avian3d/dynamics/rigid_body/
locked_axes.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
use bevy::prelude::*;
use derive_more::From;

use crate::prelude::*;

/// A component that specifies which translational and rotational axes of a [rigid body](RigidBody) are locked.
///
/// The axes are represented using a total of six bits, one for each axis. The easiest way to lock or unlock
/// specific axes is to use methods like [`lock_translation_x`](Self::lock_translation_x), but you can also
/// use bits directly with the [`from_bits`](Self::from_bits) and [`to_bits`](Self::to_bits) methods.
///
/// # Example
///
/// ```
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
/// use bevy::prelude::*;
///
/// fn spawn(mut commands: Commands) {
///     commands.spawn((
///         RigidBody::Dynamic,
///         Collider::capsule(0.5, 1.0),
#[cfg_attr(feature = "2d", doc = "        LockedAxes::ROTATION_LOCKED,")]
#[cfg_attr(feature = "3d", doc = "        LockedAxes::new().lock_rotation_z(),")]
///     ));
/// }
/// ```
#[derive(Component, Reflect, Clone, Copy, Debug, Default, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default)]
pub struct LockedAxes(u8);

impl LockedAxes {
    /// All translational axes are locked, but all rotational axes are unlocked.
    pub const TRANSLATION_LOCKED: Self = Self(0b111_000);
    /// All rotational axes are locked, but all translational axes are unlocked.
    pub const ROTATION_LOCKED: Self = Self(0b000_111);
    /// All translational and rotational axes are locked.
    pub const ALL_LOCKED: Self = Self(0b111_111);

    /// Creates a new [`LockedAxes`] configuration with all axes unlocked by default.
    pub const fn new() -> Self {
        Self(0)
    }

    /// Creates a new [`LockedAxes`] configuration using bits.
    ///
    /// The first three bits correspond to translational axes, while the last three bits correspond to rotational
    /// axes. For example, `0b100_010` would lock translation along the `X` axis and rotation around the `Y` axis.
    pub const fn from_bits(bits: u8) -> Self {
        Self(bits)
    }

    /// Returns the locked axes as bits.
    ///
    /// The first three bits correspond to translational axes, while the last three bits correspond to rotational
    /// axes. For example, `0b100_010` would mean that translation along the `X` axis and rotation around the `Y` axis
    /// are locked.
    pub const fn to_bits(&self) -> u8 {
        self.0
    }

    /// Locks translation along the `X` axis.
    #[must_use]
    pub const fn lock_translation_x(mut self) -> Self {
        self.0 |= 0b100_000;
        self
    }

    /// Locks translation along the `Y` axis.
    #[must_use]
    pub const fn lock_translation_y(mut self) -> Self {
        self.0 |= 0b010_000;
        self
    }

    /// Locks translation along the `Z` axis.
    #[cfg(feature = "3d")]
    #[must_use]
    pub const fn lock_translation_z(mut self) -> Self {
        self.0 |= 0b001_000;
        self
    }

    /// Locks rotation around the `X` axis.
    #[cfg(feature = "3d")]
    pub const fn lock_rotation_x(mut self) -> Self {
        self.0 |= 0b000_100;
        self
    }

    /// Locks rotation around the `Y` axis.
    #[cfg(feature = "3d")]
    #[must_use]
    pub const fn lock_rotation_y(mut self) -> Self {
        self.0 |= 0b000_010;
        self
    }

    /// Locks rotation around the `Z` axis.
    #[cfg(feature = "3d")]
    #[must_use]
    pub const fn lock_rotation_z(mut self) -> Self {
        self.0 |= 0b000_001;
        self
    }

    /// Locks all rotation.
    #[cfg(feature = "2d")]
    #[must_use]
    pub const fn lock_rotation(mut self) -> Self {
        self.0 |= 0b000_001;
        self
    }

    /// Unlocks translation along the `X` axis.
    #[must_use]
    pub const fn unlock_translation_x(mut self) -> Self {
        self.0 &= !0b100_000;
        self
    }

    /// Unlocks translation along the `Y` axis.
    #[must_use]
    pub const fn unlock_translation_y(mut self) -> Self {
        self.0 &= !0b010_000;
        self
    }

    /// Unlocks translation along the `Z` axis.
    #[cfg(feature = "3d")]
    #[must_use]
    pub const fn unlock_translation_z(mut self) -> Self {
        self.0 &= !0b001_000;
        self
    }

    /// Unlocks rotation around the `X` axis.
    #[cfg(feature = "3d")]
    #[must_use]
    pub const fn unlock_rotation_x(mut self) -> Self {
        self.0 &= !0b000_100;
        self
    }

