avian3d/data_structures/
graph.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
//! A stripped down version of petgraph's `UnGraph`.
//!
//! - Index types always use `u32`.
//! - Edge iteration order after serialization/deserialization is preserved.
//! - Fewer iterators and helpers, and a few new ones.

use core::cmp::max;
use core::ops::{Index, IndexMut};

use derive_more::derive::From;

/// A node identifier for a graph structure.
#[derive(Clone, Copy, Debug, Default, PartialEq, PartialOrd, Eq, Ord, Hash, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct NodeIndex(pub u32);

impl NodeIndex {
    /// A special index used to denote the final node,
    /// for example at the end of an adjacency list.
    ///
    /// Equivalent to `NodeIndex(u32::MAX)`.
    pub const END: NodeIndex = NodeIndex(u32::MAX);

    /// Returns the inner `u32` value as a `usize`.
    pub fn index(self) -> usize {
        self.0 as usize
    }

    /// Returns `true` if this is the special `END` index.
    pub fn is_end(self) -> bool {
        self == NodeIndex::END
    }
}

/// An edge identifier for a graph structure.
#[derive(Clone, Copy, Debug, Default, PartialEq, PartialOrd, Eq, Ord, Hash, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct EdgeIndex(pub u32);

impl EdgeIndex {
    /// A special index used to denote the abscence of an edge,
    /// for example at the end of an adjacency list.
    ///
    /// Equivalent to `EdgeIndex(u32::MAX)`.
    pub const END: EdgeIndex = EdgeIndex(u32::MAX);

    /// Returns the inner `u32` value as a `usize`.
    pub fn index(self) -> usize {
        self.0 as usize
    }

    /// Returns `true` if this is the special `END` index.
    pub fn is_end(self) -> bool {
        self == EdgeIndex::END
    }
}

/// The direction of a graph edge.
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd, Ord, Eq, Hash)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[repr(usize)]
pub enum EdgeDirection {
    /// An `Outgoing` edge is an outward edge *from* the current node.
    Outgoing = 0,
    /// An `Incoming` edge is an inbound edge *to* the current node.
    Incoming = 1,
}

impl EdgeDirection {
    /// The two possible directions for an edge.
    pub const ALL: [EdgeDirection; 2] = [EdgeDirection::Outgoing, EdgeDirection::Incoming];

    /// Returns the opposite direction.
    #[inline]
    fn opposite(self) -> EdgeDirection {
        match self {
            EdgeDirection::Outgoing => EdgeDirection::Incoming,
            EdgeDirection::Incoming => EdgeDirection::Outgoing,
        }
    }
}

/// The node type for a graph structure.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Node<N> {
    /// Associated node data.
    pub weight: N,
    /// Next edge in outgoing and incoming edge lists.
    next: [EdgeIndex; 2],
}

/// The edge type for a graph structure.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct Edge<E> {
    /// Associated edge data.
    pub weight: E,
    /// Next edge in outgoing and incoming edge lists.
    next: [EdgeIndex; 2],
    /// Start and End node index
    node: [NodeIndex; 2],
}

impl<E> Edge<E> {
    /// Return the source node index.
    pub fn source(&self) -> NodeIndex {
        self.node[0]
    }

    /// Return the target node index.
    pub fn target(&self) -> NodeIndex {
        self.node[1]
    }
}

/// A graph with undirected edges.
///
/// For example, an edge between *1* and *2* is equivalent to an edge between
/// *2* and *1*.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct UnGraph<N, E> {
    nodes: Vec<Node<N>>,
    edges: Vec<Edge<E>>,
}

impl<N, E> Default for UnGraph<N, E> {
    fn default() -> Self {
        Self {
            nodes: Vec::new(),
            edges: Vec::new(),
        }
    }
}

enum Pair<T> {
    Both(T, T),
    One(T),
    None,
}

/// Get mutable references at index `a` and `b`.
fn index_twice<T>(arr: &mut [T], a: usize, b: usize) -> Pair<&mut T> {
    if max(a, b) >= arr.len() {
        Pair::None
    } else if a == b {
        Pair::One(&mut arr[max(a, b)])
    } else {
        // safe because `a` and `b` are in bounds and distinct.
        unsafe {
            let ar = &mut *(arr.get_unchecked_mut(a) as *mut _);
            let br = &mut *(arr.get_unchecked_mut(b) as *mut _);
            Pair::Both(ar, br)
        }
    }
}

impl<N, E> UnGraph<N, E> {
    /// Creates a new [`UnGraph`] with estimated capacity.
    pub fn with_capacity(nodes: usize, edges: usize) -> Self {
        UnGraph {
            nodes: Vec::with_capacity(nodes),
            edges: Vec::with_capacity(edges),
        }
    }

