avian3d/collision/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
//! Collision detection for [`Collider`]s.
//!
//! Collision detection involves determining pairs of objects that may currently be in contact
//! (or are expected to come into contact), and computing contact data for each intersection.
//! These contacts are then used by the [solver](dynamics::solver) to generate
//! [`ContactConstraint`](dynamics::solver::contact::ContactConstraint)s and finally resolve overlap.
//!
//! In Avian, collision detection is split into three plugins:
//!
//! - [`BroadPhasePlugin`]: Performs intersection tests to determine potential collisions, adding them to [`BroadCollisionPairs`].
//! - [`NarrowPhasePlugin`]: Computes [`Contacts`] for each pair in [`BroadCollisionPairs`], adding them to [`Collisions`].
//! - [`ContactReportingPlugin`] (optional): Sends collision events and updates [`CollidingEntities`] based on [`Collisions`].
//!
//! Spatial queries are handled separately by the [`SpatialQueryPlugin`].
//!
//! You can also find several utility methods for computing contacts in [`contact_query`].

pub mod broad_phase;
#[cfg(all(
    feature = "default-collider",
    any(feature = "parry-f32", feature = "parry-f64")
))]
pub mod contact_query;
pub mod contact_reporting;
pub mod narrow_phase;

pub mod collider;
pub use collider::*;

mod layers;
pub use layers::*;

mod feature_id;
pub use feature_id::PackedFeatureId;

use crate::prelude::*;
use bevy::prelude::*;
use indexmap::IndexMap;

// TODO: Refactor this into a contact graph.
// Collisions are stored in an `IndexMap` that uses fxhash.
// It should have faster iteration than a `HashMap` while mostly retaining other performance characteristics.
//
// `IndexMap` also preserves insertion order. This can be good or bad depending on the situation,
// but it can make spawned stacks appear more consistent and uniform, for example in the `move_marbles` example.
// ==========================================
/// A resource that stores all collision pairs.
///
/// Each colliding entity pair is associated with [`Contacts`] that can be accessed and modified
/// using the various associated methods.
///
/// # Usage
///
/// [`Collisions`] can be accessed at almost anytime, but for modifying and filtering collisions,
/// it is recommended to use the [`PostProcessCollisions`] schedule. See its documentation
/// for more information.
///
/// ## Querying Collisions
///
/// The following methods can be used for querying existing collisions:
///
/// - [`get`](Self::get) and [`get_mut`](Self::get_mut)
/// - [`iter`](Self::iter) and [`iter_mut`](Self::iter_mut)
/// - [`contains`](Self::contains)
/// - [`collisions_with_entity`](Self::collisions_with_entity) and
///   [`collisions_with_entity_mut`](Self::collisions_with_entity_mut)
///
/// The collisions can be accessed at any time, but modifications to contacts should be performed
/// in the [`PostProcessCollisions`] schedule. Otherwise, the physics solver will use the old contact data.
///
/// ## Filtering and Removing Collisions
///
/// The following methods can be used for filtering or removing existing collisions:
///
/// - [`retain`](Self::retain)
/// - [`remove_collision_pair`](Self::remove_collision_pair)
/// - [`remove_collisions_with_entity`](Self::remove_collisions_with_entity)
///
/// Collision filtering and removal should be done in the [`PostProcessCollisions`] schedule.
/// Otherwise, the physics solver will use the old contact data.
///
/// ## Adding New Collisions
///
/// The following methods can be used for adding new collisions:
///
/// - [`insert_collision_pair`](Self::insert_collision_pair)
/// - [`extend`](Self::extend)
///
/// The most convenient place for adding new collisions is in the [`PostProcessCollisions`] schedule.
/// Otherwise, the physics solver might not have access to them in time.
///
/// # Implementation Details
///
/// Internally, the collisions are stored in an `IndexMap` that contains collisions from both the current frame
/// and the previous frame, which is used for things like [collision events](ContactReportingPlugin#collision-events).
///
/// However, the public methods only use the current frame's collisions. To access the internal data structure,
/// you can use [`get_internal`](Self::get_internal) or [`get_internal_mut`](Self::get_internal_mut).
#[derive(Resource, Clone, Debug, Default, PartialEq)]
pub struct Collisions(IndexMap<(Entity, Entity), Contacts, fxhash::FxBuildHasher>);

impl Collisions {
    /// Returns a reference to the internal `IndexMap`.
    pub fn get_internal(&self) -> &IndexMap<(Entity, Entity), Contacts, fxhash::FxBuildHasher> {
        &self.0
    }

