avian3d/collision/narrow_phase.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
//! Computes contacts between entities.
//!
//! See [`NarrowPhasePlugin`].
use std::marker::PhantomData;
use crate::{
dynamics::solver::{
contact::ContactConstraint, ContactConstraints, ContactSoftnessCoefficients,
},
prelude::*,
};
#[cfg(feature = "parallel")]
use bevy::tasks::{ComputeTaskPool, ParallelSlice};
use bevy::{
ecs::{
intern::Interned,
schedule::{ExecutorKind, LogLevel, ScheduleBuildSettings, ScheduleLabel},
system::SystemParam,
},
prelude::*,
};
/// Computes contacts between entities and generates contact constraints for them.
///
/// Collisions are only checked between entities contained in [`BroadCollisionPairs`],
/// which is handled by the [`BroadPhasePlugin`].
///
/// The results of the narrow phase are added into [`Collisions`].
/// By default, a [`ContactConstraint`] is also generated for each contact manifold
/// and added to the [`ContactConstraints`] resource.
///
/// The plugin takes a collider type. This should be [`Collider`] for
/// the vast majority of applications, but for custom collisiĆ³n backends
/// you may use any collider that implements the [`AnyCollider`] trait.
pub struct NarrowPhasePlugin<C: AnyCollider> {
schedule: Interned<dyn ScheduleLabel>,
/// If `true`, the narrow phase will generate [`ContactConstraint`]s
/// and add them to the [`ContactConstraints`] resource.
///
/// Contact constraints are used by the [`SolverPlugin`] for solving contacts.
generate_constraints: bool,
_phantom: PhantomData<C>,
}
impl<C: AnyCollider> NarrowPhasePlugin<C> {
/// Creates a [`NarrowPhasePlugin`] with the schedule used for running its systems
/// and whether it should generate [`ContactConstraint`]s for the [`ContactConstraints`] resource.
///
/// Contact constraints are used by the [`SolverPlugin`] for solving contacts.
///
/// The default schedule is [`PhysicsSchedule`].
pub fn new(schedule: impl ScheduleLabel, generate_constraints: bool) -> Self {
Self {
schedule: schedule.intern(),
generate_constraints,
_phantom: PhantomData,
}
}
}
impl<C: AnyCollider> Default for NarrowPhasePlugin<C> {
fn default() -> Self {
Self::new(PhysicsSchedule, true)
}
}
impl<C: AnyCollider> Plugin for NarrowPhasePlugin<C> {
fn build(&self, app: &mut App) {
// For some systems, we only want one instance, even if there are multiple
// NarrowPhasePlugin instances with different collider types.
let is_first_instance = !app.world().is_resource_added::<NarrowPhaseInitialized>();
app.init_resource::<NarrowPhaseInitialized>()
.init_resource::<NarrowPhaseConfig>()
.init_resource::<Collisions>()
.init_resource::<DefaultFriction>()
.init_resource::<DefaultRestitution>()
.register_type::<(NarrowPhaseConfig, DefaultFriction, DefaultRestitution)>();
if self.generate_constraints {
app.init_resource::<ContactConstraints>();
}
app.configure_sets(
self.schedule,
(
NarrowPhaseSet::First,
NarrowPhaseSet::CollectCollisions,
NarrowPhaseSet::PostProcess,
NarrowPhaseSet::GenerateConstraints,
NarrowPhaseSet::Last,
)
.chain()
.in_set(PhysicsStepSet::NarrowPhase),
);
// Set up the PostProcessCollisions schedule for user-defined systems
// that filter and modify collisions.
app.edit_schedule(PostProcessCollisions, |schedule| {
schedule
.set_executor_kind(ExecutorKind::SingleThreaded)
.set_build_settings(ScheduleBuildSettings {
ambiguity_detection: LogLevel::Error,
..default()
});
});
// Manage collision states like `during_current_frame` and remove old contacts.
// Only one narrow phase instance should do this.
