avian3d/collision/narrow_phase/system_param.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
#[cfg(feature = "parallel")]
use core::cell::RefCell;
use crate::{
collision::collider::ColliderQuery,
data_structures::{bit_vec::BitVec, graph::EdgeIndex},
dynamics::solver::{contact::ContactConstraint, ContactSoftnessCoefficients},
prelude::*,
};
use bevy::{
ecs::system::{SystemParam, SystemParamItem},
prelude::*,
};
use dynamics::solver::{
contact::{ContactConstraintPoint, ContactNormalPart, ContactTangentPart},
ContactConstraints,
};
#[cfg(feature = "parallel")]
use thread_local::ThreadLocal;
/// A system parameter for managing the narrow phase.
///
/// Responsibilities:
///
/// - Updates contacts for each contact pair in the [`ContactGraph`].
/// - Sends collision events when colliders start or stop touching.
/// - Removes contact pairs from the [`ContactGraph`] when AABBs stop overlapping.
/// - Generates contact constraints for each contact pair that is touching or expected to start touching.
#[derive(SystemParam)]
#[expect(missing_docs)]
pub struct NarrowPhase<'w, 's, C: AnyCollider> {
pub collider_query: Query<'w, 's, ColliderQuery<C>, Without<ColliderDisabled>>,
pub colliding_entities_query: Query<'w, 's, &'static mut CollidingEntities>,
pub body_query: Query<
'w,
's,
(
RigidBodyQueryReadOnly,
Option<&'static CollisionMargin>,
Option<&'static SpeculativeMargin>,
),
Without<RigidBodyDisabled>,
>,
pub contact_graph: ResMut<'w, ContactGraph>,
contact_status_bits: ResMut<'w, ContactStatusBits>,
pub contact_constraints: ResMut<'w, ContactConstraints>,
#[cfg(feature = "parallel")]
thread_locals: ResMut<'w, NarrowPhaseThreadLocals>,
pub config: Res<'w, NarrowPhaseConfig>,
default_friction: Res<'w, DefaultFriction>,
default_restitution: Res<'w, DefaultRestitution>,
contact_softness: Res<'w, ContactSoftnessCoefficients>,
length_unit: Res<'w, PhysicsLengthUnit>,
// These are scaled by the length unit.
default_speculative_margin: Local<'s, Scalar>,
contact_tolerance: Local<'s, Scalar>,
}
/// A bit vector for tracking contact status changes.
/// Set bits correspond to contact pairs that were either added or removed.
#[derive(Resource, Default, Deref, DerefMut)]
pub(super) struct ContactStatusBits(pub BitVec);
/// A resource storing thread-local context for the narrow phase.
#[cfg(feature = "parallel")]
#[derive(Resource, Default, Deref, DerefMut)]
pub(super) struct NarrowPhaseThreadLocals(pub ThreadLocal<RefCell<NarrowPhaseThreadContext>>);
/// A thread-local context for the narrow phase.
#[cfg(feature = "parallel")]
#[derive(Default)]
pub(super) struct NarrowPhaseThreadContext {
/// A bit vector for tracking contact status changes.
/// Set bits correspond to contact pairs that were either added or removed.
///
/// The thread-local bit vectors are combined with the global [`ContactStatusBits`].
pub contact_status_bits: BitVec,
/// A vector for storing generated contact constraints.
///
/// The thread-local constraints are combined with the global [`ContactConstraints`].
pub contact_constraints: Vec<ContactConstraint>,
}
impl<C: AnyCollider> NarrowPhase<'_, '_, C> {
/// Updates the narrow phase.
///
/// - Updates contacts for each contact pair in the [`ContactGraph`].
/// - Sends collision events when colliders start or stop touching.
/// - Removes pairs from the [`ContactGraph`] when AABBs stop overlapping.
pub fn update<H: CollisionHooks>(
&mut self,
collision_started_event_writer: &mut EventWriter<CollisionStarted>,
collision_ended_event_writer: &mut EventWriter<CollisionEnded>,
delta_secs: Scalar,
hooks: &SystemParamItem<H>,
context: &SystemParamItem<C::Context>,
commands: &mut ParallelCommands,
) where
for<'w, 's> SystemParamItem<'w, 's, H>: CollisionHooks,
{
// Cache default margins scaled by the length unit.
if self.config.is_changed() {
*self.default_speculative_margin =
self.length_unit.0 * self.config.default_speculative_margin;
*self.contact_tolerance = self.length_unit.0 * self.config.contact_tolerance;
}
// Update contacts for all contact pairs.
self.update_contacts::<H>(delta_secs, hooks, context, commands);
// Contact pairs that should be removed.
