avian3d/collision/narrow_phase/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
//! Manages contacts and generates contact constraints.
//!
//! See [`NarrowPhasePlugin`].

mod system_param;
use system_param::ContactStatusBits;
pub use system_param::NarrowPhase;
#[cfg(feature = "parallel")]
use system_param::NarrowPhaseThreadLocals;

use core::marker::PhantomData;

use crate::{dynamics::solver::ContactConstraints, prelude::*};
use bevy::{
    ecs::{
        entity_disabling::Disabled,
        intern::Interned,
        schedule::ScheduleLabel,
        system::{StaticSystemParam, SystemParam, SystemParamItem, SystemState},
    },
    prelude::*,
};
use dynamics::solver::SolverDiagnostics;

use super::CollisionDiagnostics;

/// Manages contacts and generates contact constraints.
///
/// # Overview
///
/// Before the narrow phase, the [broad phase](super::broad_phase) creates a contact pair
/// in the [`ContactGraph`] resource for each pair of intersecting [`ColliderAabb`]s.
///
/// The narrow phase then determines which contact pairs found in the [`ContactGraph`] are touching,
/// and computes updated contact points and normals in a parallel loop.
///
/// Afterwards, the narrow phase removes contact pairs whose AABBs no longer overlap,
/// and sends collision events for colliders that started or stopped touching.
/// This is done in a fast serial loop to preserve determinism.
///
/// Finally, a [`ContactConstraint`] is generated for each contact pair that is touching
/// or expected to touch during the time step. These constraints are added to the [`ContactConstraints`]
/// resource, and are later used by the [`SolverPlugin`] to solve contacts.
///
/// [`ContactConstraint`]: dynamics::solver::contact::ContactConstraint
///
/// # Collider Types
///
/// The plugin takes a collider type. This should be [`Collider`] for
/// the vast majority of applications, but for custom collision backends
/// you may use any collider that implements the [`AnyCollider`] trait.
pub struct NarrowPhasePlugin<C: AnyCollider, H: CollisionHooks = ()> {
    schedule: Interned<dyn ScheduleLabel>,
    /// If `true`, the narrow phase will generate [`ContactConstraint`]s
    /// and add them to the [`ContactConstraints`] resource.
    ///
    /// Contact constraints are used by the [`SolverPlugin`] for solving contacts.
    ///
    /// [`ContactConstraint`]: dynamics::solver::contact::ContactConstraint
    generate_constraints: bool,
    _phantom: PhantomData<(C, H)>,
}

impl<C: AnyCollider, H: CollisionHooks> NarrowPhasePlugin<C, H> {
    /// Creates a [`NarrowPhasePlugin`] with the schedule used for running its systems
    /// and whether it should generate [`ContactConstraint`]s for the [`ContactConstraints`] resource.
    ///
    /// Contact constraints are used by the [`SolverPlugin`] for solving contacts.
    ///
    /// The default schedule is [`PhysicsSchedule`].
    ///
    /// [`ContactConstraint`]: dynamics::solver::contact::ContactConstraint
    pub fn new(schedule: impl ScheduleLabel, generate_constraints: bool) -> Self {
        Self {
            schedule: schedule.intern(),
            generate_constraints,
            _phantom: PhantomData,
        }
    }
}

impl<C: AnyCollider, H: CollisionHooks> Default for NarrowPhasePlugin<C, H> {
    fn default() -> Self {
        Self::new(PhysicsSchedule, true)
    }
}

/// A resource that indicates that the narrow phase has been initialized.
///
/// This is used to ensure that some systems are only added once
/// even with multiple collider types.
#[derive(Resource, Default)]
struct NarrowPhaseInitialized;

impl<C: AnyCollider, H: CollisionHooks + 'static> Plugin for NarrowPhasePlugin<C, H>
where
    for<'w, 's> SystemParamItem<'w, 's, H>: CollisionHooks,
{
    fn build(&self, app: &mut App) {
        let already_initialized = app.world().is_resource_added::<NarrowPhaseInitialized>();

        app.init_resource::<NarrowPhaseConfig>()
            .init_resource::<ContactGraph>()
            .init_resource::<ContactStatusBits>()
            .init_resource::<DefaultFriction>()
            .init_resource::<DefaultRestitution>();

        #[cfg(feature = "parallel")]
        app.init_resource::<NarrowPhaseThreadLocals>();

        app.register_type::<(NarrowPhaseConfig, DefaultFriction, DefaultRestitution)>();

        app.add_event::<CollisionStarted>()
            .add_event::<CollisionEnded>();

        if self.generate_constraints {
            app.init_resource::<ContactConstraints>();
        }