// TODO: It would be nice not to have collision state logic in the narrow phase.
if is_first_instance {
app.add_systems(
self.schedule,
(
// Reset collision states.
reset_collision_states
.in_set(PhysicsStepSet::NarrowPhase)
.after(NarrowPhaseSet::First)
.before(NarrowPhaseSet::CollectCollisions),
// Remove ended collisions after contact reporting
remove_ended_collisions
.after(PhysicsStepSet::ReportContacts)
.before(PhysicsStepSet::Sleeping),
),
);
}
// Collect contacts into `Collisions`.
app.add_systems(
self.schedule,
collect_collisions::<C>
.in_set(NarrowPhaseSet::CollectCollisions)
// Allowing ambiguities is required so that it's possible
// to have multiple collision backends at the same time.
.ambiguous_with_all(),
);
if self.generate_constraints {
if is_first_instance {
// Clear contact constraints.
app.add_systems(
self.schedule,
(|mut constraints: ResMut<ContactConstraints>| {
constraints.clear();
})
.after(NarrowPhaseSet::PostProcess)
.before(NarrowPhaseSet::GenerateConstraints),
);
}
// Generate contact constraints.
app.add_systems(
self.schedule,
generate_constraints::<C>
.in_set(NarrowPhaseSet::GenerateConstraints)
// Allowing ambiguities is required so that it's possible
// to have multiple collision backends at the same time.
.ambiguous_with_all(),
);
}
if is_first_instance {
app.add_systems(
self.schedule,
run_post_process_collisions_schedule.in_set(NarrowPhaseSet::PostProcess),
);
}
}
}
#[derive(Resource, Default)]
struct NarrowPhaseInitialized;
/// A resource for configuring the [narrow phase](NarrowPhasePlugin).
#[derive(Resource, Reflect, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Resource, PartialEq)]
pub struct NarrowPhaseConfig {
/// The default maximum [speculative margin](SpeculativeMargin) used for
/// [speculative collisions](dynamics::ccd#speculative-collision). This can be overridden
/// for individual entities with the [`SpeculativeMargin`] component.
///
/// By default, the maximum speculative margin is unbounded, so contacts can be predicted
/// from any distance, provided that the bodies are moving fast enough. As the prediction distance
/// grows, the contact data becomes more and more approximate, and in rare cases, it can even cause
/// [issues](dynamics::ccd#caveats-of-speculative-collision) such as ghost collisions.
///
/// By limiting the maximum speculative margin, these issues can be mitigated, at the cost
/// of an increased risk of tunneling. Setting it to `0.0` disables speculative collision
/// altogether for entities without [`SpeculativeMargin`].
///
/// This is implicitly scaled by the [`PhysicsLengthUnit`].
///
/// Default: `MAX` (unbounded)
pub default_speculative_margin: Scalar,
/// A contact tolerance that acts as a minimum bound for the [speculative margin](dynamics::ccd#speculative-collision).
///
/// A small, positive contact tolerance helps ensure that contacts are not missed
/// due to numerical issues or solver jitter for objects that are in continuous
/// contact, such as pushing against each other.
///
/// Making the contact tolerance too large will have a negative impact on performance,
/// as contacts will be computed even for objects that are not in close proximity.
///
/// This is implicitly scaled by the [`PhysicsLengthUnit`].
///
/// Default: `0.005`
pub contact_tolerance: Scalar,
/// If `true`, the current contacts will be matched with the previous contacts
/// based on feature IDs or contact positions, and the contact impulses from
/// the previous frame will be copied over for the new contacts.
///
/// Using these impulses as the initial guess is referred to as *warm starting*,
/// and it can help the contact solver resolve overlap and stabilize much faster.
///
/// Default: `true`
pub match_contacts: bool,
}
impl Default for NarrowPhaseConfig {
fn default() -> Self {
Self {
default_speculative_margin: Scalar::MAX,
contact_tolerance: 0.005,
match_contacts: true,
}
}
}
/// System sets for systems running in [`PhysicsStepSet::NarrowPhase`].
#[derive(SystemSet, Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum NarrowPhaseSet {
/// Runs at the start of the narrow phase. Empty by default.
First,
/// Computes contacts between entities and adds them to the [`Collisions`] resource.
CollectCollisions,
/// Responsible for running the [`PostProcessCollisions`] schedule to allow user-defined systems
/// to filter and modify collisions.
///
/// If you want to modify or remove collisions after [`NarrowPhaseSet::CollectCollisions`], you can
/// add custom systems to this set, or to [`PostProcessCollisions`].
