avian3d/dynamics/rigid_body/mass_properties/system_param.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
use crate::prelude::*;
use bevy::{
ecs::system::{
lifetimeless::{Read, Write},
SystemParam,
},
prelude::*,
};
/// A [`SystemParam`] that provides helper methods for computing and updating [mass properties].
///
/// [mass properties]: crate::dynamics::rigid_body::mass_properties
#[derive(SystemParam)]
pub struct MassPropertyHelper<'w, 's> {
query: Query<
'w,
's,
(
Option<Read<Mass>>,
Option<Read<AngularInertia>>,
Option<Read<CenterOfMass>>,
Option<Read<ColliderMassProperties>>,
Option<Read<ColliderTransform>>,
Has<Sensor>,
),
Or<(
With<Mass>,
With<AngularInertia>,
With<CenterOfMass>,
(
With<ColliderMassProperties>,
With<ColliderTransform>,
Without<Sensor>,
),
)>,
>,
computed_mass_properties_query: Query<
'w,
's,
(
Write<ComputedMass>,
Write<ComputedAngularInertia>,
Write<ComputedCenterOfMass>,
Option<Read<Mass>>,
Option<Read<AngularInertia>>,
Option<Read<CenterOfMass>>,
Has<NoAutoMass>,
Has<NoAutoAngularInertia>,
Has<NoAutoCenterOfMass>,
),
>,
children: Query<'w, 's, Read<Children>>,
}
impl MassPropertyHelper<'_, '_> {
/// Updates the [`ComputedMass`], [`ComputedAngularInertia`], and [`ComputedCenterOfMass`] of the given entity.
///
/// This takes into account the mass properties of descendants, unless the given entity has the [`NoAutoMass`],
/// [`NoAutoAngularInertia`], or [`NoAutoCenterOfMass`] marker components.
pub fn update_mass_properties(&mut self, entity: Entity) {
// Compute the total mass properties of the entity and its descendants.
let mut mass_props = self.total_mass_properties(entity);
let Ok((
mut computed_mass,
mut computed_inertia,
mut computed_com,
mass,
angular_inertia,
center_of_mass,
no_auto_mass,
no_auto_inertia,
no_auto_com,
)) = self.computed_mass_properties_query.get_mut(entity)
else {
return;
};
// If automatic computation of mass properties is disabled, set them to the local `Mass`, `AngularInertia`, and `CenterOfMass`.
// Otherwise, use the computed total mass properties.
if no_auto_mass {
if let Some(mass) = mass {
mass_props.set_mass(mass.0, !no_auto_inertia);
computed_mass.set(mass_props.mass as Scalar);
} else if !no_auto_inertia {
// Make sure the angular inertia is scaled to match the existing computed mass.
#[allow(clippy::unnecessary_cast)]
mass_props.set_mass(computed_mass.value() as f32, true);
}
} else {
computed_mass.set(mass_props.mass as Scalar);
}
if no_auto_inertia {
if let Some(angular_inertia) = angular_inertia {
#[cfg(feature = "2d")]
{
mass_props.angular_inertia = angular_inertia.0;
computed_inertia.set(mass_props.angular_inertia as Scalar);
}
#[cfg(feature = "3d")]
{
mass_props.principal_angular_inertia = angular_inertia.principal;
mass_props.local_inertial_frame = angular_inertia.local_frame;
computed_inertia.set(
mass_props
.angular_inertia_tensor()
.as_mat3()
.adjust_precision(),
);
}
}
} else {
#[cfg(feature = "2d")]
{
computed_inertia.set(mass_props.angular_inertia as Scalar);
}
#[cfg(feature = "3d")]
{
computed_inertia.set(
mass_props
.angular_inertia_tensor()
.as_mat3()
.adjust_precision(),
);
}
}
if no_auto_com {
if let Some(center_of_mass) = center_of_mass {
mass_props.center_of_mass = center_of_mass.0;
computed_com.0 = mass_props.center_of_mass.adjust_precision();
}
} else {
computed_com.0 = mass_props.center_of_mass.adjust_precision();
}
}
/// Computes the total mass properties of the given entity,
/// taking into account the mass properties of descendants.
///
/// This ignores the [`NoAutoMass`], [`NoAutoAngularInertia`], and [`NoAutoCenterOfMass`] marker components.
pub fn total_mass_properties(&self, entity: Entity) -> MassProperties {
std::iter::once(self.local_mass_properties(entity))
.chain(
self.children
.iter_descendants(entity)
.map(|child| self.local_mass_properties(child)),
)
.flatten()
.sum()
}
/// Computes the total mass properties of the descendants of the given entity.
///
/// This ignores the [`NoAutoMass`], [`NoAutoAngularInertia`], and [`NoAutoCenterOfMass`] marker components.
pub fn descendants_mass_properties(&self, entity: Entity) -> MassProperties {
self.children
.iter_descendants(entity)
.filter_map(|child| self.local_mass_properties(child))
.sum()
}
/// Computes the local mass properties of the given entity.
///
/// This only considers the entity's own [`Mass`], [`AngularInertia`], [`CenterOfMass`],
/// and/or [`ColliderMassProperties`] if present, not those of its children.
///
/// If the entity has no mass properties or the entity does not exist, `None` is returned.
pub fn local_mass_properties(&self, entity: Entity) -> Option<MassProperties> {
let (mass, angular_inertia, center_of_mass, collider_mass, collider_transform, is_sensor) =
self.query.get(entity).ok()?;
// Initialize the mass properties with the collider's mass properties or zero.
let mut mass_props = collider_mass
.filter(|_| !is_sensor)
.map_or(MassProperties::ZERO, |m| **m);
// Set the mass if the `Mass` component is present.
if let Some(mass) = mass {
// TODO: This needs to consider `NoAutoMass`.
// Only adjust the angular inertia if it is not exlicitly set with `AngularInertia`.
let update_angular_inertia = angular_inertia.is_none();
mass_props.set_mass(mass.0, update_angular_inertia);
}
// Set the angular inertia if the `AngularInertia` component is present.
if let Some(angular_inertia) = angular_inertia {
#[cfg(feature = "2d")]
{
mass_props.angular_inertia = angular_inertia.0;
}
#[cfg(feature = "3d")]
{
mass_props.principal_angular_inertia = angular_inertia.principal;
mass_props.local_inertial_frame = angular_inertia.local_frame;
}
}
// Set the center of mass if the `CenterOfMass` component is present.
if let Some(center_of_mass) = center_of_mass {
mass_props.center_of_mass = center_of_mass.0;
}
if let Some(collider_transform) = collider_mass.and(collider_transform) {
#[cfg(feature = "2d")]
{
mass_props.transform_by(Isometry2d::new(
collider_transform.translation.f32(),
Rot2::from(collider_transform.rotation),
));
}
#[cfg(feature = "3d")]
{
mass_props.transform_by(Isometry3d::new(
collider_transform.translation.f32(),
collider_transform.rotation.f32(),
));
}
}
Some(mass_props)
}
}