    /// Returns the number of nodes in the graph.
    ///
    /// Computes in **O(1)** time.
    pub fn node_count(&self) -> usize {
        self.nodes.len()
    }

    /// Returns the number of edges in the graph.
    ///
    /// Computes in **O(1)** time.
    pub fn edge_count(&self) -> usize {
        self.edges.len()
    }

    /// Adds a node (also called vertex) with associated data `weight` to the graph.
    ///
    /// Computes in **O(1)** time.
    ///
    /// Returns the index of the new node.
    ///
    /// # Panics
    ///
    /// Panics if the graph is at the maximum number of nodes.
    pub fn add_node(&mut self, weight: N) -> NodeIndex {
        let node = Node {
            weight,
            next: [EdgeIndex::END, EdgeIndex::END],
        };
        assert!(self.nodes.len() != usize::MAX);
        let node_idx = NodeIndex(self.nodes.len() as u32);
        self.nodes.push(node);
        node_idx
    }

    /// Accesses the weight for node `a`.
    ///
    /// Also available with indexing syntax: `&graph[a]`.
    pub fn node_weight(&self, a: NodeIndex) -> Option<&N> {
        self.nodes.get(a.index()).map(|n| &n.weight)
    }

    /// Adds an edge from `a` to `b` to the graph, with its associated
    /// data `weight`.
    ///
    /// Returns the index of the new edge.
    ///
    /// Computes in **O(1)** time.
    ///
    /// **Note:** `UnGraph` allows adding parallel (“duplicate”) edges. If you want
    /// to avoid this, use [`.update_edge(a, b, weight)`](#method.update_edge) instead.
    ///
    /// # Panics
    ///
    /// Panics if any of the nodes don't exist or the graph is at the maximum number of edges.
    pub fn add_edge(&mut self, a: NodeIndex, b: NodeIndex, weight: E) -> EdgeIndex {
        assert!(self.edges.len() != usize::MAX);
        let edge_idx = EdgeIndex(self.edges.len() as u32);
        let mut edge = Edge {
            weight,
            node: [a, b],
            next: [EdgeIndex::END; 2],
        };
        match index_twice(&mut self.nodes, a.index(), b.index()) {
            Pair::None => panic!("`UnGraph::add_edge`: node indices out of bounds"),
            Pair::One(an) => {
                edge.next = an.next;
                an.next[0] = edge_idx;
                an.next[1] = edge_idx;
            }
            Pair::Both(an, bn) => {
                // `a` and `b` are different indices
                edge.next = [an.next[0], bn.next[1]];
                an.next[0] = edge_idx;
                bn.next[1] = edge_idx;
            }
        }
        self.edges.push(edge);
        edge_idx
    }

    /// Adds or updates an edge from `a` to `b`.
    /// If the edge already exists, its weight is updated.
    ///
    /// Returns the index of the affected edge.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of edges
    /// connected to `a` (and `b`, if the graph edges are undirected).
    ///
    /// # Panics
    ///
    /// Panics if any of the nodes doesn't exist.
    pub fn update_edge(&mut self, a: NodeIndex, b: NodeIndex, weight: E) -> EdgeIndex {
        if let Some(ix) = self.find_edge(a, b) {
            if let Some(ed) = self.edge_weight_mut(ix) {
                *ed = weight;
                return ix;
            }
        }
        self.add_edge(a, b, weight)
    }

    /// Accesses the weight for edge `e`.
    ///
    /// Also available with indexing syntax: `&graph[e]`.
    pub fn edge_weight(&self, e: EdgeIndex) -> Option<&E> {
        self.edges.get(e.index()).map(|e| &e.weight)
    }

    /// Accesses the weight for edge `e` mutably.
    ///
    /// Also available with indexing syntax: `&mut graph[e]`.
    pub fn edge_weight_mut(&mut self, e: EdgeIndex) -> Option<&mut E> {
        self.edges.get_mut(e.index()).map(|e| &mut e.weight)
    }

