avian3d/collision/contact_types/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
//! Contact types and data structures used in the collision pipeline.
mod contact_graph;
mod feature_id;
mod system_param;
pub use contact_graph::ContactGraph;
pub use feature_id::PackedFeatureId;
pub use system_param::Collisions;
use crate::prelude::*;
use bevy::prelude::*;
/// A contact pair between two colliders.
///
/// Each contact pair has one or more [contact manifolds](ContactManifold),
/// which represent contact surfaces between the two colliders.
/// Each of these manifolds contains one or more [contact points](ContactPoint).
///
/// Contact pairs exist in the [`ContactGraph`] between colliders whose [`ColliderAabb`]s
/// are overlapping, even if the colliders themselves are not touching.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct ContactPair {
/// The first collider entity in the contact.
pub collider1: Entity,
/// The second collider entity in the contact.
pub collider2: Entity,
/// The entity of the first body involved in the contact.
pub body1: Option<Entity>,
/// The entity of the second body involved in the contact.
pub body2: Option<Entity>,
/// A list of contact manifolds between two colliders.
/// Each manifold contains one or more contact points, but each contact
/// in a given manifold shares the same contact normal.
pub manifolds: Vec<ContactManifold>,
/// Flag indicating the status and type of the contact pair.
pub flags: ContactPairFlags,
}
/// Flags indicating the status and type of a [contact pair](ContactPair).
#[repr(transparent)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[derive(Hash, Clone, Copy, PartialEq, Eq, Debug, Reflect)]
#[reflect(opaque, Hash, PartialEq, Debug)]
pub struct ContactPairFlags(u8);
bitflags::bitflags! {
impl ContactPairFlags: u8 {
/// Set if the colliders are touching, including sensors.
const TOUCHING = 0b0000_0001;
/// Set if the AABBs of the colliders are no longer overlapping.
const DISJOINT_AABB = 0b0000_0010;
/// Set if the colliders are touching and were not touching previously.
const STARTED_TOUCHING = 0b0000_0100;
/// Set if the colliders are not touching and were touching previously.
const STOPPED_TOUCHING = 0b0000_1000;
/// Set if at least one of the colliders is a sensor.
const SENSOR = 0b0001_0000;
/// Set if the contact pair should emit contact events or sensor events.
const CONTACT_EVENTS = 0b0010_0000;
/// Set if the contact pair should have a custom contact modification hook applied.
const MODIFY_CONTACTS = 0b0100_0000;
}
}
impl ContactPair {
/// Creates a new [`ContactPair`] with the given entities.
#[inline]
pub fn new(collider1: Entity, collider2: Entity) -> Self {
Self {
collider1,
collider2,
body1: None,
body2: None,
manifolds: Vec::new(),
flags: ContactPairFlags::empty(),
}
}
/// Computes the sum of all impulses applied along contact normals between the contact pair.
///
/// To get the corresponding force, divide the impulse by `Time::<Substeps>::delta_secs()`.
pub fn total_normal_impulse(&self) -> Vector {
self.manifolds.iter().fold(Vector::ZERO, |acc, manifold| {
acc + manifold.normal * manifold.total_normal_impulse()
})
}
/// Computes the sum of the magnitudes of all impulses applied along contact normals between the contact pair.
///
/// This is the sum of impulse magnitudes, *not* the magnitude of the [`total_normal_impulse`](Self::total_normal_impulse).
///
/// To get the corresponding force, divide the impulse by `Time::<Substeps>::delta_secs()`.
pub fn total_normal_impulse_magnitude(&self) -> Scalar {
self.manifolds
.iter()
.fold(0.0, |acc, manifold| acc + manifold.total_normal_impulse())
}
// TODO: We could also return a reference to the whole manifold. Would that be useful?
/// Finds the largest impulse between the contact pair, and the associated world-space contact normal,
/// pointing from the first shape to the second.
///
/// To get the corresponding force, divide the impulse by `Time::<Substeps>::delta_secs()`.
pub fn max_normal_impulse(&self) -> (Scalar, Vector) {
let mut magnitude: Scalar = 0.0;
let mut normal = Vector::ZERO;
for manifold in &self.manifolds {
let impulse = manifold.max_normal_impulse();
if impulse.abs() > magnitude.abs() {
magnitude = impulse;
normal = manifold.normal;
}
}
(magnitude, normal)
}
/// The force corresponding to the total normal impulse applied over `delta_time`.
///
/// Because contacts are solved over several substeps, `delta_time` should
/// typically use `Time<Substeps>::delta_secs()`.
