avian3d/collision/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
//! Collision detection for [`Collider`]s.
//!
//! Collision detection involves determining pairs of objects that may currently be in contact
//! (or are expected to come into contact), and computing contact data for each intersection.
//! These contacts are then used by the [solver](dynamics::solver) to generate
//! [`ContactConstraint`](dynamics::solver::contact::ContactConstraint)s and finally resolve overlap.
//!
//! In Avian, collision detection is split into three plugins:
//!
//! - [`BroadPhasePlugin`]: Performs intersection tests to determine potential collisions, adding them to [`BroadCollisionPairs`].
//! - [`NarrowPhasePlugin`]: Computes [`Contacts`] for each pair in [`BroadCollisionPairs`], adding them to [`Collisions`].
//! - [`ContactReportingPlugin`] (optional): Sends collision events and updates [`CollidingEntities`] based on [`Collisions`].
//!
//! Spatial queries are handled separately by the [`SpatialQueryPlugin`].
//!
//! You can also find several utility methods for computing contacts in [`contact_query`].
pub mod broad_phase;
#[cfg(all(
feature = "default-collider",
any(feature = "parry-f32", feature = "parry-f64")
))]
pub mod contact_query;
pub mod contact_reporting;
pub mod narrow_phase;
pub mod collider;
pub use collider::*;
mod layers;
pub use layers::*;
mod feature_id;
pub use feature_id::PackedFeatureId;
use crate::prelude::*;
use bevy::prelude::*;
use indexmap::IndexMap;
// TODO: Refactor this into a contact graph.
// Collisions are stored in an `IndexMap` that uses fxhash.
// It should have faster iteration than a `HashMap` while mostly retaining other performance characteristics.
//
// `IndexMap` also preserves insertion order. This can be good or bad depending on the situation,
// but it can make spawned stacks appear more consistent and uniform, for example in the `move_marbles` example.
// ==========================================
/// A resource that stores all collision pairs.
///
/// Each colliding entity pair is associated with [`Contacts`] that can be accessed and modified
/// using the various associated methods.
///
/// # Usage
///
/// [`Collisions`] can be accessed at almost anytime, but for modifying and filtering collisions,
/// it is recommended to use the [`PostProcessCollisions`] schedule. See its documentation
/// for more information.
///
/// ## Querying Collisions
///
/// The following methods can be used for querying existing collisions:
///
/// - [`get`](Self::get) and [`get_mut`](Self::get_mut)
/// - [`iter`](Self::iter) and [`iter_mut`](Self::iter_mut)
/// - [`contains`](Self::contains)
/// - [`collisions_with_entity`](Self::collisions_with_entity) and
/// [`collisions_with_entity_mut`](Self::collisions_with_entity_mut)
///
/// The collisions can be accessed at any time, but modifications to contacts should be performed
/// in the [`PostProcessCollisions`] schedule. Otherwise, the physics solver will use the old contact data.
///
/// ## Filtering and Removing Collisions
///
/// The following methods can be used for filtering or removing existing collisions:
///
/// - [`retain`](Self::retain)
/// - [`remove_collision_pair`](Self::remove_collision_pair)
/// - [`remove_collisions_with_entity`](Self::remove_collisions_with_entity)
///
/// Collision filtering and removal should be done in the [`PostProcessCollisions`] schedule.
/// Otherwise, the physics solver will use the old contact data.
///
/// ## Adding New Collisions
///
/// The following methods can be used for adding new collisions:
///
/// - [`insert_collision_pair`](Self::insert_collision_pair)
/// - [`extend`](Self::extend)
///
/// The most convenient place for adding new collisions is in the [`PostProcessCollisions`] schedule.
/// Otherwise, the physics solver might not have access to them in time.
///
/// # Implementation Details
///
/// Internally, the collisions are stored in an `IndexMap` that contains collisions from both the current frame
/// and the previous frame, which is used for things like [collision events](ContactReportingPlugin#collision-events).