    /// Accesses the source and target nodes for `e`.
    pub fn edge_endpoints(&self, e: EdgeIndex) -> Option<(NodeIndex, NodeIndex)> {
        self.edges
            .get(e.index())
            .map(|ed| (ed.source(), ed.target()))
    }

    /// Removes `a` from the graph if it exists, calling `edge_callback` for each of its edges,
    /// and returns its weight. If it doesn't exist in the graph, returns `None`.
    ///
    /// Apart from `a`, this invalidates the last node index in the graph
    /// (that node will adopt the removed node index). Edge indices are
    /// invalidated as they would be following the removal of each edge
    /// with an endpoint in `a`.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of affected
    /// edges, including *n* calls to [`remove_edge`](Self::remove_edge),
    /// where *n* is the number of edges with an endpoint in `a`,
    /// and including the edges with an endpoint in the displaced node.
    pub fn remove_node_with<F>(&mut self, a: NodeIndex, mut edge_callback: F) -> Option<N>
    where
        F: FnMut(E),
    {
        self.nodes.get(a.index())?;
        for d in EdgeDirection::ALL {
            let k = d as usize;

            // Remove all edges from and to this node.
            loop {
                let next = self.nodes[a.index()].next[k];
                if next == EdgeIndex::END {
                    break;
                }
                let edge = self.remove_edge(next).expect("edge not found for removal");
                edge_callback(edge);
            }
        }

        // Use `swap_remove` -- only the swapped-in node is going to change
        // `NodeIndex`, so we only have to walk its edges and update them.

        let node = self.nodes.swap_remove(a.index());

        // Find the edge lists of the node that had to relocate.
        // It may be that no node had to relocate, then we are done already.
        let swap_edges = match self.nodes.get(a.index()) {
            None => return Some(node.weight),
            Some(ed) => ed.next,
        };

        // The swapped element's old index
        let old_index = NodeIndex(self.nodes.len() as u32);
        let new_index = a;

        // Adjust the starts of the out edges, and ends of the in edges.
        for d in EdgeDirection::ALL {
            let k = d as usize;
            let mut edges = EdgesWalkerMut {
                edges: &mut self.edges,
                next: swap_edges[k],
                dir: d,
            };
            while let Some(curedge) = edges.next_edge() {
                debug_assert!(curedge.node[k] == old_index);
                curedge.node[k] = new_index;
            }
        }
        Some(node.weight)
    }

    /// For edge `e` with endpoints `edge_node`, replaces links to it
    /// with links to `edge_next`.
    fn change_edge_links(
        &mut self,
        edge_node: [NodeIndex; 2],
        e: EdgeIndex,
        edge_next: [EdgeIndex; 2],
    ) {
        for d in EdgeDirection::ALL {
            let k = d as usize;
            let node = match self.nodes.get_mut(edge_node[k].index()) {
                Some(r) => r,
                None => {
                    debug_assert!(
                        false,
                        "Edge's endpoint dir={:?} index={:?} not found",
                        d, edge_node[k]
                    );
                    return;
                }
            };
            let fst = node.next[k];
            if fst == e {
                node.next[k] = edge_next[k];
            } else {
                let mut edges = EdgesWalkerMut {
                    edges: &mut self.edges,
                    next: fst,
                    dir: d,
                };
                while let Some(curedge) = edges.next_edge() {
                    if curedge.next[k] == e {
                        curedge.next[k] = edge_next[k];
                        // The edge can only be present once in the list.
                        break;
                    }
                }
            }
        }
    }

    /// Removes an edge and returns its edge weight, or `None` if it didn't exist.
    ///
    /// Apart from `e`, this invalidates the last edge index in the graph
    /// (that edge will adopt the removed edge index).
    ///
    /// Computes in **O(e')** time, where **e'** is the size of four particular edge lists, for
    /// the vertices of `e` and the vertices of another affected edge.
    pub fn remove_edge(&mut self, e: EdgeIndex) -> Option<E> {
        // Every edge is part of two lists, outgoing and incoming edges.
        // Remove it from both.
        let (edge_node, edge_next) = match self.edges.get(e.index()) {
            None => return None,
            Some(x) => (x.node, x.next),
        };