    /// Unlocks rotation around the `Y` axis.
    #[cfg(feature = "3d")]
    #[must_use]
    pub const fn unlock_rotation_y(mut self) -> Self {
        self.0 &= !0b000_010;
        self
    }

    /// Unlocks rotation around the `Z` axis.
    #[cfg(feature = "3d")]
    #[must_use]
    pub const fn unlock_rotation_z(mut self) -> Self {
        self.0 &= !0b000_001;
        self
    }

    /// Unlocks all rotation.
    #[cfg(feature = "2d")]
    #[must_use]
    pub const fn unlock_rotation(mut self) -> Self {
        self.0 &= !0b000_001;
        self
    }

    /// Returns true if translation is locked along the `X` axis.
    pub const fn is_translation_x_locked(&self) -> bool {
        (self.0 & 0b100_000) != 0
    }

    /// Returns true if translation is locked along the `X` axis.
    pub const fn is_translation_y_locked(&self) -> bool {
        (self.0 & 0b010_000) != 0
    }

    /// Returns true if translation is locked along the `X` axis.
    #[cfg(feature = "3d")]
    pub const fn is_translation_z_locked(&self) -> bool {
        (self.0 & 0b001_000) != 0
    }

    /// Returns true if rotation is locked around the `X` axis.
    #[cfg(feature = "3d")]
    pub const fn is_rotation_x_locked(&self) -> bool {
        (self.0 & 0b000_100) != 0
    }

    /// Returns true if rotation is locked around the `Y` axis.
    #[cfg(feature = "3d")]
    pub const fn is_rotation_y_locked(&self) -> bool {
        (self.0 & 0b000_010) != 0
    }

    /// Returns true if rotation is locked around the `Z` axis.
    #[cfg(feature = "3d")]
    pub const fn is_rotation_z_locked(&self) -> bool {
        (self.0 & 0b000_001) != 0
    }

    /// Returns true if all rotation is locked.
    #[cfg(feature = "2d")]
    pub const fn is_rotation_locked(&self) -> bool {
        (self.0 & 0b000_001) != 0
    }

    /// Sets translational axes of the given vector to zero based on the [`LockedAxes`] configuration.
    pub(crate) fn apply_to_vec(&self, mut vector: Vector) -> Vector {
        if self.is_translation_x_locked() {
            vector.x = 0.0;
        }
        if self.is_translation_y_locked() {
            vector.y = 0.0;
        }
        #[cfg(feature = "3d")]
        if self.is_translation_z_locked() {
            vector.z = 0.0;
        }
        vector
    }

    /// Sets the given angular inertia to zero if rotational axes are locked.
    #[cfg(feature = "2d")]
    pub(crate) fn apply_to_angular_inertia(
        &self,
        angular_inertia: impl Into<ComputedAngularInertia>,
    ) -> ComputedAngularInertia {
        let mut angular_inertia = angular_inertia.into();

        if self.is_rotation_locked() {
            *angular_inertia.inverse_mut() = 0.0;
        }

        angular_inertia
    }

    /// Sets axes of the given angular inertia to zero based on the [`LockedAxes`] configuration.
    #[cfg(feature = "3d")]
    pub(crate) fn apply_to_angular_inertia(
        &self,
        angular_inertia: impl Into<ComputedAngularInertia>,
    ) -> ComputedAngularInertia {
        let mut angular_inertia = angular_inertia.into();

        if self.is_rotation_x_locked() {
            angular_inertia.inverse_mut().x_axis = Vector::ZERO;
        }
        if self.is_rotation_y_locked() {
            angular_inertia.inverse_mut().y_axis = Vector::ZERO;
        }
        if self.is_rotation_z_locked() {
            angular_inertia.inverse_mut().z_axis = Vector::ZERO;
        }

        angular_inertia
    }

    /// Sets the given angular velocity to zero if rotational axes are locked.
    #[cfg(feature = "2d")]
    pub(crate) fn apply_to_angular_velocity(&self, mut angular_velocity: Scalar) -> Scalar {
        if self.is_rotation_locked() {
            angular_velocity = 0.0;
        }
        angular_velocity
    }

    /// Sets axes of the given angular velocity to zero based on the [`LockedAxes`] configuration.
    #[cfg(feature = "3d")]
    pub(crate) fn apply_to_angular_velocity(&self, mut angular_velocity: Vector) -> Vector {
        if self.is_rotation_x_locked() {
            angular_velocity.x = 0.0;
        }
        if self.is_rotation_y_locked() {
            angular_velocity.y = 0.0;
        }
        if self.is_rotation_z_locked() {
            angular_velocity.z = 0.0;
        }
        angular_velocity
    }
}