///
/// However, the public methods only use the current frame's collisions. To access the internal data structure,
/// you can use [`get_internal`](Self::get_internal) or [`get_internal_mut`](Self::get_internal_mut).
#[derive(Resource, Clone, Debug, Default, PartialEq)]
pub struct Collisions(IndexMap<(Entity, Entity), Contacts, fxhash::FxBuildHasher>);
impl Collisions {
/// Returns a reference to the internal `IndexMap`.
pub fn get_internal(&self) -> &IndexMap<(Entity, Entity), Contacts, fxhash::FxBuildHasher> {
&self.0
}
/// Returns a mutable reference to the internal `IndexMap`.
pub fn get_internal_mut(
&mut self,
) -> &mut IndexMap<(Entity, Entity), Contacts, fxhash::FxBuildHasher> {
&mut self.0
}
/// Returns a reference to the [contacts](Contacts) stored for the given entity pair if they are colliding,
/// else returns `None`.
///
/// The order of the entities does not matter.
pub fn get(&self, entity1: Entity, entity2: Entity) -> Option<&Contacts> {
// the keys are always sorted in order of `Entity`
if entity2 < entity1 {
return self.get(entity2, entity1);
}
self.0
.get(&(entity1, entity2))
.filter(|contacts| contacts.during_current_frame)
}
/// Returns a mutable reference to the [contacts](Contacts) stored for the given entity pair if they are colliding,
/// else returns `None`.
///
/// The order of the entities does not matter.
pub fn get_mut(&mut self, entity1: Entity, entity2: Entity) -> Option<&mut Contacts> {
// the keys are always sorted in entity order
if entity2 < entity1 {
return self.get_mut(entity2, entity1);
}
self.0
.get_mut(&(entity1, entity2))
.filter(|contacts| contacts.during_current_frame)
}
/// Returns `true` if the given entities have been in contact during this frame.
///
/// The order of the entities does not matter.
pub fn contains(&self, entity1: Entity, entity2: Entity) -> bool {
// We can't use `contains` directly because we only want to
// count collisions that happened during this frame.
self.get(entity1, entity2).is_some()
}
/// Returns an iterator over the current collisions that have happened during the current physics frame.
pub fn iter(&self) -> impl Iterator<Item = &Contacts> {
self.0
.values()
.filter(|collision| collision.during_current_frame)
}
/// Returns a mutable iterator over the collisions that have happened during the current physics frame.
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut Contacts> {
self.0
.values_mut()
.filter(|collision| collision.during_current_frame)
}
/// Returns an iterator over all collisions with a given entity.
pub fn collisions_with_entity(&self, entity: Entity) -> impl Iterator<Item = &Contacts> {
self.0
.iter()
.filter_map(move |((entity1, entity2), contacts)| {
if contacts.during_current_frame && (*entity1 == entity || *entity2 == entity) {
Some(contacts)
} else {
None
}
})
}
/// Returns an iterator over all collisions with a given entity.
pub fn collisions_with_entity_mut(
&mut self,
entity: Entity,
) -> impl Iterator<Item = &mut Contacts> {
self.0
.iter_mut()
.filter_map(move |((entity1, entity2), contacts)| {
if contacts.during_current_frame && (*entity1 == entity || *entity2 == entity) {
Some(contacts)
} else {
None
}
})
}
/// Inserts contact data for a collision between two entities.
///
/// If a collision entry with the same entities already exists, it will be overwritten,
/// and the old value will be returned. Otherwise, `None` is returned.
///
/// **Note**: Manually inserting collisions can be error prone and should generally be avoided.
/// If you simply want to modify existing collisions, consider using methods like [`get_mut`](Self::get_mut)
/// or [`iter_mut`](Self::iter_mut).
pub fn insert_collision_pair(&mut self, contacts: Contacts) -> Option<Contacts> {
// order the keys by entity ID so that we don't get duplicate contacts
// between two entities
if contacts.entity1 < contacts.entity2 {
self.0
.insert((contacts.entity1, contacts.entity2), contacts)
} else {
self.0
.insert((contacts.entity2, contacts.entity1), contacts)
}
}
/// Extends [`Collisions`] with all collision pairs in the given iterable.