        // Remove the edge from its in and out lists by replacing it with
        // a link to the next in the list.
        self.change_edge_links(edge_node, e, edge_next);
        self.remove_edge_adjust_indices(e)
    }

    fn remove_edge_adjust_indices(&mut self, e: EdgeIndex) -> Option<E> {
        // `swap_remove` the edge -- only the removed edge
        // and the edge swapped into place are affected and need updating
        // indices.
        let edge = self.edges.swap_remove(e.index());
        let swap = match self.edges.get(e.index()) {
            // No element needed to be swapped.
            None => return Some(edge.weight),
            Some(ed) => ed.node,
        };
        let swapped_e = EdgeIndex(self.edges.len() as u32);

        // Update the edge lists by replacing links to the old index by references to the new
        // edge index.
        self.change_edge_links(swap, swapped_e, [e, e]);

        Some(edge.weight)
    }

    /// Returns an iterator of all nodes with an edge connected to `a`.
    ///
    /// Produces an empty iterator if the node doesn't exist.
    ///
    /// The iterator element type is `NodeIndex`.
    pub fn neighbors(&self, a: NodeIndex) -> Neighbors<E> {
        Neighbors {
            skip_start: a,
            edges: &self.edges,
            next: match self.nodes.get(a.index()) {
                None => [EdgeIndex::END, EdgeIndex::END],
                Some(n) => n.next,
            },
        }
    }

    /// Returns an iterator of all edges connected to `a`.
    ///
    /// Produces an empty iterator if the node doesn't exist.
    ///
    /// The iterator element type is `EdgeReference<E>`.
    pub fn edges(&self, a: NodeIndex) -> Edges<E> {
        Edges {
            skip_start: a,
            edges: &self.edges,
            direction: EdgeDirection::Outgoing,
            next: match self.nodes.get(a.index()) {
                None => [EdgeIndex::END, EdgeIndex::END],
                Some(n) => n.next,
            },
        }
    }

    /// Returns a mutable iterator of all edges connected to `a`.
    ///
    /// Produces an empty iterator if the node doesn't exist.
    ///
    /// The iterator element type is `EdgeReference<E>`.
    pub fn edges_mut(&mut self, a: NodeIndex) -> EdgesMut<N, E> {
        let incoming_edge = self.first_edge(a, EdgeDirection::Incoming);
        let outgoing_edge = self.first_edge(a, EdgeDirection::Outgoing);

        EdgesMut {
            graph: self,
            incoming_edge,
            outgoing_edge,
        }
    }

    /// Looks up if there is an edge from `a` to `b`.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of edges
    /// connected to `a` (and `b`, if the graph edges are undirected).
    pub fn contains_edge(&self, a: NodeIndex, b: NodeIndex) -> bool {
        self.find_edge(a, b).is_some()
    }

    /// Looks up an edge from `a` to `b`.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of edges
    /// connected to `a` (and `b`, if the graph edges are undirected).
    pub fn find_edge(&self, a: NodeIndex, b: NodeIndex) -> Option<EdgeIndex> {
        let node = self.nodes.get(a.index())?;
        for &d in &EdgeDirection::ALL {
            let k = d as usize;
            let mut edix = node.next[k];
            while let Some(edge) = self.edges.get(edix.index()) {
                if edge.node[1 - k] == b {
                    return Some(edix);
                }
                edix = edge.next[k];
            }
        }
        None
    }

    /// Returns an iterator over the node indices of the graph.
    pub fn node_indices(&self) -> impl DoubleEndedIterator<Item = NodeIndex> {
        (0..self.node_count()).map(|i| NodeIndex(i as u32))
    }

    /// Returns an iterator over the edge indices of the graph
    pub fn edge_indices(&self) -> impl DoubleEndedIterator<Item = EdgeIndex> {
        (0..self.edge_count()).map(|i| EdgeIndex(i as u32))
    }

    /// Returns an iterator yielding immutable access to edge weights for edges from or to `a`.
    pub fn edge_weights(&self, a: NodeIndex) -> EdgeWeights<E> {
        EdgeWeights {
            skip_start: a,
            edges: &self.edges,
            direction: EdgeDirection::Outgoing,
            next: match self.nodes.get(a.index()) {
                None => [EdgeIndex::END, EdgeIndex::END],
                Some(n) => n.next,
            },
        }
    }

    /// Returns an iterator yielding mutable access to edge weights for edges from or to `a`.
    pub fn edge_weights_mut(&mut self, a: NodeIndex) -> EdgeWeightsMut<N, E> {
        let incoming_edge = self.first_edge(a, EdgeDirection::Incoming);
        let outgoing_edge = self.first_edge(a, EdgeDirection::Outgoing);