// TODO: This is needed because removing pairs while iterating over the bit vec can invalidate indices.
// With a stable mapping between contact pair indices and bits, we could remove this.
// TODO: Pre-allocate this with some reasonable capacity?
let mut pairs_to_remove = Vec::<(Entity, Entity)>::new();
// Process contact status changes, iterating over set bits serially to maintain determinism.
//
// Iterating over set bits is done efficiently with the "count trailing zeros" method:
// https://lemire.me/blog/2018/02/21/iterating-over-set-bits-quickly/
for (i, mut bits) in self.contact_status_bits.blocks().enumerate() {
while bits != 0 {
let trailing_zeros = bits.trailing_zeros();
let pair_index = EdgeIndex(i as u32 * 64 + trailing_zeros);
let contact_pair = self
.contact_graph
.internal
.edge_weight_mut(pair_index)
.unwrap_or_else(|| panic!("Contact pair not found for {:?}", pair_index));
// Three options:
// 1. The AABBs are no longer overlapping, and the contact pair should be removed.
// 2. The colliders started touching, and a collision started event should be sent.
// 3. The colliders stopped touching, and a collision ended event should be sent.
if contact_pair.aabbs_disjoint() {
// Send a collision ended event if the contact pair was touching.
let send_event = contact_pair
.flags
.contains(ContactPairFlags::TOUCHING | ContactPairFlags::CONTACT_EVENTS);
if send_event {
collision_ended_event_writer.write(CollisionEnded(
contact_pair.collider1,
contact_pair.collider2,
));
}
// Remove from `CollidingEntities`.
Self::remove_colliding_entities(
&mut self.colliding_entities_query,
contact_pair.collider1,
contact_pair.collider2,
);
// Wake up the bodies.
// TODO: When we have simulation islands, this will be more efficient.
commands.command_scope(|mut commands| {
commands.queue(WakeUpBody(
contact_pair.body1.unwrap_or(contact_pair.collider1),
));
commands.queue(WakeUpBody(
contact_pair.body2.unwrap_or(contact_pair.collider2),
));
});
// Queue the contact pair for removal.
pairs_to_remove.push((contact_pair.collider1, contact_pair.collider2));
} else if contact_pair.collision_started() {
// Send collision started event.
if contact_pair.events_enabled() {
collision_started_event_writer.write(CollisionStarted(
contact_pair.collider1,
contact_pair.collider2,
));
}
// Add to `CollidingEntities`.
Self::add_colliding_entities(
&mut self.colliding_entities_query,
contact_pair.collider1,
contact_pair.collider2,
);
debug_assert!(
!contact_pair.manifolds.is_empty(),
"Manifolds should not be empty when colliders start touching"
);
contact_pair
.flags
.set(ContactPairFlags::STARTED_TOUCHING, false);
} else if contact_pair
.flags
.contains(ContactPairFlags::STOPPED_TOUCHING)
{
// Send collision ended event.
if contact_pair.events_enabled() {
collision_ended_event_writer.write(CollisionEnded(
contact_pair.collider1,
contact_pair.collider2,
));
}
// Remove from `CollidingEntities`.
Self::remove_colliding_entities(
&mut self.colliding_entities_query,
contact_pair.collider1,
contact_pair.collider2,
);
// Wake up the bodies.