///
/// This is mostly equivalent to calling [`insert_collision_pair`](Self::insert_collision_pair)
/// for each of the collision pairs.
pub fn extend<I: IntoIterator<Item = Contacts>>(&mut self, collisions: I) {
// (Note: this is a copy of `std`/`hashbrown`/`indexmap`'s reservation logic.)
// Keys may be already present or show multiple times in the iterator.
// Reserve the entire hint lower bound if the map is empty.
// Otherwise reserve half the hint (rounded up), so the map
// will only resize twice in the worst case.
let iter = collisions.into_iter();
let reserve = if self.get_internal().is_empty() {
iter.size_hint().0
} else {
(iter.size_hint().0 + 1) / 2
};
self.get_internal_mut().reserve(reserve);
iter.for_each(move |contacts| {
self.insert_collision_pair(contacts);
});
}
/// Retains only the collisions for which the specified predicate returns `true`.
/// Collisions for which the predicate returns `false` are removed.
pub fn retain<F>(&mut self, mut keep: F)
where
F: FnMut(&mut Contacts) -> bool,
{
self.0.retain(|_, contacts| keep(contacts));
}
/// Removes a collision between two entites and returns its value.
///
/// The order of the entities does not matter.
pub fn remove_collision_pair(&mut self, entity1: Entity, entity2: Entity) -> Option<Contacts> {
self.0
.swap_remove(&(entity1, entity2))
.or_else(|| self.0.swap_remove(&(entity2, entity1)))
}
/// Removes all collisions that involve the given entity.
pub fn remove_collisions_with_entity(&mut self, entity: Entity) {
self.retain(|contacts| contacts.entity1 != entity && contacts.entity2 != entity);
}
}
/// All contacts between two colliders.
///
/// The contacts are stored in contact manifolds.
/// Each manifold contains one or more contact points, and each contact
/// in a given manifold shares the same contact normal.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Contacts {
/// First entity in the contact.
pub entity1: Entity,
/// Second entity in the contact.
pub entity2: Entity,
/// The entity of the first body involved in the contact.
pub body_entity1: Option<Entity>,
/// The entity of the second body involved in the contact.
pub body_entity2: Option<Entity>,
/// A list of contact manifolds between two colliders.
/// Each manifold contains one or more contact points, but each contact
/// in a given manifold shares the same contact normal.
pub manifolds: Vec<ContactManifold>,
/// True if either of the colliders involved is a sensor.
pub is_sensor: bool,
/// True if the bodies have been in contact during this frame.
pub during_current_frame: bool,
/// True if the bodies were in contact during the previous frame.
pub during_previous_frame: bool,
/// The total normal impulse applied to the first body in a collision.
///
/// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_seconds()`.
pub total_normal_impulse: Scalar,
/// The total tangent impulse applied to the first body in a collision.
///
/// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_seconds()`.
#[cfg(feature = "2d")]
#[doc(alias = "total_friction_impulse")]
pub total_tangent_impulse: Scalar,
/// The total tangent impulse applied to the first body in a collision.
///
/// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_seconds()`.
#[cfg(feature = "3d")]
#[doc(alias = "total_friction_impulse")]
pub total_tangent_impulse: Vector2,
}
impl Contacts {
/// The force corresponding to the total normal impulse applied over `delta_time`.
///
/// Because contacts are solved over several substeps, `delta_time` should
/// typically use `Time<Substeps>::delta_seconds()`.
pub fn total_normal_force(&self, delta_time: Scalar) -> Scalar {
self.total_normal_impulse / delta_time
}
/// The force corresponding to the total tangent impulse applied over `delta_time`.
///
/// Because contacts are solved over several substeps, `delta_time` should
/// typically use `Time<Substeps>::delta_seconds()`.