        // Set up system set scheduling.
        app.configure_sets(
            self.schedule,
            (
                NarrowPhaseSet::First,
                NarrowPhaseSet::Update,
                NarrowPhaseSet::Last,
            )
                .chain()
                .in_set(PhysicsStepSet::NarrowPhase),
        );
        app.configure_sets(
            self.schedule,
            CollisionEventSystems.in_set(PhysicsStepSet::Finalize),
        );

        // Perform narrow phase collision detection.
        app.add_systems(
            self.schedule,
            update_narrow_phase::<C, H>
                .in_set(NarrowPhaseSet::Update)
                // Allowing ambiguities is required so that it's possible
                // to have multiple collision backends at the same time.
                .ambiguous_with_all(),
        );

        if !already_initialized {
            // Remove collision pairs when colliders are disabled or removed.
            app.add_observer(remove_collider_on::<OnAdd, Disabled>);
            app.add_observer(remove_collider_on::<OnAdd, ColliderDisabled>);
            app.add_observer(remove_collider_on::<OnRemove, ColliderMarker>);

            // Trigger collision events for colliders that started or stopped touching.
            app.add_systems(
                PhysicsSchedule,
                trigger_collision_events.in_set(CollisionEventSystems),
            );
        }

        app.init_resource::<NarrowPhaseInitialized>();
    }

    fn finish(&self, app: &mut App) {
        // Register timer and counter diagnostics for collision detection.
        app.register_physics_diagnostics::<CollisionDiagnostics>();
    }
}

/// A system set for triggering the [`OnCollisionStart`] and [`OnCollisionEnd`] events.
///
/// Runs in [`PhysicsStepSet::Finalize`], after the solver has run and contact impulses
/// have been computed and applied.
#[derive(SystemSet, Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct CollisionEventSystems;

/// A resource for configuring the [narrow phase](NarrowPhasePlugin).
#[derive(Resource, Reflect, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Resource, PartialEq)]
pub struct NarrowPhaseConfig {
    /// The default maximum [speculative margin](SpeculativeMargin) used for
    /// [speculative collisions](dynamics::ccd#speculative-collision). This can be overridden
    /// for individual entities with the [`SpeculativeMargin`] component.
    ///
    /// By default, the maximum speculative margin is unbounded, so contacts can be predicted
    /// from any distance, provided that the bodies are moving fast enough. As the prediction distance
    /// grows, the contact data becomes more and more approximate, and in rare cases, it can even cause
    /// [issues](dynamics::ccd#caveats-of-speculative-collision) such as ghost collisions.
    ///
    /// By limiting the maximum speculative margin, these issues can be mitigated, at the cost
    /// of an increased risk of tunneling. Setting it to `0.0` disables speculative collision
    /// altogether for entities without [`SpeculativeMargin`].
    ///
    /// This is implicitly scaled by the [`PhysicsLengthUnit`].
    ///
    /// Default: `MAX` (unbounded)
    pub default_speculative_margin: Scalar,

    /// A contact tolerance that acts as a minimum bound for the [speculative margin](dynamics::ccd#speculative-collision).
    ///
    /// A small, positive contact tolerance helps ensure that contacts are not missed
    /// due to numerical issues or solver jitter for objects that are in continuous
    /// contact, such as pushing against each other.
    ///
    /// Making the contact tolerance too large will have a negative impact on performance,
    /// as contacts will be computed even for objects that are not in close proximity.
    ///
    /// This is implicitly scaled by the [`PhysicsLengthUnit`].
    ///
    /// Default: `0.005`
    pub contact_tolerance: Scalar,

    /// If `true`, the current contacts will be matched with the previous contacts
    /// based on feature IDs or contact positions, and the contact impulses from
    /// the previous frame will be copied over for the new contacts.
    ///
    /// Using these impulses as the initial guess is referred to as *warm starting*,
    /// and it can help the contact solver resolve overlap and stabilize much faster.
    ///
    /// Default: `true`
    pub match_contacts: bool,
}

impl Default for NarrowPhaseConfig {
    fn default() -> Self {
        Self {
            default_speculative_margin: Scalar::MAX,
            contact_tolerance: 0.005,
            match_contacts: true,
        }
    }
}

/// System sets for systems running in [`PhysicsStepSet::NarrowPhase`].
#[derive(SystemSet, Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum NarrowPhaseSet {
    /// Runs at the start of the narrow phase. Empty by default.
    First,
    /// Updates contacts in the [`ContactGraph`] and processes contact state changes.
    Update,
    /// Runs at the end of the narrow phase. Empty by default.
    Last,
}