// TODO: When we have simulation islands, this will be more efficient.
commands.command_scope(|mut commands| {
commands.queue(WakeUpBody(
contact_pair.body1.unwrap_or(contact_pair.collider1),
));
commands.queue(WakeUpBody(
contact_pair.body2.unwrap_or(contact_pair.collider2),
));
});
debug_assert!(
contact_pair.manifolds.is_empty(),
"Manifolds should be empty when colliders stopped touching"
);
contact_pair
.flags
.set(ContactPairFlags::STOPPED_TOUCHING, false);
}
// Clear the least significant set bit.
bits &= bits - 1;
}
}
// Remove the contact pairs that were marked for removal.
for pair_index in pairs_to_remove.drain(..) {
self.contact_graph.remove_pair(pair_index.0, pair_index.1);
}
}
/// Adds the colliding entities to their respective [`CollidingEntities`] components.
fn add_colliding_entities(
query: &mut Query<&mut CollidingEntities>,
entity1: Entity,
entity2: Entity,
) {
if let Ok(mut colliding_entities1) = query.get_mut(entity1) {
colliding_entities1.insert(entity2);
}
if let Ok(mut colliding_entities2) = query.get_mut(entity2) {
colliding_entities2.insert(entity1);
}
}
/// Removes the colliding entities from their respective [`CollidingEntities`] components.
fn remove_colliding_entities(
query: &mut Query<&mut CollidingEntities>,
entity1: Entity,
entity2: Entity,
) {
if let Ok(mut colliding_entities1) = query.get_mut(entity1) {
colliding_entities1.remove(&entity2);
}
if let Ok(mut colliding_entities2) = query.get_mut(entity2) {
colliding_entities2.remove(&entity1);
}
}
/// Updates contacts for all contact pairs in the [`ContactGraph`].
///
/// Also updates the [`ContactStatusBits`] resource to track status changes for each contact pair.
/// Set bits correspond to contact pairs that were either added or removed,
/// while unset bits correspond to contact pairs that were persisted.
///
/// The order of contact pairs is preserved.
fn update_contacts<H: CollisionHooks>(
&mut self,
delta_secs: Scalar,
hooks: &SystemParamItem<H>,
collider_context: &SystemParamItem<C::Context>,
par_commands: &mut ParallelCommands,
) where
for<'w, 's> SystemParamItem<'w, 's, H>: CollisionHooks,
{
let contact_pair_count = self.contact_graph.internal.edge_count();
// Clear the bit vector used to track status changes for each contact pair.
self.contact_status_bits
.set_bit_count_and_clear(contact_pair_count);
#[cfg(feature = "parallel")]
self.thread_locals.iter_mut().for_each(|context| {
let bit_vec_mut = &mut context.borrow_mut().contact_status_bits;
bit_vec_mut.set_bit_count_and_clear(contact_pair_count);
});
// Clear the contact constraints.
self.contact_constraints.clear();
// Compute contacts for all contact pairs in parallel or serially
// based on the `parallel` feature.
//
// Constraints are also generated for each contact pair that is touching
// or expected to start touching.
//
// If parallelism is used, status changes are written to thread-local bit vectors,
// where set bits correspond to contact pairs that were added or removed.
// At the end, the bit vectors are combined using bit-wise OR.
//
// If parallelism is not used, status changes are instead written
// directly to the global bit vector.
//
// TODO: An alternative to thread-local bit vectors could be to have one larger bit vector
// and to chunk it into smaller bit vectors for each thread. Might not be any faster though.
crate::utils::par_for_each!(
self.contact_graph.internal.raw_edges_mut(),
|contact_index, contacts| {
#[cfg(not(feature = "parallel"))]
let status_change_bits = &mut self.contact_status_bits;
#[cfg(not(feature = "parallel"))]
let constraints = &mut self.contact_constraints;
// TODO: Move this out of the chunk iteration? Requires refactoring `par_for_each!`.
#[cfg(feature = "parallel")]
// Get the thread-local narrow phase context.
let mut thread_context = self
.thread_locals
.get_or(|| {
// No thread-local bit vector exists for this thread yet.
// Create a new one with the same capacity as the global bit vector.
let mut contact_status_bits = BitVec::new(contact_pair_count);
contact_status_bits.set_bit_count_and_clear(contact_pair_count);
RefCell::new(NarrowPhaseThreadContext {
contact_status_bits,
contact_constraints: Vec::new(),
})
})
.borrow_mut();
#[cfg(feature = "parallel")]
let NarrowPhaseThreadContext {
contact_status_bits: status_change_bits,
contact_constraints: constraints,
} = &mut *thread_context;
let contacts = &mut contacts.weight;
// Get the colliders for the contact pair.
let Ok([collider1, collider2]) = self
.collider_query
.get_many([contacts.collider1, contacts.collider2])
else {
return;
};
// Check if the AABBs of the colliders still overlap and the contact pair is valid.
let overlap = collider1.aabb.intersects(&collider2.aabb);
// Also check if the collision layers are still compatible and the contact pair is valid.