#[cfg(feature = "2d")]
#[doc(alias = "total_friction_force")]
pub fn total_tangent_force(&self, delta_time: Scalar) -> Scalar {
self.total_tangent_impulse / delta_time
}
/// The force corresponding to the total tangent impulse applied over `delta_time`.
///
/// Because contacts are solved over several substeps, `delta_time` should
/// typically use `Time<Substeps>::delta_seconds()`.
#[cfg(feature = "3d")]
#[doc(alias = "total_friction_force")]
pub fn total_tangent_force(&self, delta_time: Scalar) -> Vector2 {
self.total_tangent_impulse / delta_time
}
/// Returns `true` if a collision started during the current frame.
pub fn collision_started(&self) -> bool {
!self.during_previous_frame && self.during_current_frame
}
/// Returns `true` if a collision stopped during the current frame.
pub fn collision_stopped(&self) -> bool {
self.during_previous_frame && !self.during_current_frame
}
/// Returns the contact with the largest penetration depth.
///
/// If the objects are separated but there is still a speculative contact,
/// the penetration depth will be negative.
///
/// If there are no contacts, `None` is returned.
pub fn find_deepest_contact(&self) -> Option<&ContactData> {
self.manifolds
.iter()
.filter_map(|manifold| manifold.find_deepest_contact())
.max_by(|a, b| {
a.penetration
.partial_cmp(&b.penetration)
.unwrap_or(std::cmp::Ordering::Equal)
})
}
}
/// A contact manifold between two colliders, containing a set of contact points.
/// Each contact in a manifold shares the same contact normal.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct ContactManifold {
/// The contacts in this manifold.
pub contacts: Vec<ContactData>,
/// A contact normal shared by all contacts in this manifold,
/// expressed in the local space of the first entity.
pub normal1: Vector,
/// A contact normal shared by all contacts in this manifold,
/// expressed in the local space of the second entity.
pub normal2: Vector,
/// The index of the manifold in the collision.
pub index: usize,
}
impl ContactManifold {
/// Returns the world-space contact normal pointing towards the exterior of the first entity.
pub fn global_normal1(&self, rotation: &Rotation) -> Vector {
rotation * self.normal1
}
/// Returns the world-space contact normal pointing towards the exterior of the second entity.
pub fn global_normal2(&self, rotation: &Rotation) -> Vector {
rotation * self.normal2
}
/// Copies impulses from previous contacts to matching contacts in `self`.
///
/// Contacts are first matched based on their [feature IDs](PackedFeatureId), and if they are unknown,
/// matching is done based on contact positions using the given `distance_threshold`
/// for determining if points are too far away from each other to be considered matching.
pub fn match_contacts(
&mut self,
previous_contacts: &[ContactData],
distance_threshold: Scalar,
) {
// The squared maximum distance for two contact points to be considered matching.
let distance_threshold_squared = distance_threshold.powi(2);
for contact in self.contacts.iter_mut() {
for previous_contact in previous_contacts.iter() {
// If the feature IDs match, copy the contact impulses over for warm starting.
if (contact.feature_id1 == previous_contact.feature_id1
&& contact.feature_id2 == previous_contact.feature_id2) ||
// we have to check both directions because the entities are sorted in order
// of aabb.min.x, which could have changed even the two objects in contact are the same
(contact.feature_id2 == previous_contact.feature_id1
&& contact.feature_id1 == previous_contact.feature_id2)
{
contact.normal_impulse = previous_contact.normal_impulse;
contact.tangent_impulse = previous_contact.tangent_impulse;
break;
}
let unknown_features = contact.feature_id1 == PackedFeatureId::UNKNOWN
|| contact.feature_id2 == PackedFeatureId::UNKNOWN;
// If the feature IDs are unknown and the contact positions match closely enough,
// copy the contact impulses over for warm starting.
if unknown_features
&& (contact.point1.distance_squared(previous_contact.point1)
< distance_threshold_squared
&& contact.point2.distance_squared(previous_contact.point2)
< distance_threshold_squared)
|| (contact.point1.distance_squared(previous_contact.point2)
< distance_threshold_squared
&& contact.point2.distance_squared(previous_contact.point1)
< distance_threshold_squared)
{
contact.normal_impulse = previous_contact.normal_impulse;
contact.tangent_impulse = previous_contact.tangent_impulse;
break;
}
}
}
}
/// Returns the contact with the largest penetration depth.