fn update_narrow_phase<C: AnyCollider, H: CollisionHooks + 'static>(
    mut narrow_phase: NarrowPhase<C>,
    mut collision_started_event_writer: EventWriter<CollisionStarted>,
    mut collision_ended_event_writer: EventWriter<CollisionEnded>,
    time: Res<Time>,
    hooks: StaticSystemParam<H>,
    context: StaticSystemParam<C::Context>,
    mut commands: ParallelCommands,
    mut diagnostics: ResMut<CollisionDiagnostics>,
    solver_diagnostics: Option<ResMut<SolverDiagnostics>>,
) where
    for<'w, 's> SystemParamItem<'w, 's, H>: CollisionHooks,
{
    let start = crate::utils::Instant::now();

    narrow_phase.update::<H>(
        &mut collision_started_event_writer,
        &mut collision_ended_event_writer,
        time.delta_seconds_adjusted(),
        &hooks,
        &context,
        &mut commands,
    );

    diagnostics.narrow_phase = start.elapsed();
    diagnostics.contact_count = narrow_phase.contact_graph.internal.edge_count() as u32;

    if let Some(mut solver_diagnostics) = solver_diagnostics {
        solver_diagnostics.contact_constraint_count = narrow_phase.contact_constraints.len() as u32;
    }
}

#[derive(SystemParam)]
struct TriggerCollisionEventsContext<'w, 's> {
    query: Query<'w, 's, Option<&'static ColliderOf>, With<CollisionEventsEnabled>>,
    started: EventReader<'w, 's, CollisionStarted>,
    ended: EventReader<'w, 's, CollisionEnded>,
}

/// Triggers [`OnCollisionStart`] and [`OnCollisionEnd`] events for colliders
/// that started or stopped touching and have the [`CollisionEventsEnabled`] component.
fn trigger_collision_events(
    // We use exclusive access here to avoid queuing a new command for each event.
    world: &mut World,
    state: &mut SystemState<TriggerCollisionEventsContext>,
    // Cache pairs in buffers to avoid reallocating every time.
    mut started_pairs: Local<Vec<(Entity, OnCollisionStart)>>,
    mut ended_pairs: Local<Vec<(Entity, OnCollisionEnd)>>,
) {
    let mut state = state.get_mut(world);

    // Collect `OnCollisionStart` and `OnCollisionEnd` events
    // for entities that have events enabled.
    for event in state.started.read() {
        if let Ok(collider_of) = state.query.get(event.0) {
            let collider = event.1;
            let body = collider_of.map(|c| c.body);
            started_pairs.push((event.0, OnCollisionStart { collider, body }));
        }
        if let Ok(collider_of) = state.query.get(event.1) {
            let collider = event.0;
            let body = collider_of.map(|c| c.body);
            started_pairs.push((event.1, OnCollisionStart { collider, body }));
        }
    }
    for event in state.ended.read() {
        if let Ok(collider_of) = state.query.get(event.0) {
            let collider = event.1;
            let body = collider_of.map(|c| c.body);
            ended_pairs.push((event.0, OnCollisionEnd { collider, body }));
        }
        if let Ok(collider_of) = state.query.get(event.1) {
            let collider = event.0;
            let body = collider_of.map(|c| c.body);
            ended_pairs.push((event.1, OnCollisionEnd { collider, body }));
        }
    }

    // Trigger the events, draining the buffers in the process.
    started_pairs.drain(..).for_each(|(entity, event)| {
        world.trigger_targets(event, entity);
    });
    ended_pairs.drain(..).for_each(|(entity, event)| {
        world.trigger_targets(event, entity);
    });
}

/// Removes colliders from the [`ContactGraph`] when the given trigger is activated.
///
/// Also removes the collider from the [`CollidingEntities`] of the other entity,
/// wakes up the other body, and sends a [`CollisionEnded`] event.
fn remove_collider_on<E: Event, C: Component>(
    trigger: Trigger<E, C>,
    mut contact_graph: ResMut<ContactGraph>,
    mut query: Query<&mut CollidingEntities>,
    mut event_writer: EventWriter<CollisionEnded>,
    mut commands: Commands,
) {
    let entity = trigger.target();

    // Remove the collider from the contact graph.
    contact_graph.remove_collider_with(entity, |contact_pair| {
        // If the contact pair was not touching, we don't need to do anything.
        if !contact_pair.flags.contains(ContactPairFlags::TOUCHING) {
            return;
        }

        // Send a collision ended event.
        if contact_pair
            .flags
            .contains(ContactPairFlags::CONTACT_EVENTS)
        {
            event_writer.write(CollisionEnded(
                contact_pair.collider1,
                contact_pair.collider2,
            ));
        }

        // Remove the entity from the `CollidingEntities` of the other entity.
        let other_entity = if contact_pair.collider1 == entity {
            contact_pair.collider2
        } else {
            contact_pair.collider1
        };
        if let Ok(mut colliding_entities) = query.get_mut(other_entity) {
            colliding_entities.remove(&entity);
        }

        // Wake up the other body.
        commands.queue(WakeUpBody(other_entity));
    });
}