PostProcess,
/// Generates [`ContactConstraint`]s and adds them to [`ContactConstraints`].
GenerateConstraints,
/// Runs at the end of the narrow phase. Empty by default.
Last,
}
fn collect_collisions<C: AnyCollider>(
mut narrow_phase: NarrowPhase<C>,
broad_collision_pairs: Res<BroadCollisionPairs>,
time: Res<Time>,
) {
narrow_phase.update(&broad_collision_pairs, time.delta_seconds_adjusted());
}
// TODO: It'd be nice to generate the constraint in the same parallel loop as `collect_collisions`
// to avoid the extra iteration and queries. This is possible, but it wouldn't work with the current
// `PostProcessCollisions` setup.
fn generate_constraints<C: AnyCollider>(
narrow_phase: NarrowPhase<C>,
mut constraints: ResMut<ContactConstraints>,
contact_softness: Res<ContactSoftnessCoefficients>,
default_friction: Res<DefaultFriction>,
default_restitution: Res<DefaultRestitution>,
time: Res<Time>,
) {
let delta_secs = time.delta_seconds_adjusted();
// TODO: Parallelize.
for contacts in narrow_phase.collisions.get_internal().values() {
let Ok([collider1, collider2]) = narrow_phase
.collider_query
.get_many([contacts.entity1, contacts.entity2])
else {
continue;
};
let body1_bundle = collider1
.parent
.and_then(|p| narrow_phase.body_query.get(p.get()).ok());
let body2_bundle = collider2
.parent
.and_then(|p| narrow_phase.body_query.get(p.get()).ok());
if let (Some((body1, rb_collision_margin1)), Some((body2, rb_collision_margin2))) = (
body1_bundle.map(|(body, rb_collision_margin1, _)| (body, rb_collision_margin1)),
body2_bundle.map(|(body, rb_collision_margin2, _)| (body, rb_collision_margin2)),
) {
// At least one of the bodies must be dynamic for contact constraints
// to be generated.
if !body1.rb.is_dynamic() && !body2.rb.is_dynamic() {
continue;
}
// Use the collider's own collision margin if specified, and fall back to the body's
// collision margin.
//
// The collision margin adds artificial thickness to colliders for performance
// and stability. See the `CollisionMargin` documentation for more details.
let collision_margin1 = collider1
.collision_margin
.or(rb_collision_margin1)
.map_or(0.0, |margin| margin.0);
let collision_margin2 = collider2
.collision_margin
.or(rb_collision_margin2)
.map_or(0.0, |margin| margin.0);
let collision_margin_sum = collision_margin1 + collision_margin2;
// Get combined friction and restitution coefficients of the colliders
// or the bodies they are attached to. Fall back to the global defaults.
let friction = collider1
.friction
.or(body1.friction)
.copied()
.unwrap_or(default_friction.0)
.combine(
collider2
.friction
.or(body2.friction)
.copied()
.unwrap_or(default_friction.0),
);
let restitution = collider1
.restitution
.or(body1.restitution)
.copied()
.unwrap_or(default_restitution.0)
.combine(
collider2
.restitution
.or(body2.restitution)
.copied()
.unwrap_or(default_restitution.0),
);
// Generate contact constraints for the computed contacts
// and add them to `constraints`.
narrow_phase.generate_constraints(
contacts,
&mut constraints,
&body1,
&body2,
&collider1,
&collider2,
friction,
restitution,
collision_margin_sum,
*contact_softness,
delta_secs,
);
}
}
}
/// A system parameter for managing the narrow phase.
///
/// The narrow phase computes contacts for each intersection pair
/// in [`BroadCollisionPairs`], adds them to the [`Collisions`] resource,
/// and generates [`ContactConstraints`] for the contacts.