        EdgeWeightsMut {
            graph: self,
            incoming_edge,
            outgoing_edge,
        }
    }

    /// Returns an iterator yielding immutable access to all edge weights.
    ///
    /// The order in which weights are yielded matches the order of their
    /// edge indices.
    pub fn all_edge_weights(&self) -> AllEdgeWeights<E> {
        AllEdgeWeights {
            edges: self.edges.iter(),
        }
    }

    /// Returns an iterator yielding mutable access to all edge weights.
    ///
    /// The order in which weights are yielded matches the order of their
    /// edge indices.
    pub fn all_edge_weights_mut(&mut self) -> AllEdgeWeightsMut<E> {
        AllEdgeWeightsMut {
            edges: self.edges.iter_mut(),
        }
    }

    /// Accesses the internal node array.
    pub fn raw_nodes(&self) -> &[Node<N>] {
        &self.nodes
    }

    /// Accesses the internal node array mutably.
    pub fn raw_nodes_mut(&mut self) -> &mut [Node<N>] {
        &mut self.nodes
    }

    /// Accesses the internal edge array.
    pub fn raw_edges(&self) -> &[Edge<E>] {
        &self.edges
    }

    /// Accesses the internal edge array mutably.
    pub fn raw_edges_mut(&mut self) -> &mut [Edge<E>] {
        &mut self.edges
    }

    /// Accessor for data structure internals: returns the first edge in the given direction.
    pub fn first_edge(&self, a: NodeIndex, dir: EdgeDirection) -> Option<EdgeIndex> {
        match self.nodes.get(a.index()) {
            None => None,
            Some(node) => {
                let edix = node.next[dir as usize];
                if edix == EdgeIndex::END {
                    None
                } else {
                    Some(edix)
                }
            }
        }
    }

    /// Accessor for data structure internals: returns the next edge for the given direction.
    pub fn next_edge(&self, e: EdgeIndex, dir: EdgeDirection) -> Option<EdgeIndex> {
        match self.edges.get(e.index()) {
            None => None,
            Some(node) => {
                let edix = node.next[dir as usize];
                if edix == EdgeIndex::END {
                    None
                } else {
                    Some(edix)
                }
            }
        }
    }

    /// Removes all nodes and edges.
    pub fn clear(&mut self) {
        self.nodes.clear();
        self.edges.clear();
    }

    /// Removes all edges.
    pub fn clear_edges(&mut self) {
        self.edges.clear();
        for node in &mut self.nodes {
            node.next = [EdgeIndex::END, EdgeIndex::END];
        }
    }

    /// Returns the current node capacity of the graph.
    pub fn nodes_capacity(&self) -> usize {
        self.nodes.capacity()
    }

    /// Returns the current edge capacity of the graph.
    pub fn edges_capacity(&self) -> usize {
        self.edges.capacity()
    }

    /// Reserves capacity for at least `additional` more nodes to be inserted in
    /// the graph. Graph may reserve more space to avoid frequent reallocations.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    pub fn reserve_nodes(&mut self, additional: usize) {
        self.nodes.reserve(additional);
    }

    /// Reserves capacity for at least `additional` more edges to be inserted in
    /// the graph. Graph may reserve more space to avoid frequent reallocations.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    pub fn reserve_edges(&mut self, additional: usize) {
        self.edges.reserve(additional);
    }

    /// Keep all nodes that return `true` from the `visit` closure,
    /// remove the others.
    ///
    /// `visit` is provided a proxy reference to the graph, so that
    /// the graph can be walked and associated data modified.
    ///
    /// The order nodes are visited is not specified.
    pub fn retain_nodes<F>(&mut self, mut visit: F)
    where
        F: FnMut(&Self, NodeIndex) -> bool,
    {
        for index in self.node_indices().rev() {
            if !visit(self, index) {
                let ret = self.remove_node_with(index, |_| ());
                debug_assert!(ret.is_some());
                let _ = ret;
            }
        }
    }