#[deprecated(
note = "Use `total_normal_impulse` instead, and divide it by `Time<Substeps>::delta_secs()`",
since = "0.3.0"
)]
pub fn total_normal_force(&self, delta_time: Scalar) -> Scalar {
self.total_normal_impulse_magnitude() / delta_time
}
/// Returns `true` if at least one of the colliders is a [`Sensor`].
pub fn is_sensor(&self) -> bool {
self.flags.contains(ContactPairFlags::SENSOR)
}
/// Returns `true` if the colliders are touching, including sensors.
pub fn is_touching(&self) -> bool {
self.flags.contains(ContactPairFlags::TOUCHING)
}
/// Returns `true` if the AABBs of the colliders are no longer overlapping.
pub fn aabbs_disjoint(&self) -> bool {
self.flags.contains(ContactPairFlags::DISJOINT_AABB)
}
/// Returns `true` if a collision started during the current frame.
pub fn collision_started(&self) -> bool {
self.flags.contains(ContactPairFlags::STARTED_TOUCHING)
}
/// Returns `true` if a collision ended during the current frame.
pub fn collision_ended(&self) -> bool {
self.flags.contains(ContactPairFlags::STOPPED_TOUCHING)
}
/// Returns `true` if collision events are enabled for the contact pair.
pub fn events_enabled(&self) -> bool {
self.flags.contains(ContactPairFlags::CONTACT_EVENTS)
}
/// Returns the contact with the largest penetration depth.
///
/// If the objects are separated but there is still a speculative contact,
/// the penetration depth will be negative.
///
/// If there are no contacts, `None` is returned.
pub fn find_deepest_contact(&self) -> Option<&ContactPoint> {
self.manifolds
.iter()
.filter_map(|manifold| manifold.find_deepest_contact())
.max_by(|a, b| {
a.penetration
.partial_cmp(&b.penetration)
.unwrap_or(core::cmp::Ordering::Equal)
})
}
}
/// A contact manifold describing a contact surface between two colliders,
/// represented by a set of [contact points](ContactPoint) and surface properties.
///
/// A manifold can typically be a single point, a line segment, or a polygon formed by its contact points.
/// Each contact point in a manifold shares the same contact normal.
#[cfg_attr(
feature = "2d",
doc = "
In 2D, contact manifolds are limited to 2 points."
)]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct ContactManifold {
/// The contact points in this manifold. Limited to 2 points in 2D.
///
/// Each point in a manifold shares the same `normal`.
#[cfg(feature = "2d")]
pub points: arrayvec::ArrayVec<ContactPoint, 2>,
/// The contact points in this manifold.
///
/// Each point in a manifold shares the same `normal`.
#[cfg(feature = "3d")]
pub points: Vec<ContactPoint>,
/// The unit contact normal in world space, pointing from the first shape to the second.
///
/// The same normal is shared by all `points` in a manifold.
pub normal: Vector,
/// The effective coefficient of dynamic [friction](Friction) used for the contact surface.
pub friction: Scalar,
/// The effective coefficient of [restitution](Restitution) used for the contact surface.
pub restitution: Scalar,
/// The desired relative linear speed of the bodies along the surface,
/// expressed in world space as `tangent_speed2 - tangent_speed1`.
///
/// Defaults to zero. If set to a non-zero value, this can be used to simulate effects
/// such as conveyor belts.
#[cfg(feature = "2d")]
pub tangent_speed: Scalar,
// TODO: Jolt also supports a relative angular surface velocity, which can be used for making
// objects rotate on platforms. Would that be useful enough to warrant the extra memory usage?
/// The desired relative linear velocity of the bodies along the surface,
/// expressed in world space as `tangent_velocity2 - tangent_velocity1`.
///
/// Defaults to zero. If set to a non-zero value, this can be used to simulate effects
/// such as conveyor belts.
#[cfg(feature = "3d")]
pub tangent_velocity: Vector,
/// The index of the manifold in the collision.
pub index: usize,
}
impl ContactManifold {
/// Creates a new [`ContactManifold`] with the given contact points and surface normals,
/// expressed in local space.
///
/// `index` represents the index of the manifold in the collision.
pub fn new(
points: impl IntoIterator<Item = ContactPoint>,
normal: Vector,
index: usize,
) -> Self {
Self {
#[cfg(feature = "2d")]
points: arrayvec::ArrayVec::from_iter(points),
#[cfg(feature = "3d")]
points: points.into_iter().collect(),
normal,
friction: 0.0,
restitution: 0.0,
#[cfg(feature = "2d")]
tangent_speed: 0.0,
#[cfg(feature = "3d")]
tangent_velocity: Vector::ZERO,
index,
}
}
/// The sum of the impulses applied at the contact points in the manifold along the contact normal.
fn total_normal_impulse(&self) -> Scalar {
self.points
.iter()
.fold(0.0, |acc, contact| acc + contact.normal_impulse)
}
/// The magnitude of the largest impulse applied at a contact point in the manifold along the contact normal.
fn max_normal_impulse(&self) -> Scalar {
self.points
.iter()
.map(|contact| contact.normal_impulse)
.max_by(|a, b| a.partial_cmp(b).unwrap_or(core::cmp::Ordering::Equal))
.unwrap_or(0.0)
}
/// Copies impulses from previous contacts to matching contacts in `self`.