///
/// If the objects are separated but there is still a speculative contact,
/// the penetration depth will be negative.
///
/// If there are no contacts, `None` is returned.
pub fn find_deepest_contact(&self) -> Option<&ContactData> {
self.contacts.iter().max_by(|a, b| {
a.penetration
.partial_cmp(&b.penetration)
.unwrap_or(std::cmp::Ordering::Equal)
})
}
}
/// Data related to a single contact between two bodies.
///
/// If you want a contact that belongs to a [contact manifold](ContactManifold) and has more data,
/// see [`ContactData`].
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct SingleContact {
/// Contact point on the first entity in local coordinates.
pub point1: Vector,
/// Contact point on the second entity in local coordinates.
pub point2: Vector,
/// A contact normal expressed in the local space of the first entity.
pub normal1: Vector,
/// A contact normal expressed in the local space of the second entity.
pub normal2: Vector,
/// Penetration depth.
pub penetration: Scalar,
}
impl SingleContact {
/// Creates a new [`SingleContact`]. The contact points and normals should be given in local space.
pub fn new(
point1: Vector,
point2: Vector,
normal1: Vector,
normal2: Vector,
penetration: Scalar,
) -> Self {
Self {
point1,
point2,
normal1,
normal2,
penetration,
}
}
/// Returns the global contact point on the first entity,
/// transforming the local point by the given entity position and rotation.
pub fn global_point1(&self, position: &Position, rotation: &Rotation) -> Vector {
position.0 + rotation * self.point1
}
/// Returns the global contact point on the second entity,
/// transforming the local point by the given entity position and rotation.
pub fn global_point2(&self, position: &Position, rotation: &Rotation) -> Vector {
position.0 + rotation * self.point2
}
/// Returns the world-space contact normal pointing towards the exterior of the first entity.
pub fn global_normal1(&self, rotation: &Rotation) -> Vector {
rotation * self.normal1
}
/// Returns the world-space contact normal pointing towards the exterior of the second entity.
pub fn global_normal2(&self, rotation: &Rotation) -> Vector {
rotation * self.normal2
}
/// Flips the contact data, swapping the points and normals.
pub fn flip(&mut self) {
std::mem::swap(&mut self.point1, &mut self.point2);
std::mem::swap(&mut self.normal1, &mut self.normal2);
}
/// Returns a flipped copy of the contact data, swapping the points and normals.
pub fn flipped(&self) -> Self {
Self {
point1: self.point2,
point2: self.point1,
normal1: self.normal2,
normal2: self.normal1,
penetration: self.penetration,
}
}
}
/// Data related to a contact between two bodies.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct ContactData {
/// Contact point on the first entity in local coordinates.
pub point1: Vector,
/// Contact point on the second entity in local coordinates.
pub point2: Vector,
/// A contact normal expressed in the local space of the first entity.
pub normal1: Vector,
/// A contact normal expressed in the local space of the second entity.
pub normal2: Vector,
/// Penetration depth.
pub penetration: Scalar,
/// The impulse applied to the first body along the normal.
///
/// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_seconds()`.
pub normal_impulse: Scalar,
/// The impulse applied to the first body along the tangent. This corresponds to the impulse caused by friction.
///
/// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_seconds()`.
#[cfg(feature = "2d")]
#[doc(alias = "friction_impulse")]
pub tangent_impulse: Scalar,
/// The impulse applied to the first body along the tangent. This corresponds to the impulse caused by friction.
///
/// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_seconds()`.