    /// Returns a mutable reference to the internal `IndexMap`.
    pub fn get_internal_mut(
        &mut self,
    ) -> &mut IndexMap<(Entity, Entity), Contacts, fxhash::FxBuildHasher> {
        &mut self.0
    }

    /// Returns a reference to the [contacts](Contacts) stored for the given entity pair if they are colliding,
    /// else returns `None`.
    ///
    /// The order of the entities does not matter.
    pub fn get(&self, entity1: Entity, entity2: Entity) -> Option<&Contacts> {
        // the keys are always sorted in order of `Entity`
        if entity2 < entity1 {
            return self.get(entity2, entity1);
        }
        self.0
            .get(&(entity1, entity2))
            .filter(|contacts| contacts.during_current_frame)
    }

    /// Returns a mutable reference to the [contacts](Contacts) stored for the given entity pair if they are colliding,
    /// else returns `None`.
    ///
    /// The order of the entities does not matter.
    pub fn get_mut(&mut self, entity1: Entity, entity2: Entity) -> Option<&mut Contacts> {
        // the keys are always sorted in entity order
        if entity2 < entity1 {
            return self.get_mut(entity2, entity1);
        }
        self.0
            .get_mut(&(entity1, entity2))
            .filter(|contacts| contacts.during_current_frame)
    }

    /// Returns `true` if the given entities have been in contact during this frame.
    ///
    /// The order of the entities does not matter.
    pub fn contains(&self, entity1: Entity, entity2: Entity) -> bool {
        // We can't use `contains` directly because we only want to
        // count collisions that happened during this frame.
        self.get(entity1, entity2).is_some()
    }

    /// Returns an iterator over the current collisions that have happened during the current physics frame.
    pub fn iter(&self) -> impl Iterator<Item = &Contacts> {
        self.0
            .values()
            .filter(|collision| collision.during_current_frame)
    }

    /// Returns a mutable iterator over the collisions that have happened during the current physics frame.
    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut Contacts> {
        self.0
            .values_mut()
            .filter(|collision| collision.during_current_frame)
    }

    /// Returns an iterator over all collisions with a given entity.
    pub fn collisions_with_entity(&self, entity: Entity) -> impl Iterator<Item = &Contacts> {
        self.0
            .iter()
            .filter_map(move |((entity1, entity2), contacts)| {
                if contacts.during_current_frame && (*entity1 == entity || *entity2 == entity) {
                    Some(contacts)
                } else {
                    None
                }
            })
    }

    /// Returns an iterator over all collisions with a given entity.
    pub fn collisions_with_entity_mut(
        &mut self,
        entity: Entity,
    ) -> impl Iterator<Item = &mut Contacts> {
        self.0
            .iter_mut()
            .filter_map(move |((entity1, entity2), contacts)| {
                if contacts.during_current_frame && (*entity1 == entity || *entity2 == entity) {
                    Some(contacts)
                } else {
                    None
                }
            })
    }

    /// Inserts contact data for a collision between two entities.
    ///
    /// If a collision entry with the same entities already exists, it will be overwritten,
    /// and the old value will be returned. Otherwise, `None` is returned.
    ///
    /// **Note**: Manually inserting collisions can be error prone and should generally be avoided.
    /// If you simply want to modify existing collisions, consider using methods like [`get_mut`](Self::get_mut)
    /// or [`iter_mut`](Self::iter_mut).
    pub fn insert_collision_pair(&mut self, contacts: Contacts) -> Option<Contacts> {
        // order the keys by entity ID so that we don't get duplicate contacts
        // between two entities
        if contacts.entity1 < contacts.entity2 {
            self.0
                .insert((contacts.entity1, contacts.entity2), contacts)
        } else {
            self.0
                .insert((contacts.entity2, contacts.entity1), contacts)
        }
    }