///
/// Contacts are first matched based on their [feature IDs](PackedFeatureId), and if they are unknown,
/// matching is done based on contact positions using the given `distance_threshold`
/// for determining if points are too far away from each other to be considered matching.
pub fn match_contacts(
&mut self,
previous_contacts: &[ContactPoint],
distance_threshold: Scalar,
) {
// The squared maximum distance for two contact points to be considered matching.
let distance_threshold_squared = distance_threshold.powi(2);
for contact in self.points.iter_mut() {
for previous_contact in previous_contacts.iter() {
// If the feature IDs match, copy the contact impulses over for warm starting.
if (contact.feature_id1 == previous_contact.feature_id1
&& contact.feature_id2 == previous_contact.feature_id2) ||
// we have to check both directions because the entities are sorted in order
// of aabb.min.x, which could have changed even the two objects in contact are the same
(contact.feature_id2 == previous_contact.feature_id1
&& contact.feature_id1 == previous_contact.feature_id2)
{
contact.normal_impulse = previous_contact.normal_impulse;
contact.tangent_impulse = previous_contact.tangent_impulse;
break;
}
let unknown_features = contact.feature_id1 == PackedFeatureId::UNKNOWN
|| contact.feature_id2 == PackedFeatureId::UNKNOWN;
// If the feature IDs are unknown and the contact positions match closely enough,
// copy the contact impulses over for warm starting.
if unknown_features
&& (contact
.local_point1
.distance_squared(previous_contact.local_point1)
< distance_threshold_squared
&& contact
.local_point2
.distance_squared(previous_contact.local_point2)
< distance_threshold_squared)
|| (contact
.local_point1
.distance_squared(previous_contact.local_point2)
< distance_threshold_squared
&& contact
.local_point2
.distance_squared(previous_contact.local_point1)
< distance_threshold_squared)
{
contact.normal_impulse = previous_contact.normal_impulse;
contact.tangent_impulse = previous_contact.tangent_impulse;
break;
}
}
}
}
/// Returns the contact point with the largest penetration depth.
///
/// If the objects are separated but there is still a speculative contact,
/// the penetration depth will be negative.
///
/// If there are no contacts, `None` is returned.
pub fn find_deepest_contact(&self) -> Option<&ContactPoint> {
self.points.iter().max_by(|a, b| {
a.penetration
.partial_cmp(&b.penetration)
.unwrap_or(core::cmp::Ordering::Equal)
})
}
}
/// Data associated with a contact point in a [`ContactManifold`].
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct ContactPoint {
/// The contact point on the first shape in local space.
pub local_point1: Vector,
/// The contact point on the second shape in local space.
pub local_point2: Vector,
/// The penetration depth.
///
/// Can be negative if the objects are separated and [speculative collision] is enabled.
///
/// [speculative collision]: crate::dynamics::ccd#speculative-collision
pub penetration: Scalar,
/// The impulse applied to the first body along the contact normal.
///
/// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_secs()`.
pub normal_impulse: Scalar,
/// The impulse applied to the first body along the contact tangent. This corresponds to the impulse caused by friction.
///
/// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_secs()`.
#[cfg(feature = "2d")]
#[doc(alias = "friction_impulse")]
pub tangent_impulse: Scalar,
/// The impulse applied to the first body along the contact tangent. This corresponds to the impulse caused by friction.
///
/// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_secs()`.
#[cfg(feature = "3d")]
#[doc(alias = "friction_impulse")]
pub tangent_impulse: Vector2,
/// The contact feature ID on the first shape. This indicates the ID of
/// the vertex, edge, or face of the contact, if one can be determined.
pub feature_id1: PackedFeatureId,
/// The contact feature ID on the second shape. This indicates the ID of
/// the vertex, edge, or face of the contact, if one can be determined.
pub feature_id2: PackedFeatureId,
}
impl ContactPoint {
/// Creates a new [`ContactPoint`] with the given points expressed in the local space
/// of the first and second shape respectively.
///
/// [Feature IDs](PackedFeatureId) can be specified for the contact points using [`with_feature_ids`](Self::with_feature_ids).
#[allow(clippy::too_many_arguments)]
pub fn new(local_point1: Vector, local_point2: Vector, penetration: Scalar) -> Self {
Self {
local_point1,
local_point2,
penetration,
normal_impulse: 0.0,
tangent_impulse: default(),
feature_id1: PackedFeatureId::UNKNOWN,
feature_id2: PackedFeatureId::UNKNOWN,
}
}
/// Sets the [feature IDs](PackedFeatureId) of the contact points.
pub fn with_feature_ids(mut self, id1: PackedFeatureId, id2: PackedFeatureId) -> Self {
self.feature_id1 = id1;
self.feature_id2 = id2;
self
}
/// The force corresponding to the normal impulse applied over `delta_time`.