#[derive(SystemParam)]
pub struct NarrowPhase<'w, 's, C: AnyCollider> {
parallel_commands: ParallelCommands<'w, 's>,
collider_query: Query<'w, 's, ColliderQuery<C>, Without<ColliderDisabled>>,
body_query: Query<
'w,
's,
(
RigidBodyQueryReadOnly,
Option<&'static CollisionMargin>,
Option<&'static SpeculativeMargin>,
),
Without<RigidBodyDisabled>,
>,
/// Contacts found by the narrow phase.
pub collisions: ResMut<'w, Collisions>,
/// Configuration options for the narrow phase.
pub config: Res<'w, NarrowPhaseConfig>,
length_unit: Res<'w, PhysicsLengthUnit>,
// These are scaled by the length unit.
default_speculative_margin: Local<'s, Scalar>,
contact_tolerance: Local<'s, Scalar>,
}
impl<C: AnyCollider> NarrowPhase<'_, '_, C> {
/// Updates the narrow phase by computing [`Contacts`] based on [`BroadCollisionPairs`]
/// and adding them to [`Collisions`].
fn update(&mut self, broad_collision_pairs: &[(Entity, Entity)], delta_secs: Scalar) {
// TODO: These scaled versions could be in their own resource
// and updated just before physics every frame.
// Cache default margins scaled by the length unit.
if self.config.is_changed() {
*self.default_speculative_margin =
self.length_unit.0 * self.config.default_speculative_margin;
*self.contact_tolerance = self.length_unit.0 * self.config.contact_tolerance;
}
#[cfg(feature = "parallel")]
{
// TODO: Verify if `par_splat_map` is deterministic. If not, sort the constraints (and collisions).
broad_collision_pairs
.iter()
.par_splat_map(ComputeTaskPool::get(), None, |_i, chunks| {
let mut new_collisions = Vec::<Contacts>::with_capacity(chunks.len());
// Compute contacts for this intersection pair and generate
// contact constraints for them.
for &(entity1, entity2) in chunks {
if let Some(contacts) =
self.handle_entity_pair(entity1, entity2, delta_secs)
{
new_collisions.push(contacts);
}
}
new_collisions
})
.into_iter()
.for_each(|new_collisions| {
// Add the collisions and constraints from each chunk.
self.collisions.extend(new_collisions);
});
}
#[cfg(not(feature = "parallel"))]
{
// Compute contacts for this intersection pair and generate
// contact constraints for them.
for &(entity1, entity2) in broad_collision_pairs {
if let Some(contacts) = self.handle_entity_pair(entity1, entity2, delta_secs) {
self.collisions.insert_collision_pair(contacts);
}
}
}
}
/// Returns the [`Contacts`] between `entity1` and `entity2` if they are intersecting
/// or expected to start intersecting within the next frame. This includes
/// [speculative collision](dynamics::ccd#speculative-collision).
#[allow(clippy::too_many_arguments)]
pub fn handle_entity_pair(
&self,
entity1: Entity,
entity2: Entity,
delta_secs: Scalar,
) -> Option<Contacts> {
let Ok([collider1, collider2]) = self.collider_query.get_many([entity1, entity2]) else {
return None;
};
let body1_bundle = collider1
.parent
.and_then(|p| self.body_query.get(p.get()).ok());
let body2_bundle = collider2
.parent
.and_then(|p| self.body_query.get(p.get()).ok());
// The rigid body's collision margin and speculative margin will be used
// if the collider doesn't have them specified.
let (mut lin_vel1, rb_collision_margin1, rb_speculative_margin1) = body1_bundle
.as_ref()
.map(|(body, collision_margin, speculative_margin)| {
(
body.linear_velocity.0,
*collision_margin,
*speculative_margin,
)
})
.unwrap_or_default();
let (mut lin_vel2, rb_collision_margin2, rb_speculative_margin2) = body2_bundle
.as_ref()
.map(|(body, collision_margin, speculative_margin)| {
(
body.linear_velocity.0,
*collision_margin,
*speculative_margin,
)
})
.unwrap_or_default();
// Use the collider's own collision margin if specified, and fall back to the body's
// collision margin.
//
// The collision margin adds artificial thickness to colliders for performance
// and stability. See the `CollisionMargin` documentation for more details.
let collision_margin1 = collider1
.collision_margin
.or(rb_collision_margin1)
.map_or(0.0, |margin| margin.0);
let collision_margin2 = collider2
.collision_margin
.or(rb_collision_margin2)
.map_or(0.0, |margin| margin.0);
let collision_margin_sum = collision_margin1 + collision_margin2;
// Use the collider's own speculative margin if specified, and fall back to the body's
// speculative margin.
//
// The speculative margin is used to predict contacts that might happen during the frame.