// TODO: Ideally, we would have fine-grained change detection for `CollisionLayers`
// rather than checking it for every pair here.
if !overlap || !collider1.layers.interacts_with(*collider2.layers) {
// The AABBs no longer overlap. The contact pair should be removed.
contacts.flags.set(ContactPairFlags::DISJOINT_AABB, true);
status_change_bits.set(contact_index);
} else {
// The AABBs overlap. Compute contacts.
let body1_bundle = collider1
.body()
.and_then(|body| self.body_query.get(body).ok());
let body2_bundle = collider2
.body()
.and_then(|body| self.body_query.get(body).ok());
// The rigid body's friction, restitution, collision margin, and speculative margin
// will be used if the collider doesn't have them specified.
let (mut lin_vel1, rb_friction1, rb_collision_margin1, rb_speculative_margin1) =
body1_bundle
.as_ref()
.map(|(body, collision_margin, speculative_margin)| {
(
body.linear_velocity.0,
body.friction,
*collision_margin,
*speculative_margin,
)
})
.unwrap_or_default();
let (mut lin_vel2, rb_friction2, rb_collision_margin2, rb_speculative_margin2) =
body2_bundle
.as_ref()
.map(|(body, collision_margin, speculative_margin)| {
(
body.linear_velocity.0,
body.friction,
*collision_margin,
*speculative_margin,
)
})
.unwrap_or_default();
// Get combined friction and restitution coefficients of the colliders
// or the bodies they are attached to. Fall back to the global defaults.
let friction = collider1
.friction
.or(rb_friction1)
.copied()
.unwrap_or(self.default_friction.0)
.combine(
collider2
.friction
.or(rb_friction2)
.copied()
.unwrap_or(self.default_friction.0),
)
.dynamic_coefficient;
let restitution = collider1
.restitution
.copied()
.unwrap_or(self.default_restitution.0)
.combine(
collider2
.restitution
.copied()
.unwrap_or(self.default_restitution.0),
)
.coefficient;
// Use the collider's own collision margin if specified, and fall back to the body's
// collision margin.
//
// The collision margin adds artificial thickness to colliders for performance
// and stability. See the `CollisionMargin` documentation for more details.
let collision_margin1 = collider1
.collision_margin
.or(rb_collision_margin1)
.map_or(0.0, |margin| margin.0);
let collision_margin2 = collider2
.collision_margin
.or(rb_collision_margin2)
.map_or(0.0, |margin| margin.0);
let collision_margin_sum = collision_margin1 + collision_margin2;
// Use the collider's own speculative margin if specified, and fall back to the body's
// speculative margin.
//
// The speculative margin is used to predict contacts that might happen during the frame.
// This is used for speculative collision. See the CCD and `SpeculativeMargin` documentation
// for more details.
let speculative_margin1 = collider1
.speculative_margin
.map_or(rb_speculative_margin1.map(|margin| margin.0), |margin| {
Some(margin.0)
});
let speculative_margin2 = collider2
.speculative_margin
.map_or(rb_speculative_margin2.map(|margin| margin.0), |margin| {
Some(margin.0)
});
let relative_linear_velocity: Vector;
// Compute the effective speculative margin, clamping it based on velocities and the maximum bound.
let effective_speculative_margin = {
let speculative_margin1 =
speculative_margin1.unwrap_or(*self.default_speculative_margin);
let speculative_margin2 =
speculative_margin2.unwrap_or(*self.default_speculative_margin);
let inv_delta_secs = delta_secs.recip();
// Clamp velocities to the maximum speculative margins.
if speculative_margin1 < Scalar::MAX {
lin_vel1 =
lin_vel1.clamp_length_max(speculative_margin1 * inv_delta_secs);
}
if speculative_margin2 < Scalar::MAX {
lin_vel2 =
lin_vel2.clamp_length_max(speculative_margin2 * inv_delta_secs);
}
// Compute the effective margin based on how much the bodies
// are expected to move relative to each other.
relative_linear_velocity = lin_vel2 - lin_vel1;
delta_secs * relative_linear_velocity.length()
};
// The maximum distance at which contacts are detected.