#[cfg(feature = "3d")]
#[doc(alias = "friction_impulse")]
pub tangent_impulse: Vector2,
/// The contact feature ID on the first shape. This indicates the ID of
/// the vertex, edge, or face of the contact, if one can be determined.
pub feature_id1: PackedFeatureId,
/// The contact feature ID on the second shape. This indicates the ID of
/// the vertex, edge, or face of the contact, if one can be determined.
pub feature_id2: PackedFeatureId,
}
impl ContactData {
/// Creates a new [`ContactData`]. The contact points and normals should be given in local space.
///
/// [Feature IDs](PackedFeatureId) can be specified for the contact points using [`with_feature_ids`](Self::with_feature_ids).
#[allow(clippy::too_many_arguments)]
pub fn new(
point1: Vector,
point2: Vector,
normal1: Vector,
normal2: Vector,
penetration: Scalar,
) -> Self {
Self {
point1,
point2,
normal1,
normal2,
penetration,
normal_impulse: 0.0,
tangent_impulse: default(),
feature_id1: PackedFeatureId::UNKNOWN,
feature_id2: PackedFeatureId::UNKNOWN,
}
}
/// Sets the [feature IDs](PackedFeatureId) of the contact points.
pub fn with_feature_ids(mut self, id1: PackedFeatureId, id2: PackedFeatureId) -> Self {
self.feature_id1 = id1;
self.feature_id2 = id2;
self
}
/// The force corresponding to the normal impulse applied over `delta_time`.
///
/// Because contacts are solved over several substeps, `delta_time` should
/// typically use `Time<Substeps>::delta_seconds()`.
pub fn normal_force(&self, delta_time: Scalar) -> Scalar {
self.normal_impulse / delta_time
}
/// The force corresponding to the tangent impulse applied over `delta_time`.
///
/// Because contacts are solved over several substeps, `delta_time` should
/// typically use `Time<Substeps>::delta_seconds()`.
#[cfg(feature = "2d")]
#[doc(alias = "friction_force")]
pub fn tangent_force(&self, delta_time: Scalar) -> Scalar {
self.tangent_impulse / delta_time
}
/// The force corresponding to the tangent impulse applied over `delta_time`.
///
/// Because contacts are solved over several substeps, `delta_time` should
/// typically use `Time<Substeps>::delta_seconds()`.
#[cfg(feature = "3d")]
#[doc(alias = "friction_force")]
pub fn tangent_force(&self, delta_time: Scalar) -> Vector2 {
self.tangent_impulse / delta_time
}
/// Returns the global contact point on the first entity,
/// transforming the local point by the given entity position and rotation.
pub fn global_point1(&self, position: &Position, rotation: &Rotation) -> Vector {
position.0 + rotation * self.point1
}
/// Returns the global contact point on the second entity,
/// transforming the local point by the given entity position and rotation.
pub fn global_point2(&self, position: &Position, rotation: &Rotation) -> Vector {
position.0 + rotation * self.point2
}
/// Returns the world-space contact normal pointing towards the exterior of the first entity.
pub fn global_normal1(&self, rotation: &Rotation) -> Vector {
rotation * self.normal1
}
/// Returns the world-space contact normal pointing towards the exterior of the second entity.
pub fn global_normal2(&self, rotation: &Rotation) -> Vector {
rotation * self.normal2
}
/// Flips the contact data, swapping the points, normals, and feature IDs,
/// and negating the impulses.
pub fn flip(&mut self) {
std::mem::swap(&mut self.point1, &mut self.point2);
std::mem::swap(&mut self.normal1, &mut self.normal2);
std::mem::swap(&mut self.feature_id1, &mut self.feature_id2);
self.normal_impulse = -self.normal_impulse;
self.tangent_impulse = -self.tangent_impulse;
}
/// Returns a flipped copy of the contact data, swapping the points, normals, and feature IDs,
/// and negating the impulses.
pub fn flipped(&self) -> Self {
Self {
point1: self.point2,
point2: self.point1,
normal1: self.normal2,
normal2: self.normal1,
penetration: self.penetration,
normal_impulse: -self.normal_impulse,
tangent_impulse: -self.tangent_impulse,
feature_id1: self.feature_id2,
feature_id2: self.feature_id1,
}
}
}