    /// Keep all edges that return `true` from the `visit` closure,
    /// remove the others.
    ///
    /// `visit` is provided a proxy reference to the graph, so that
    /// the graph can be walked and associated data modified.
    ///
    /// The order edges are visited is not specified.
    pub fn retain_edges<F>(&mut self, mut visit: F)
    where
        F: FnMut(&Self, EdgeIndex) -> bool,
    {
        for index in self.edge_indices().rev() {
            if !visit(self, index) {
                let ret = self.remove_edge(index);
                debug_assert!(ret.is_some());
                let _ = ret;
            }
        }
    }
}

/// An iterator over the neighbors of a node.
///
/// The iterator element type is `NodeIndex`.
#[derive(Debug)]
pub struct Neighbors<'a, E: 'a> {
    /// The starting node to skip over.
    skip_start: NodeIndex,

    /// The edges to iterate over.
    edges: &'a [Edge<E>],

    /// The next edge to visit.
    next: [EdgeIndex; 2],
}

impl<E> Iterator for Neighbors<'_, E> {
    type Item = NodeIndex;

    fn next(&mut self) -> Option<NodeIndex> {
        // First any outgoing edges.
        match self.edges.get(self.next[0].index()) {
            None => {}
            Some(edge) => {
                self.next[0] = edge.next[0];
                return Some(edge.node[1]);
            }
        }

        // Then incoming edges.
        // For an "undirected" iterator, make sure we don't double
        // count self-loops by skipping them in the incoming list.
        while let Some(edge) = self.edges.get(self.next[1].index()) {
            self.next[1] = edge.next[1];
            if edge.node[0] != self.skip_start {
                return Some(edge.node[0]);
            }
        }
        None
    }
}

impl<E> Clone for Neighbors<'_, E> {
    fn clone(&self) -> Self {
        Neighbors {
            skip_start: self.skip_start,
            edges: self.edges,
            next: self.next,
        }
    }
}

/// An iterator over edges from or to a node.
pub struct Edges<'a, E: 'a> {
    /// The starting node to skip over.
    skip_start: NodeIndex,

    /// The edges to iterate over.
    edges: &'a [Edge<E>],

    /// The next edge to visit.
    next: [EdgeIndex; 2],

    /// The direction of edges.
    direction: EdgeDirection,
}

impl<'a, E> Iterator for Edges<'a, E> {
    type Item = EdgeReference<'a, E>;

    fn next(&mut self) -> Option<Self::Item> {
        //      type        direction    |    iterate over    reverse
        // ------------------------------|------------------------------
        //    Directed      Outgoing     |      outgoing        no
        //    Directed      Incoming     |      incoming        no
        //   Undirected     Outgoing     |        both       incoming
        //   Undirected     Incoming     |        both       outgoing

        // For `iterate_over`, "both" is represented as `None`.
        // For `reverse`, "no" is represented as `None`.
        let (iterate_over, _reverse) = (None, Some(self.direction.opposite()));

        if iterate_over.unwrap_or(EdgeDirection::Outgoing) == EdgeDirection::Outgoing {
            let i = self.next[0].index();
            if let Some(Edge { weight, next, .. }) = self.edges.get(i) {
                self.next[0] = next[0];
                return Some(EdgeReference {
                    index: EdgeIndex(i as u32),
                    weight,
                });
            }
        }

        if iterate_over.unwrap_or(EdgeDirection::Incoming) == EdgeDirection::Incoming {
            while let Some(Edge { node, weight, next }) = self.edges.get(self.next[1].index()) {
                let edge_index = self.next[1];
                self.next[1] = next[1];

                // In any of the "both" situations, self-loops would be iterated over twice.
                // Skip them here.
                if iterate_over.is_none() && node[0] == self.skip_start {
                    continue;
                }

                return Some(EdgeReference {
                    index: edge_index,
                    weight,
                });
            }
        }

        None
    }
}

impl<E> Clone for Edges<'_, E> {
    fn clone(&self) -> Self {
        Edges {
            skip_start: self.skip_start,
            edges: self.edges,
            next: self.next,
            direction: self.direction,
        }
    }
}

/// An iterator over mutable references to all edges from or to a node.
pub struct EdgesMut<'a, N, E> {
    graph: &'a mut UnGraph<N, E>,
    incoming_edge: Option<EdgeIndex>,
    outgoing_edge: Option<EdgeIndex>,
}

impl<'a, N: Copy, E> Iterator for EdgesMut<'a, N, E> {
    type Item = EdgeMut<'a, E>;