    /// Extends [`Collisions`] with all collision pairs in the given iterable.
    ///
    /// This is mostly equivalent to calling [`insert_collision_pair`](Self::insert_collision_pair)
    /// for each of the collision pairs.
    pub fn extend<I: IntoIterator<Item = Contacts>>(&mut self, collisions: I) {
        // (Note: this is a copy of `std`/`hashbrown`/`indexmap`'s reservation logic.)
        // Keys may be already present or show multiple times in the iterator.
        // Reserve the entire hint lower bound if the map is empty.
        // Otherwise reserve half the hint (rounded up), so the map
        // will only resize twice in the worst case.
        let iter = collisions.into_iter();
        let reserve = if self.get_internal().is_empty() {
            iter.size_hint().0
        } else {
            (iter.size_hint().0 + 1) / 2
        };
        self.get_internal_mut().reserve(reserve);
        iter.for_each(move |contacts| {
            self.insert_collision_pair(contacts);
        });
    }

    /// Retains only the collisions for which the specified predicate returns `true`.
    /// Collisions for which the predicate returns `false` are removed.
    pub fn retain<F>(&mut self, mut keep: F)
    where
        F: FnMut(&mut Contacts) -> bool,
    {
        self.0.retain(|_, contacts| keep(contacts));
    }

    /// Removes a collision between two entites and returns its value.
    ///
    /// The order of the entities does not matter.
    pub fn remove_collision_pair(&mut self, entity1: Entity, entity2: Entity) -> Option<Contacts> {
        self.0
            .swap_remove(&(entity1, entity2))
            .or_else(|| self.0.swap_remove(&(entity2, entity1)))
    }

    /// Removes all collisions that involve the given entity.
    pub fn remove_collisions_with_entity(&mut self, entity: Entity) {
        self.retain(|contacts| contacts.entity1 != entity && contacts.entity2 != entity);
    }
}

/// All contacts between two colliders.
///
/// The contacts are stored in contact manifolds.
/// Each manifold contains one or more contact points, and each contact
/// in a given manifold shares the same contact normal.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Contacts {
    /// First entity in the contact.
    pub entity1: Entity,
    /// Second entity in the contact.
    pub entity2: Entity,
    /// The entity of the first body involved in the contact.
    pub body_entity1: Option<Entity>,
    /// The entity of the second body involved in the contact.
    pub body_entity2: Option<Entity>,
    /// A list of contact manifolds between two colliders.
    /// Each manifold contains one or more contact points, but each contact
    /// in a given manifold shares the same contact normal.
    pub manifolds: Vec<ContactManifold>,
    /// True if either of the colliders involved is a sensor.
    pub is_sensor: bool,
    /// True if the bodies have been in contact during this frame.
    pub during_current_frame: bool,
    /// True if the bodies were in contact during the previous frame.
    pub during_previous_frame: bool,
    /// The total normal impulse applied to the first body in a collision.
    ///
    /// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_seconds()`.
    pub total_normal_impulse: Scalar,
    /// The total tangent impulse applied to the first body in a collision.
    ///
    /// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_seconds()`.
    #[cfg(feature = "2d")]
    #[doc(alias = "total_friction_impulse")]
    pub total_tangent_impulse: Scalar,
    /// The total tangent impulse applied to the first body in a collision.
    ///
    /// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_seconds()`.
    #[cfg(feature = "3d")]
    #[doc(alias = "total_friction_impulse")]
    pub total_tangent_impulse: Vector2,
}

impl Contacts {
    /// The force corresponding to the total normal impulse applied over `delta_time`.
    ///
    /// Because contacts are solved over several substeps, `delta_time` should
    /// typically use `Time<Substeps>::delta_seconds()`.
    pub fn total_normal_force(&self, delta_time: Scalar) -> Scalar {
        self.total_normal_impulse / delta_time
    }

    /// The force corresponding to the total tangent impulse applied over `delta_time`.
    ///
    /// Because contacts are solved over several substeps, `delta_time` should
    /// typically use `Time<Substeps>::delta_seconds()`.
    #[cfg(feature = "2d")]
    #[doc(alias = "total_friction_force")]
    pub fn total_tangent_force(&self, delta_time: Scalar) -> Scalar {
        self.total_tangent_impulse / delta_time
    }

