avian3d/data_structures/sparse_secondary_map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
//! A map for associating data with previously stored entities in a generational arena.
//!
//! This is an adaptation of [`slotmap::SparseSecondaryMap`], tailored for Avian.
//! Some modifications include:
//!
//! - The key is always an [`Entity`] instead of a generic key type.
//! - Much more minimalistic. No entry API or iterators.
//! - `no_std` compatible.
//!
//! [`slotmap::SparseSecondaryMap`]: https://docs.rs/slotmap/1.0.7/slotmap/struct.SparseSecondaryMap.html
use alloc::collections::TryReserveError;
use bevy::platform::hash::RandomState;
use core::mem::MaybeUninit;
use std::collections::hash_map::{self, HashMap};
use std::hash;
use bevy::ecs::entity::Entity;
#[derive(Debug, Clone)]
struct Slot<T> {
generation: u32,
value: T,
}
/// Sparse secondary map for associating data with previously stored entities
/// in a generational arena.
#[derive(Debug, Clone)]
pub struct SparseSecondaryEntityMap<V, S: hash::BuildHasher = RandomState> {
slots: HashMap<u32, Slot<V>, S>,
}
impl<V> SparseSecondaryEntityMap<V, hash_map::RandomState> {
/// Constructs a new, empty [`SparseSecondaryEntityMap`].
#[inline]
pub fn new() -> Self {
Self::with_capacity(0)
}
/// Creates an empty [`SparseSecondaryEntityMap`] with the given capacity of slots.
///
/// The secondary map will not reallocate until it holds at least `capacity`
/// slots.
#[inline]
pub fn with_capacity(capacity: usize) -> Self {
Self {
slots: HashMap::with_capacity(capacity),
}
}
}
/// Returns if a is an older generation than b, taking into account wrapping of
/// generations.
fn is_older_generation(a: u32, b: u32) -> bool {
let diff = a.wrapping_sub(b);
diff >= (1 << 31)
}
impl<V, S: hash::BuildHasher> SparseSecondaryEntityMap<V, S> {
/// Creates an empty [`SparseSecondaryEntityMap`] which will use the given hash
/// builder to hash keys.
///
/// The secondary map will not reallocate until it holds at least `capacity`
/// slots.
#[inline]
pub fn with_hasher(hash_builder: S) -> Self {
Self {
slots: HashMap::with_hasher(hash_builder),
}
}
/// Creates an empty [`SparseSecondaryEntityMap`] with the given capacity of slots,
/// using `hash_builder` to hash the keys.
///
/// The secondary map will not reallocate until it holds at least `capacity`
/// slots.
#[inline]
pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self {
Self {
slots: HashMap::with_capacity_and_hasher(capacity, hash_builder),
}
}
/// Returns the number of elements in the secondary map.
#[inline]
pub fn len(&self) -> usize {
self.slots.len()
}
/// Returns if the secondary map is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.slots.is_empty()
}
/// Returns the number of elements the [`SparseSecondaryEntityMap`] can hold without
/// reallocating.
#[inline]
pub fn capacity(&self) -> usize {
self.slots.capacity()
}
/// Reserves capacity for at least `additional` more slots in the
/// [`SparseSecondaryEntityMap`]. The collection may reserve more space to avoid
/// frequent reallocations.
///
/// # Panics
///
/// Panics if the new allocation size overflows [`usize`].
#[inline]
pub fn reserve(&mut self, additional: usize) {
self.slots.reserve(additional);
}
/// Tries to reserve capacity for at least `additional` more slots in the
/// [`SparseSecondaryEntityMap`]. The collection may reserve more space to avoid
/// frequent reallocations.
#[inline]
pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.slots.try_reserve(additional)
}
/// Returns `true` if the secondary map contains the given `entity`.
#[inline]
pub fn contains(&self, entity: Entity) -> bool {
self.slots
.get(&entity.index())
.is_some_and(|slot| slot.generation == entity.generation())
}
/// Inserts a value into the secondary map at the given `entity`.
///
/// Returns [`None`] if this entity was not present in the map,
/// and the old value otherwise.
#[inline]
pub fn insert(&mut self, entity: Entity, value: V) -> Option<V> {
if entity == Entity::PLACEHOLDER {
return None;
}
let (index, generation) = (entity.index(), entity.generation());
if let Some(slot) = self.slots.get_mut(&index) {
if slot.generation == generation {
return Some(core::mem::replace(&mut slot.value, value));
}
// Don't replace existing newer values.
if is_older_generation(generation, slot.generation) {
return None;
}
*slot = Slot { generation, value };
return None;
}
self.slots.insert(index, Slot { generation, value });
None
}
/// Removes a entity from the secondary map, returning the value at the entity if
/// the entity was not previously removed.