    #[inline]
    fn next(&mut self) -> Option<EdgeMut<'a, E>> {
        if let Some(edge) = self.incoming_edge {
            self.incoming_edge = self.graph.next_edge(edge, EdgeDirection::Incoming);
            let weights = &mut self.graph[edge];
            return Some(EdgeMut {
                index: edge,
                weight: unsafe { core::mem::transmute::<&mut E, &'a mut E>(weights) },
            });
        }

        let edge = self.outgoing_edge?;
        self.outgoing_edge = self.graph.next_edge(edge, EdgeDirection::Outgoing);
        let weights = &mut self.graph[edge];
        Some(EdgeMut {
            index: edge,
            weight: unsafe { core::mem::transmute::<&mut E, &'a mut E>(weights) },
        })
    }
}

// TODO: Reduce duplication between `Edges` variants.
/// An iterator over edge weights for edges from or to a node.
pub struct EdgeWeights<'a, E: 'a> {
    /// The starting node to skip over.
    skip_start: NodeIndex,

    /// The edges to iterate over.
    edges: &'a [Edge<E>],

    /// The next edge to visit.
    next: [EdgeIndex; 2],

    /// The direction of edges.
    direction: EdgeDirection,
}

impl<'a, E> Iterator for EdgeWeights<'a, E> {
    type Item = &'a E;

    fn next(&mut self) -> Option<Self::Item> {
        //      type        direction    |    iterate over    reverse
        // ------------------------------|------------------------------
        //    Directed      Outgoing     |      outgoing        no
        //    Directed      Incoming     |      incoming        no
        //   Undirected     Outgoing     |        both       incoming
        //   Undirected     Incoming     |        both       outgoing

        // For `iterate_over`, "both" is represented as `None`.
        // For `reverse`, "no" is represented as `None`.
        let (iterate_over, _reverse) = (None, Some(self.direction.opposite()));

        if iterate_over.unwrap_or(EdgeDirection::Outgoing) == EdgeDirection::Outgoing {
            let i = self.next[0].index();
            if let Some(Edge { weight, next, .. }) = self.edges.get(i) {
                self.next[0] = next[0];
                return Some(weight);
            }
        }

        if iterate_over.unwrap_or(EdgeDirection::Incoming) == EdgeDirection::Incoming {
            while let Some(Edge { node, weight, next }) = self.edges.get(self.next[1].index()) {
                self.next[1] = next[1];

                // In any of the "both" situations, self-loops would be iterated over twice.
                // Skip them here.
                if iterate_over.is_none() && node[0] == self.skip_start {
                    continue;
                }

                return Some(weight);
            }
        }

        None
    }
}

impl<E> Clone for EdgeWeights<'_, E> {
    fn clone(&self) -> Self {
        EdgeWeights {
            skip_start: self.skip_start,
            edges: self.edges,
            next: self.next,
            direction: self.direction,
        }
    }
}

/// An iterator over mutable references to all edge weights from or to a node.
pub struct EdgeWeightsMut<'a, N, E> {
    /// A mutable reference to the graph.
    pub graph: &'a mut UnGraph<N, E>,

    /// The next incoming edge to visit.
    pub incoming_edge: Option<EdgeIndex>,

    /// The next outgoing edge to visit.
    pub outgoing_edge: Option<EdgeIndex>,
}

impl<'a, N: Copy, E> Iterator for EdgeWeightsMut<'a, N, E> {
    type Item = &'a mut E;

    #[inline]
    fn next(&mut self) -> Option<&'a mut E> {
        if let Some(edge) = self.incoming_edge {
            self.incoming_edge = self.graph.next_edge(edge, EdgeDirection::Incoming);
            let weight = &mut self.graph[edge];
            return Some(unsafe { core::mem::transmute::<&mut E, &'a mut E>(weight) });
        }

        let edge = self.outgoing_edge?;
        self.outgoing_edge = self.graph.next_edge(edge, EdgeDirection::Outgoing);
        let weight = &mut self.graph[edge];
        Some(unsafe { core::mem::transmute::<&mut E, &'a mut E>(weight) })
    }
}

/// An iterator yielding immutable access to all edge weights.
pub struct AllEdgeWeights<'a, E: 'a> {
    edges: core::slice::Iter<'a, Edge<E>>,
}

impl<'a, E> Iterator for AllEdgeWeights<'a, E> {
    type Item = &'a E;

    fn next(&mut self) -> Option<&'a E> {
        self.edges.next().map(|edge| &edge.weight)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.edges.size_hint()
    }
}