    /// The force corresponding to the total tangent impulse applied over `delta_time`.
    ///
    /// Because contacts are solved over several substeps, `delta_time` should
    /// typically use `Time<Substeps>::delta_seconds()`.
    #[cfg(feature = "3d")]
    #[doc(alias = "total_friction_force")]
    pub fn total_tangent_force(&self, delta_time: Scalar) -> Vector2 {
        self.total_tangent_impulse / delta_time
    }

    /// Returns `true` if a collision started during the current frame.
    pub fn collision_started(&self) -> bool {
        !self.during_previous_frame && self.during_current_frame
    }

    /// Returns `true` if a collision stopped during the current frame.
    pub fn collision_stopped(&self) -> bool {
        self.during_previous_frame && !self.during_current_frame
    }

    /// Returns the contact with the largest penetration depth.
    ///
    /// If the objects are separated but there is still a speculative contact,
    /// the penetration depth will be negative.
    ///
    /// If there are no contacts, `None` is returned.
    pub fn find_deepest_contact(&self) -> Option<&ContactData> {
        self.manifolds
            .iter()
            .filter_map(|manifold| manifold.find_deepest_contact())
            .max_by(|a, b| {
                a.penetration
                    .partial_cmp(&b.penetration)
                    .unwrap_or(std::cmp::Ordering::Equal)
            })
    }
}

/// A contact manifold between two colliders, containing a set of contact points.
/// Each contact in a manifold shares the same contact normal.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct ContactManifold {
    /// The contacts in this manifold.
    pub contacts: Vec<ContactData>,
    /// A contact normal shared by all contacts in this manifold,
    /// expressed in the local space of the first entity.
    pub normal1: Vector,
    /// A contact normal shared by all contacts in this manifold,
    /// expressed in the local space of the second entity.
    pub normal2: Vector,
    /// The index of the manifold in the collision.
    pub index: usize,
}

impl ContactManifold {
    /// Returns the world-space contact normal pointing towards the exterior of the first entity.
    pub fn global_normal1(&self, rotation: &Rotation) -> Vector {
        rotation * self.normal1
    }

    /// Returns the world-space contact normal pointing towards the exterior of the second entity.
    pub fn global_normal2(&self, rotation: &Rotation) -> Vector {
        rotation * self.normal2
    }

    /// Copies impulses from previous contacts to matching contacts in `self`.
    ///
    /// Contacts are first matched based on their [feature IDs](PackedFeatureId), and if they are unknown,
    /// matching is done based on contact positions using the given `distance_threshold`
    /// for determining if points are too far away from each other to be considered matching.
    pub fn match_contacts(
        &mut self,
        previous_contacts: &[ContactData],
        distance_threshold: Scalar,
    ) {
        // The squared maximum distance for two contact points to be considered matching.
        let distance_threshold_squared = distance_threshold.powi(2);

        for contact in self.contacts.iter_mut() {
            for previous_contact in previous_contacts.iter() {
                // If the feature IDs match, copy the contact impulses over for warm starting.
                if (contact.feature_id1 == previous_contact.feature_id1
                    && contact.feature_id2 == previous_contact.feature_id2) ||
                    // we have to check both directions because the entities are sorted in order
                    // of aabb.min.x, which could have changed even the two objects in contact are the same
                    (contact.feature_id2 == previous_contact.feature_id1
                    && contact.feature_id1 == previous_contact.feature_id2)
                {
                    contact.normal_impulse = previous_contact.normal_impulse;
                    contact.tangent_impulse = previous_contact.tangent_impulse;
                    break;
                }

                let unknown_features = contact.feature_id1 == PackedFeatureId::UNKNOWN
                    || contact.feature_id2 == PackedFeatureId::UNKNOWN;

                // If the feature IDs are unknown and the contact positions match closely enough,
                // copy the contact impulses over for warm starting.
                if unknown_features
                    && (contact.point1.distance_squared(previous_contact.point1)
                        < distance_threshold_squared
                        && contact.point2.distance_squared(previous_contact.point2)
                            < distance_threshold_squared)
                    || (contact.point1.distance_squared(previous_contact.point2)
                        < distance_threshold_squared
                        && contact.point2.distance_squared(previous_contact.point1)
                            < distance_threshold_squared)
                {
                    contact.normal_impulse = previous_contact.normal_impulse;
                    contact.tangent_impulse = previous_contact.tangent_impulse;
                    break;
                }
            }
        }
    }