// At least as large as the contact tolerance.
let max_contact_distance = effective_speculative_margin
.max(*self.contact_tolerance)
+ collision_margin_sum;
let position1 = collider1.current_position();
let position2 = collider2.current_position();
let was_touching = contacts.flags.contains(ContactPairFlags::TOUCHING);
// Save the old manifolds for warm starting.
let old_manifolds = contacts.manifolds.clone();
// TODO: It'd be good to persist the manifolds and let Parry match contacts.
// This isn't currently done because it requires using Parry's contact manifold type.
// Compute the contact manifolds using the effective speculative margin.
let context = ContactManifoldContext::new(
collider1.entity,
collider2.entity,
collider_context,
);
collider1.shape.contact_manifolds_with_context(
collider2.shape,
position1,
*collider1.rotation,
position2,
*collider2.rotation,
max_contact_distance,
&mut contacts.manifolds,
context,
);
// Set the initial surface properties.
// TODO: This could be done in `contact_manifolds` to avoid the extra iteration.
contacts.manifolds.iter_mut().for_each(|manifold| {
manifold.friction = friction;
manifold.restitution = restitution;
#[cfg(feature = "2d")]
{
manifold.tangent_speed = 0.0;
}
#[cfg(feature = "3d")]
{
manifold.tangent_velocity = Vector::ZERO;
}
});
// Check if the colliders are now touching.
let mut touching = !contacts.manifolds.is_empty();
if touching && contacts.flags.contains(ContactPairFlags::MODIFY_CONTACTS) {
par_commands.command_scope(|mut commands| {
touching = hooks.modify_contacts(contacts, &mut commands);
});
if !touching {
contacts.manifolds.clear();
}
}
contacts.flags.set(ContactPairFlags::TOUCHING, touching);
// TODO: This condition is pretty arbitrary, mainly to skip dense trimeshes.
// If we let Parry handle contact matching, this wouldn't be needed.
if contacts.manifolds.len() <= 4 && self.config.match_contacts {
// TODO: Cache this?
let distance_threshold = 0.1 * self.length_unit.0;
for manifold in contacts.manifolds.iter_mut() {
for previous_manifold in old_manifolds.iter() {
manifold
.match_contacts(&previous_manifold.points, distance_threshold);
}
}
}
// TODO: For unmatched contacts, apply any leftover impulses from the previous frame.
if touching && !was_touching {
// The colliders started touching.
contacts.flags.set(ContactPairFlags::STARTED_TOUCHING, true);
status_change_bits.set(contact_index);
} else if !touching && was_touching {
// The colliders stopped touching.
contacts.flags.set(ContactPairFlags::STOPPED_TOUCHING, true);
status_change_bits.set(contact_index);
}
// Now, we generate contact constraints for the contact pair.
let Some(((body1, _, _), (body2, _, _))) = body1_bundle.zip(body2_bundle)
else {
return;
};
let inactive1 = body1.rb.is_static() || body1.is_sleeping;
let inactive2 = body2.rb.is_static() || body2.is_sleeping;
// No collision response if both bodies are static or sleeping
// or if either of the colliders is a sensor collider.
if (inactive1 && inactive2) || contacts.is_sensor() {
return;
}
// When an active body collides with a sleeping body, wake up the sleeping body.
par_commands.command_scope(|mut commands| {
if body1.is_sleeping {
commands.queue(WakeUpBody(body1.entity));
} else if body2.is_sleeping {
commands.queue(WakeUpBody(body2.entity));
}
});
// TODO: How should we properly take the locked axes into account for the mass here?
let inverse_mass_sum = body1.mass().inverse() + body2.mass().inverse();
let i1 = body1.effective_global_angular_inertia();
let i2 = body2.effective_global_angular_inertia();
let contact_softness = if inactive1 || inactive2 {
self.contact_softness.non_dynamic
} else {
self.contact_softness.dynamic
};
// Generate a contact constraint for each contact manifold.