/// An iterator yielding mutable access to all edge weights.
#[derive(Debug)]
pub struct AllEdgeWeightsMut<'a, E: 'a> {
    edges: core::slice::IterMut<'a, Edge<E>>,
}

impl<'a, E> Iterator for AllEdgeWeightsMut<'a, E> {
    type Item = &'a mut E;

    fn next(&mut self) -> Option<&'a mut E> {
        self.edges.next().map(|edge| &mut edge.weight)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.edges.size_hint()
    }
}

struct EdgesWalkerMut<'a, E: 'a> {
    edges: &'a mut [Edge<E>],
    next: EdgeIndex,
    dir: EdgeDirection,
}

impl<E> EdgesWalkerMut<'_, E> {
    fn next_edge(&mut self) -> Option<&mut Edge<E>> {
        self.next().map(|t| t.1)
    }

    fn next(&mut self) -> Option<(EdgeIndex, &mut Edge<E>)> {
        let this_index = self.next;
        let k = self.dir as usize;
        match self.edges.get_mut(self.next.index()) {
            None => None,
            Some(edge) => {
                self.next = edge.next[k];
                Some((this_index, edge))
            }
        }
    }
}

/// Indexes the `UnGraph` by `NodeIndex` to access node weights.
///
/// # Panics
///
/// Panics if the node doesn't exist.
impl<N, E> Index<NodeIndex> for UnGraph<N, E> {
    type Output = N;
    fn index(&self, index: NodeIndex) -> &N {
        &self.nodes[index.index()].weight
    }
}

/// Indexes the `UnGraph` by `NodeIndex` to access node weights.
///
/// # Panics
///
/// Panics if the node doesn't exist.
impl<N, E> IndexMut<NodeIndex> for UnGraph<N, E> {
    fn index_mut(&mut self, index: NodeIndex) -> &mut N {
        &mut self.nodes[index.index()].weight
    }
}

/// Indexes the `UnGraph` by `EdgeIndex` to access edge weights.
///
/// # Panics
///
/// Panics if the edge doesn't exist.
impl<N, E> Index<EdgeIndex> for UnGraph<N, E> {
    type Output = E;
    fn index(&self, index: EdgeIndex) -> &E {
        &self.edges[index.index()].weight
    }
}

/// Indexes the `UnGraph` by `EdgeIndex` to access edge weights.
///
/// # Panics
///
/// Panics if the edge doesn't exist.
impl<N, E> IndexMut<EdgeIndex> for UnGraph<N, E> {
    fn index_mut(&mut self, index: EdgeIndex) -> &mut E {
        &mut self.edges[index.index()].weight
    }
}

/// A reference to a graph edge.
#[derive(Debug)]
pub struct EdgeReference<'a, E: 'a> {
    index: EdgeIndex,
    weight: &'a E,
}

impl<'a, E: 'a> EdgeReference<'a, E> {
    /// Returns the index of the edge.
    #[inline]
    pub fn index(&self) -> EdgeIndex {
        self.index
    }

    /// Returns the weight of the edge.
    #[inline]
    pub fn weight(&self) -> &'a E {
        self.weight
    }
}

impl<E> Clone for EdgeReference<'_, E> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<E> Copy for EdgeReference<'_, E> {}

impl<E> PartialEq for EdgeReference<'_, E>
where
    E: PartialEq,
{
    fn eq(&self, rhs: &Self) -> bool {
        self.index == rhs.index && self.weight == rhs.weight
    }
}

/// A mutable reference to a graph edge.
#[derive(Debug)]
pub struct EdgeMut<'a, E: 'a> {
    index: EdgeIndex,
    weight: &'a mut E,
}

impl<E> EdgeMut<'_, E> {
    /// Returns the index of the edge.
    #[inline]
    pub fn index(&self) -> EdgeIndex {
        self.index
    }

    /// Returns the weight of the edge.
    #[inline]
    pub fn weight(&self) -> &E {
        self.weight
    }

    /// Returns the weight of the edge mutably.
    #[inline]
    pub fn weight_mut(&mut self) -> &mut E {
        self.weight
    }
}

impl<E> PartialEq for EdgeMut<'_, E>
where
    E: PartialEq,
{
    fn eq(&self, rhs: &Self) -> bool {
        self.index == rhs.index && self.weight == rhs.weight
    }
}