    /// Returns the contact with the largest penetration depth.
    ///
    /// If the objects are separated but there is still a speculative contact,
    /// the penetration depth will be negative.
    ///
    /// If there are no contacts, `None` is returned.
    pub fn find_deepest_contact(&self) -> Option<&ContactData> {
        self.contacts.iter().max_by(|a, b| {
            a.penetration
                .partial_cmp(&b.penetration)
                .unwrap_or(std::cmp::Ordering::Equal)
        })
    }
}

/// Data related to a single contact between two bodies.
///
/// If you want a contact that belongs to a [contact manifold](ContactManifold) and has more data,
/// see [`ContactData`].
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct SingleContact {
    /// Contact point on the first entity in local coordinates.
    pub point1: Vector,
    /// Contact point on the second entity in local coordinates.
    pub point2: Vector,
    /// A contact normal expressed in the local space of the first entity.
    pub normal1: Vector,
    /// A contact normal expressed in the local space of the second entity.
    pub normal2: Vector,
    /// Penetration depth.
    pub penetration: Scalar,
}

impl SingleContact {
    /// Creates a new [`SingleContact`]. The contact points and normals should be given in local space.
    pub fn new(
        point1: Vector,
        point2: Vector,
        normal1: Vector,
        normal2: Vector,
        penetration: Scalar,
    ) -> Self {
        Self {
            point1,
            point2,
            normal1,
            normal2,
            penetration,
        }
    }

    /// Returns the global contact point on the first entity,
    /// transforming the local point by the given entity position and rotation.
    pub fn global_point1(&self, position: &Position, rotation: &Rotation) -> Vector {
        position.0 + rotation * self.point1
    }

    /// Returns the global contact point on the second entity,
    /// transforming the local point by the given entity position and rotation.
    pub fn global_point2(&self, position: &Position, rotation: &Rotation) -> Vector {
        position.0 + rotation * self.point2
    }

    /// Returns the world-space contact normal pointing towards the exterior of the first entity.
    pub fn global_normal1(&self, rotation: &Rotation) -> Vector {
        rotation * self.normal1
    }

    /// Returns the world-space contact normal pointing towards the exterior of the second entity.
    pub fn global_normal2(&self, rotation: &Rotation) -> Vector {
        rotation * self.normal2
    }

    /// Flips the contact data, swapping the points and normals.
    pub fn flip(&mut self) {
        std::mem::swap(&mut self.point1, &mut self.point2);
        std::mem::swap(&mut self.normal1, &mut self.normal2);
    }

    /// Returns a flipped copy of the contact data, swapping the points and normals.
    pub fn flipped(&self) -> Self {
        Self {
            point1: self.point2,
            point2: self.point1,
            normal1: self.normal2,
            normal2: self.normal1,
            penetration: self.penetration,
        }
    }
}

/// Data related to a contact between two bodies.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct ContactData {
    /// Contact point on the first entity in local coordinates.
    pub point1: Vector,
    /// Contact point on the second entity in local coordinates.
    pub point2: Vector,
    /// A contact normal expressed in the local space of the first entity.
    pub normal1: Vector,
    /// A contact normal expressed in the local space of the second entity.
    pub normal2: Vector,
    /// Penetration depth.
    pub penetration: Scalar,
    /// The impulse applied to the first body along the normal.
    ///
    /// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_seconds()`.
    pub normal_impulse: Scalar,
    /// The impulse applied to the first body along the tangent. This corresponds to the impulse caused by friction.
    ///
    /// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_seconds()`.
    #[cfg(feature = "2d")]
    #[doc(alias = "friction_impulse")]
    pub tangent_impulse: Scalar,
    /// The impulse applied to the first body along the tangent. This corresponds to the impulse caused by friction.
    ///
    /// To get the corresponding force, divide the impulse by `Time<Substeps>::delta_seconds()`.
    #[cfg(feature = "3d")]
    #[doc(alias = "friction_impulse")]
    pub tangent_impulse: Vector2,
    /// The contact feature ID on the first shape. This indicates the ID of
    /// the vertex, edge, or face of the contact, if one can be determined.
    pub feature_id1: PackedFeatureId,
    /// The contact feature ID on the second shape. This indicates the ID of
    /// the vertex, edge, or face of the contact, if one can be determined.
    pub feature_id2: PackedFeatureId,
}