for (manifold_index, manifold) in contacts.manifolds.iter_mut().enumerate() {
let mut constraint = ContactConstraint {
body1: body1.entity,
body2: body2.entity,
collider1: collider1.entity,
collider2: collider2.entity,
friction: manifold.friction,
restitution: manifold.restitution,
#[cfg(feature = "2d")]
tangent_speed: manifold.tangent_speed,
#[cfg(feature = "3d")]
tangent_velocity: manifold.tangent_velocity,
normal: manifold.normal,
points: Vec::with_capacity(manifold.points.len()),
#[cfg(feature = "parallel")]
pair_index: contact_index,
manifold_index,
};
let tangents = constraint
.tangent_directions(body1.linear_velocity.0, body2.linear_velocity.0);
for mut contact in manifold.points.iter().copied() {
// Transform contact points from collider-space to body-space.
if let Some(transform) = collider1.transform.copied() {
contact.local_point1 = transform.rotation * contact.local_point1
+ transform.translation;
}
if let Some(transform) = collider2.transform.copied() {
contact.local_point2 = transform.rotation * contact.local_point2
+ transform.translation;
}
contact.penetration += collision_margin_sum;
let effective_distance = -contact.penetration;
let local_anchor1 = contact.local_point1 - body1.center_of_mass.0;
let local_anchor2 = contact.local_point2 - body2.center_of_mass.0;
// Store fixed world-space anchors.
// This improves rolling behavior for shapes like balls and capsules.
let r1 = *body1.rotation * local_anchor1;
let r2 = *body2.rotation * local_anchor2;
// Relative velocity at the contact point.
// body2.velocity_at_point(r2) - body1.velocity_at_point(r1)
#[cfg(feature = "2d")]
let relative_velocity = relative_linear_velocity
+ body2.angular_velocity.0 * r2.perp()
- body1.angular_velocity.0 * r1.perp();
#[cfg(feature = "3d")]
let relative_velocity = relative_linear_velocity
+ body2.angular_velocity.0.cross(r2)
- body1.angular_velocity.0.cross(r1);
// Keep the contact if (1) the separation distance is below the required threshold,
// or if (2) the bodies are expected to come into contact within the next frame.
let normal_speed = relative_velocity.dot(constraint.normal);
let keep_contact = effective_distance < effective_speculative_margin
|| {
let delta_distance = normal_speed * delta_secs;
effective_distance + delta_distance
< effective_speculative_margin
};
if !keep_contact {
continue;
}
let point = ContactConstraintPoint {
// TODO: Apply warm starting scale here instead of in `warm_start`?
normal_part: ContactNormalPart::generate(
inverse_mass_sum,
i1,
i2,
r1,
r2,
constraint.normal,
self.config.match_contacts.then_some(contact.normal_impulse),
contact_softness,
),
// There should only be a friction part if the coefficient of friction is non-negative.
tangent_part: (friction > 0.0).then_some(
ContactTangentPart::generate(
inverse_mass_sum,
i1,
i2,
r1,
r2,
tangents,
self.config
.match_contacts
.then_some(contact.tangent_impulse),
),
),
max_normal_impulse: 0.0,
local_anchor1,
local_anchor2,
anchor1: r1,
anchor2: r2,
normal_speed,
initial_separation: -contact.penetration
- (r2 - r1).dot(constraint.normal),
};
constraint.points.push(point);
}
if !constraint.points.is_empty() {
constraints.push(constraint);
}
}
};
}
);
#[cfg(feature = "parallel")]
{
// Combine the thread-local bit vectors serially using bit-wise OR,
// and drain the thread-local contact constraints into the global contact constraints.
self.thread_locals.iter_mut().for_each(|context| {
let mut context_mut = context.borrow_mut();
self.contact_status_bits
.or(&context_mut.contact_status_bits);
self.contact_constraints
.extend(context_mut.contact_constraints.drain(..));
});
// Sort the contact constraints by pair index to maintain determinism.
// NOTE: `sort_by_key` is faster than `sort_unstable_by_key` here,
// because the constraints within chunks are already sorted.
// TODO: We should figure out an approach that doesn't require sorting.
self.contact_constraints
.sort_by_key(|constraint| constraint.pair_index);
}
}
}