// This is used for speculative collision. See the CCD and `SpeculativeMargin` documentation
// for more details.
let speculative_margin1 = collider1
.speculative_margin
.map_or(rb_speculative_margin1.map(|margin| margin.0), |margin| {
Some(margin.0)
});
let speculative_margin2 = collider2
.speculative_margin
.map_or(rb_speculative_margin2.map(|margin| margin.0), |margin| {
Some(margin.0)
});
// Compute the effective speculative margin, clamping it based on velocities and the maximum bound.
let effective_speculative_margin = {
let speculative_margin1 =
speculative_margin1.unwrap_or(*self.default_speculative_margin);
let speculative_margin2 =
speculative_margin2.unwrap_or(*self.default_speculative_margin);
let inv_delta_secs = delta_secs.recip();
// Clamp velocities to the maximum speculative margins.
if speculative_margin1 < Scalar::MAX {
lin_vel1 = lin_vel1.clamp_length_max(speculative_margin1 * inv_delta_secs);
}
if speculative_margin2 < Scalar::MAX {
lin_vel2 = lin_vel2.clamp_length_max(speculative_margin2 * inv_delta_secs);
}
// TODO: Check if AABBs intersect?
// Compute the effective margin based on how much the bodies
// are expected to move relative to each other.
delta_secs * (lin_vel1 - lin_vel2).length()
};
// The maximum distance at which contacts are detected.
// At least as large as the contact tolerance.
let max_contact_distance =
effective_speculative_margin.max(*self.contact_tolerance) + collision_margin_sum;
self.compute_contact_pair(&collider1, &collider2, max_contact_distance)
}
/// Computes contacts between `collider1` and `collider2`.
/// Returns `None` if no contacts are found.
///
/// The given `max_distance` determines the maximum distance for a contact
/// to be detected. A value greater than zero means that contacts are generated
/// based on the closest points even if the shapes are separated.
#[allow(clippy::type_complexity, clippy::too_many_arguments)]
pub fn compute_contact_pair(
&self,
collider1: &ColliderQueryItem<C>,
collider2: &ColliderQueryItem<C>,
max_distance: Scalar,
) -> Option<Contacts> {
let position1 = collider1.current_position();
let position2 = collider2.current_position();
// TODO: It'd be good to persist the manifolds and let Parry match contacts.
// This isn't currently done because it requires using Parry's contact manifold type.
// Compute the contact manifolds using the effective speculative margin.
let mut manifolds = collider1.shape.contact_manifolds(
collider2.shape,
position1,
*collider1.rotation,
position2,
*collider2.rotation,
max_distance,
);
// Get the previous contacts if there are any.
let previous_contacts = if collider1.entity < collider2.entity {
self.collisions
.get_internal()
.get(&(collider1.entity, collider2.entity))
} else {
self.collisions
.get_internal()
.get(&(collider2.entity, collider1.entity))
};
let mut total_normal_impulse = 0.0;
let mut total_tangent_impulse = default();
// Match contacts and copy previous contact impulses for warm starting the solver.
// TODO: This condition is pretty arbitrary, mainly to skip dense trimeshes.
// If we let Parry handle contact matching, this wouldn't be needed.
if manifolds.len() <= 4 && self.config.match_contacts {
if let Some(previous_contacts) = previous_contacts {
// TODO: Cache this?
let distance_threshold = 0.1 * self.length_unit.0;
for manifold in manifolds.iter_mut() {
for previous_manifold in previous_contacts.manifolds.iter() {
manifold.match_contacts(&previous_manifold.contacts, distance_threshold);
// Add contact impulses to total impulses.
for contact in manifold.contacts.iter() {
total_normal_impulse += contact.normal_impulse;
total_tangent_impulse += contact.tangent_impulse;
}
}
}
}
}
let contacts = Contacts {
entity1: collider1.entity,
entity2: collider2.entity,
body_entity1: collider1.parent.map(|p| p.get()),
body_entity2: collider2.parent.map(|p| p.get()),
during_current_frame: true,
during_previous_frame: previous_contacts.map_or(false, |c| c.during_previous_frame),
manifolds,
is_sensor: collider1.is_sensor
|| collider2.is_sensor
|| !collider1.is_rb
|| !collider2.is_rb,
total_normal_impulse,
total_tangent_impulse,
};
(!contacts.manifolds.is_empty()).then_some(contacts)
}
/// Generates [`ContactConstraint`]s for the given bodies and their corresponding colliders
/// based on the given `contacts`. The constraints are added to the `constraints` vector.