///
/// Because contacts are solved over several substeps, `delta_time` should
/// typically use `Time<Substeps>::delta_secs()`.
pub fn normal_force(&self, delta_time: Scalar) -> Scalar {
self.normal_impulse / delta_time
}
/// The force corresponding to the tangent impulse applied over `delta_time`.
///
/// Because contacts are solved over several substeps, `delta_time` should
/// typically use `Time<Substeps>::delta_secs()`.
#[cfg(feature = "2d")]
#[doc(alias = "friction_force")]
pub fn tangent_force(&self, delta_time: Scalar) -> Scalar {
self.tangent_impulse / delta_time
}
/// The force corresponding to the tangent impulse applied over `delta_time`.
///
/// Because contacts are solved over several substeps, `delta_time` should
/// typically use `Time<Substeps>::delta_secs()`.
#[cfg(feature = "3d")]
#[doc(alias = "friction_force")]
pub fn tangent_force(&self, delta_time: Scalar) -> Vector2 {
self.tangent_impulse / delta_time
}
/// Returns the global contact point on the first shape,
/// transforming the local point by the given position and rotation.
pub fn global_point1(&self, position: &Position, rotation: &Rotation) -> Vector {
position.0 + rotation * self.local_point1
}
/// Returns the global contact point on the second shape,
/// transforming the local point by the given position and rotation.
pub fn global_point2(&self, position: &Position, rotation: &Rotation) -> Vector {
position.0 + rotation * self.local_point2
}
/// Flips the contact data, swapping the points and feature IDs,
/// and negating the impulses.
pub fn flip(&mut self) {
core::mem::swap(&mut self.local_point1, &mut self.local_point2);
core::mem::swap(&mut self.feature_id1, &mut self.feature_id2);
self.normal_impulse = -self.normal_impulse;
self.tangent_impulse = -self.tangent_impulse;
}
/// Returns a flipped copy of the contact data, swapping the points and feature IDs,
/// and negating the impulses.
pub fn flipped(&self) -> Self {
Self {
local_point1: self.local_point2,
local_point2: self.local_point1,
penetration: self.penetration,
normal_impulse: -self.normal_impulse,
tangent_impulse: -self.tangent_impulse,
feature_id1: self.feature_id2,
feature_id2: self.feature_id1,
}
}
}
/// Data related to a single contact between two bodies.
///
/// If you want a contact that belongs to a [contact manifold](ContactManifold) and has more data,
/// see [`ContactPoint`].
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct SingleContact {
/// The contact point on the first shape in local space.
pub local_point1: Vector,
/// The contact point on the second shape in local space.
pub local_point2: Vector,
/// The contact normal expressed in the local space of the first shape.
pub local_normal1: Vector,
/// The contact normal expressed in the local space of the second shape.
pub local_normal2: Vector,
/// Penetration depth.
pub penetration: Scalar,
}
impl SingleContact {
/// Creates a new [`SingleContact`]. The contact points and normals should be given in local space.
pub fn new(
local_point1: Vector,
local_point2: Vector,
local_normal1: Vector,
local_normal2: Vector,
penetration: Scalar,
) -> Self {
Self {
local_point1,
local_point2,
local_normal1,
local_normal2,
penetration,
}
}
/// Returns the global contact point on the first shape,
/// transforming the local point by the given position and rotation.
pub fn global_point1(&self, position: &Position, rotation: &Rotation) -> Vector {
position.0 + rotation * self.local_point1
}
/// Returns the global contact point on the second shape,
/// transforming the local point by the given position and rotation.
pub fn global_point2(&self, position: &Position, rotation: &Rotation) -> Vector {
position.0 + rotation * self.local_point2
}
/// Returns the world-space contact normal pointing from the first shape to the second.
pub fn global_normal1(&self, rotation: &Rotation) -> Vector {
rotation * self.local_normal1
}
/// Returns the world-space contact normal pointing from the second shape to the first.
pub fn global_normal2(&self, rotation: &Rotation) -> Vector {
rotation * self.local_normal2
}
/// Flips the contact data, swapping the points and normals.
pub fn flip(&mut self) {
core::mem::swap(&mut self.local_point1, &mut self.local_point2);
core::mem::swap(&mut self.local_normal1, &mut self.local_normal2);
}
/// Returns a flipped copy of the contact data, swapping the points and normals.
pub fn flipped(&self) -> Self {
Self {
local_point1: self.local_point2,
local_point2: self.local_point1,
local_normal1: self.local_normal2,
local_normal2: self.local_normal1,
penetration: self.penetration,
}
}
}