec3::default(),
/// Quat::default(),
/// &collider2,
/// Vec3::X * 5.0,
/// Quat::default(),
/// )
/// .expect("Unsupported collider shape"),
/// false,
/// );
/// # }
/// ```
pub fn intersection_test(
collider1: &Collider,
position1: impl Into<Position>,
rotation1: impl Into<Rotation>,
collider2: &Collider,
position2: impl Into<Position>,
rotation2: impl Into<Rotation>,
) -> Result<bool, UnsupportedShape> {
let rotation1: Rotation = rotation1.into();
let rotation2: Rotation = rotation2.into();
let isometry1 = make_isometry(position1.into(), rotation1);
let isometry2 = make_isometry(position2.into(), rotation2);
parry::query::intersection_test(
&isometry1,
collider1.shape_scaled().0.as_ref(),
&isometry2,
collider2.shape_scaled().0.as_ref(),
)
}
/// The way the [time of impact](time_of_impact) computation was terminated.
pub type TimeOfImpactStatus = parry::query::details::ShapeCastStatus;
/// The result of a [time of impact](time_of_impact) computation between two moving [`Collider`]s.
#[derive(Clone, Copy, Debug, PartialEq)]
pub struct TimeOfImpact {
/// The time at which the colliders come into contact.
pub time_of_impact: Scalar,
/// The closest point on the first collider, at the time of impact,
/// expressed in local space.
pub point1: Vector,
/// The closest point on the second collider, at the time of impact,
/// expressed in local space.
pub point2: Vector,
/// The outward normal on the first collider, at the time of impact,
/// expressed in local space.
pub normal1: Vector,
/// The outward normal on the second collider, at the time of impact,
/// expressed in local space.
pub normal2: Vector,
/// The way the time of impact computation was terminated.
pub status: TimeOfImpactStatus,
}
/// Computes when two moving [`Collider`]s hit each other for the first time.
///
/// Returns `Ok(None)` if the time of impact is greater than `max_time_of_impact`
/// and `Err(UnsupportedShape)` if either of the collider shapes is not supported.
///
/// ## Example
///
/// ```
/// # #[cfg(feature = "2d")]
/// # use avian2d::prelude::{contact_query::time_of_impact, *};
/// # #[cfg(feature = "3d")]
/// use avian3d::prelude::{contact_query::time_of_impact, *};
/// use bevy::prelude::*;
///
/// # #[cfg(all(feature = "3d", feature = "f32"))]
/// # {
/// let collider1 = Collider::sphere(0.5);
/// let collider2 = Collider::cuboid(1.0, 1.0, 1.0);
///
/// let result = time_of_impact(
/// &collider1, // Collider 1
/// Vec3::NEG_X * 5.0, // Position 1
/// Quat::default(), // Rotation 1
/// Vec3::X, // Linear velocity 1
/// &collider2, // Collider 2
/// Vec3::X * 5.0, // Position 2
/// Quat::default(), // Rotation 2
/// Vec3::NEG_X, // Linear velocity 2
/// 100.0, // Maximum time of impact
/// )
/// .expect("Unsupported collider shape");
///
/// assert_eq!(result.unwrap().time_of_impact, 4.5);
/// # }
/// ```
#[allow(clippy::too_many_arguments, clippy::type_complexity)]
pub fn time_of_impact(
collider1: &Collider,
position1: impl Into<Position>,
rotation1: impl Into<Rotation>,
velocity1: impl Into<LinearVelocity>,
collider2: &Collider,
position2: impl Into<Position>,
rotation2: impl Into<Rotation>,
velocity2: impl Into<LinearVelocity>,
max_time_of_impact: Scalar,
) -> Result<Option<TimeOfImpact>, UnsupportedShape> {
let rotation1: Rotation = rotation1.into();
let rotation2: Rotation = rotation2.into();
let velocity1: LinearVelocity = velocity1.into();
let velocity2: LinearVelocity = velocity2.into();
let isometry1 = make_isometry(position1.into(), rotation1);
let isometry2 = make_isometry(position2.into(), rotation2);
parry::query::cast_shapes(
&isometry1,
&velocity1.0.into(),
collider1.shape_scaled().0.as_ref(),
&isometry2,
&velocity2.0.into(),
collider2.shape_scaled().0.as_ref(),
ShapeCastOptions {
max_time_of_impact,
stop_at_penetration: true,
..default()
},
)
.map(|toi| {
toi.map(|toi| TimeOfImpact {
time_of_impact: toi.time_of_impact,
point1: toi.witness1.into(),
point2: toi.witness2.into(),
normal1: toi.normal1.into(),
normal2: toi.normal2.into(),
status: toi.status,
})
})
}