impl ContactData {
    /// Creates a new [`ContactData`]. The contact points and normals should be given in local space.
    ///
    /// [Feature IDs](PackedFeatureId) can be specified for the contact points using [`with_feature_ids`](Self::with_feature_ids).
    #[allow(clippy::too_many_arguments)]
    pub fn new(
        point1: Vector,
        point2: Vector,
        normal1: Vector,
        normal2: Vector,
        penetration: Scalar,
    ) -> Self {
        Self {
            point1,
            point2,
            normal1,
            normal2,
            penetration,
            normal_impulse: 0.0,
            tangent_impulse: default(),
            feature_id1: PackedFeatureId::UNKNOWN,
            feature_id2: PackedFeatureId::UNKNOWN,
        }
    }

    /// Sets the [feature IDs](PackedFeatureId) of the contact points.
    pub fn with_feature_ids(mut self, id1: PackedFeatureId, id2: PackedFeatureId) -> Self {
        self.feature_id1 = id1;
        self.feature_id2 = id2;
        self
    }

    /// The force corresponding to the normal impulse applied over `delta_time`.
    ///
    /// Because contacts are solved over several substeps, `delta_time` should
    /// typically use `Time<Substeps>::delta_seconds()`.
    pub fn normal_force(&self, delta_time: Scalar) -> Scalar {
        self.normal_impulse / delta_time
    }

    /// The force corresponding to the tangent impulse applied over `delta_time`.
    ///
    /// Because contacts are solved over several substeps, `delta_time` should
    /// typically use `Time<Substeps>::delta_seconds()`.
    #[cfg(feature = "2d")]
    #[doc(alias = "friction_force")]
    pub fn tangent_force(&self, delta_time: Scalar) -> Scalar {
        self.tangent_impulse / delta_time
    }

    /// The force corresponding to the tangent impulse applied over `delta_time`.
    ///
    /// Because contacts are solved over several substeps, `delta_time` should
    /// typically use `Time<Substeps>::delta_seconds()`.
    #[cfg(feature = "3d")]
    #[doc(alias = "friction_force")]
    pub fn tangent_force(&self, delta_time: Scalar) -> Vector2 {
        self.tangent_impulse / delta_time
    }

    /// Returns the global contact point on the first entity,
    /// transforming the local point by the given entity position and rotation.
    pub fn global_point1(&self, position: &Position, rotation: &Rotation) -> Vector {
        position.0 + rotation * self.point1
    }

    /// Returns the global contact point on the second entity,
    /// transforming the local point by the given entity position and rotation.
    pub fn global_point2(&self, position: &Position, rotation: &Rotation) -> Vector {
        position.0 + rotation * self.point2
    }

    /// Returns the world-space contact normal pointing towards the exterior of the first entity.
    pub fn global_normal1(&self, rotation: &Rotation) -> Vector {
        rotation * self.normal1
    }

    /// Returns the world-space contact normal pointing towards the exterior of the second entity.
    pub fn global_normal2(&self, rotation: &Rotation) -> Vector {
        rotation * self.normal2
    }

    /// Flips the contact data, swapping the points, normals, and feature IDs,
    /// and negating the impulses.
    pub fn flip(&mut self) {
        std::mem::swap(&mut self.point1, &mut self.point2);
        std::mem::swap(&mut self.normal1, &mut self.normal2);
        std::mem::swap(&mut self.feature_id1, &mut self.feature_id2);
        self.normal_impulse = -self.normal_impulse;
        self.tangent_impulse = -self.tangent_impulse;
    }

    /// Returns a flipped copy of the contact data, swapping the points, normals, and feature IDs,
    /// and negating the impulses.
    pub fn flipped(&self) -> Self {
        Self {
            point1: self.point2,
            point2: self.point1,
            normal1: self.normal2,
            normal2: self.normal1,
            penetration: self.penetration,
            normal_impulse: -self.normal_impulse,
            tangent_impulse: -self.tangent_impulse,
            feature_id1: self.feature_id2,
            feature_id2: self.feature_id1,
        }
    }
}