///
/// The `collision_margin` can be used to add artificial thickness to the colliders,
/// which can improve performance and stability in some cases. See [`CollisionMargin`]
/// for more details.
///
/// The `contact_softness` is used to tune the damping and stiffness of the contact constraints.
#[allow(clippy::too_many_arguments)]
pub fn generate_constraints(
&self,
contacts: &Contacts,
constraints: &mut Vec<ContactConstraint>,
body1: &RigidBodyQueryReadOnlyItem,
body2: &RigidBodyQueryReadOnlyItem,
collider1: &ColliderQueryItem<C>,
collider2: &ColliderQueryItem<C>,
friction: Friction,
restitution: Restitution,
collision_margin: impl Into<CollisionMargin> + Copy,
contact_softness: ContactSoftnessCoefficients,
delta_secs: Scalar,
) {
let inactive1 = body1.rb.is_static() || body1.is_sleeping;
let inactive2 = body2.rb.is_static() || body2.is_sleeping;
// No collision response if both bodies are static or sleeping
// or if either of the colliders is a sensor collider.
if (inactive1 && inactive2)
|| (collider1.is_sensor || body1.is_sensor)
|| (collider2.is_sensor || body2.is_sensor)
{
return;
}
// When an active body collides with a sleeping body, wake up the sleeping body.
self.parallel_commands.command_scope(|mut commands| {
if body1.is_sleeping {
commands.entity(body1.entity).remove::<Sleeping>();
} else if body2.is_sleeping {
commands.entity(body2.entity).remove::<Sleeping>();
}
});
let contact_softness = if !body1.rb.is_dynamic() || !body2.rb.is_dynamic() {
contact_softness.non_dynamic
} else {
contact_softness.dynamic
};
// Generate contact constraints for each contact.
for (i, contact_manifold) in contacts.manifolds.iter().enumerate() {
let constraint = ContactConstraint::generate(
i,
contact_manifold,
body1,
body2,
collider1.entity,
collider2.entity,
collider1.transform.copied(),
collider2.transform.copied(),
collision_margin,
// TODO: Shouldn't this be the effective speculative margin?
*self.default_speculative_margin,
friction,
restitution,
contact_softness,
self.config.match_contacts,
delta_secs,
);
if !constraint.points.is_empty() {
constraints.push(constraint);
}
}
}
}
fn remove_ended_collisions(mut collisions: ResMut<Collisions>) {
collisions.retain(|contacts| contacts.during_current_frame);
}
// TODO: The collision state handling feels a bit confusing and error-prone.
// Ideally, the narrow phase wouldn't need to handle it at all, or it would at least be simpler.
/// Resets collision states like `during_current_frame` and `during_previous_frame`.
pub fn reset_collision_states(
mut collisions: ResMut<Collisions>,
query: Query<(Option<&RigidBody>, Has<Sleeping>)>,
) {
for contacts in collisions.get_internal_mut().values_mut() {
contacts.total_normal_impulse = 0.0;
contacts.total_tangent_impulse = default();
if let Ok([(rb1, sleeping1), (rb2, sleeping2)]) = query.get_many([
contacts.body_entity1.unwrap_or(contacts.entity1),
contacts.body_entity2.unwrap_or(contacts.entity2),
]) {
let active1 = !rb1.map_or(false, |rb| rb.is_static()) && !sleeping1;
let active2 = !rb2.map_or(false, |rb| rb.is_static()) && !sleeping2;
// Reset collision states if either of the bodies is active (not static or sleeping)
// Otherwise, the bodies are still in contact.
if active1 || active2 {
contacts.during_previous_frame = true;
contacts.during_current_frame = false;
} else {
contacts.during_previous_frame = true;
contacts.during_current_frame = true;
}
} else {
contacts.during_current_frame = false;
}
}
}
/// Runs the [`PostProcessCollisions`] schedule.
fn run_post_process_collisions_schedule(world: &mut World) {
trace!("running PostProcessCollisions");
world.run_schedule(PostProcessCollisions);
}