#[inline]
pub fn remove(&mut self, entity: Entity) -> Option<V> {
if let hash_map::Entry::Occupied(entry) = self.slots.entry(entity.index()) {
if entry.get().generation == entity.generation() {
return Some(entry.remove_entry().1.value);
}
}
None
}
/// Clears the secondary map. Keeps the allocated memory for reuse.
#[inline]
pub fn clear(&mut self) {
self.slots.clear();
}
/// Returns a reference to the value corresponding to the entity.
#[inline]
pub fn get(&self, entity: Entity) -> Option<&V> {
self.slots
.get(&entity.index())
.filter(|slot| slot.generation == entity.generation())
.map(|slot| &slot.value)
}
/// Returns a reference to the value corresponding to the entity without
/// version or bounds checking.
///
/// # Safety
///
/// This should only be used if `contains(entity)` is true. Otherwise it is
/// potentially unsafe.
#[inline]
pub unsafe fn get_unchecked(&self, entity: Entity) -> &V {
debug_assert!(self.contains(entity));
self.get(entity).unwrap_unchecked()
}
/// Returns a mutable reference to the value corresponding to the entity.
#[inline]
pub fn get_mut(&mut self, entity: Entity) -> Option<&mut V> {
self.slots
.get_mut(&entity.index())
.filter(|slot| slot.generation == entity.generation())
.map(|slot| &mut slot.value)
}
/// Returns a mutable reference to the value corresponding to the entity
/// without version or bounds checking.
///
/// # Safety
///
/// This should only be used if `contains(entity)` is true. Otherwise it is
/// potentially unsafe.
#[inline]
pub unsafe fn get_unchecked_mut(&mut self, entity: Entity) -> &mut V {
debug_assert!(self.contains(entity));
self.get_mut(entity).unwrap_unchecked()
}
/// Returns the value corresponding to the entity if it exists, otherwise inserts
/// the value returned by `f` and returns it.
#[inline]
pub fn get_or_insert_with<F>(&mut self, entity: Entity, f: F) -> V
where
F: FnOnce() -> V,
V: Clone + Copy,
{
if let Some(slot) = self
.slots
.get(&entity.index())
.filter(|s| s.generation == entity.generation())
{
slot.value
} else {
let value = f();
self.insert(entity, value);
value
}
}
/// Returns mutable references to the values corresponding to the given
/// keys. All keys must be valid and disjoint, otherwise `None` is returned.
#[inline]
pub fn get_disjoint_mut<const N: usize>(
&mut self,
entities: [Entity; N],
) -> Option<[&mut V; N]> {
// Create an uninitialized array of `MaybeUninit`. The `assume_init` is
// safe because the type we are claiming to have initialized here is a
// bunch of `MaybeUninit`s, which do not require initialization.
let mut ptrs: [MaybeUninit<*mut V>; N] = unsafe { MaybeUninit::uninit().assume_init() };
let mut i = 0;
while i < N {
let entity = entities[i];
match self.slots.get_mut(&entity.index()) {
Some(Slot { generation, value }) if *generation == entity.generation() => {
// This entity is valid, and the slot is occupied. Temporarily
// make the generation even so duplicate keys would show up as
// invalid, since keys always have an odd generation. This
// gives us a linear time disjointness check.
ptrs[i] = MaybeUninit::new(&mut *value);
*generation ^= 1;
}
_ => break,
}
i += 1;
}
// Undo temporary even versions.
for entity in &entities[0..i] {
match self.slots.get_mut(&entity.index()) {
Some(Slot { generation, .. }) => {
*generation ^= 1;
}
_ => unsafe { core::hint::unreachable_unchecked() },
}
}
if i == N {
// All were valid and disjoint.
Some(unsafe { core::mem::transmute_copy::<_, [&mut V; N]>(&ptrs) })
} else {
None
}
}
/// Returns mutable references to the values corresponding to the given
/// keys. All keys must be valid and disjoint.
///
/// # Safety
///
/// This should only be used if `contains(entity)` is true for every given
/// entity and no two keys are equal. Otherwise it is potentially unsafe.
#[inline]
pub unsafe fn get_disjoint_unchecked_mut<const N: usize>(
&mut self,
entities: [Entity; N],
) -> [&mut V; N] {
// Safe, see get_disjoint_mut.
let mut ptrs: [MaybeUninit<*mut V>; N] = MaybeUninit::uninit().assume_init();
for i in 0..N {
ptrs[i] = MaybeUninit::new(self.get_unchecked_mut(entities[i]));
}
core::mem::transmute_copy::<_, [&mut V; N]>(&ptrs)
}
}
impl<V, S> Default for SparseSecondaryEntityMap<V, S>
where
S: hash::BuildHasher + Default,
{
fn default() -> Self {
Self::with_hasher(Default::default())
}
}