1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
//! Common components and bundles for rigid bodies.
// Components
mod forces;
mod locked_axes;
mod mass_properties;
mod world_query;
pub use forces::{ExternalAngularImpulse, ExternalForce, ExternalImpulse, ExternalTorque};
pub use locked_axes::LockedAxes;
pub use mass_properties::*;
pub use world_query::*;
#[cfg(feature = "2d")]
pub(crate) use forces::FloatZero;
pub(crate) use forces::Torque;
use crate::prelude::*;
use bevy::prelude::*;
use derive_more::From;
/// A non-deformable body used for the simulation of most physics objects.
///
/// ## Rigid body types
///
/// A rigid body can be either dynamic, kinematic or static.
///
/// - **Dynamic bodies** are similar to real life objects and are affected by forces and contacts.
/// - **Kinematic bodies** can only be moved programmatically, which is useful for things like character controllers and moving platforms.
/// - **Static bodies** can not move, so they can be good for objects in the environment like the ground and walls.
///
/// ## Creation
///
/// Creating a rigid body is as simple as adding the [`RigidBody`] component:
///
/// ```
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
/// use bevy::prelude::*;
///
/// fn setup(mut commands: Commands) {
/// // Spawn a dynamic rigid body and specify its position (optional)
/// commands.spawn((
/// RigidBody::Dynamic,
/// TransformBundle::from_transform(Transform::from_xyz(0.0, 3.0, 0.0)),
/// ));
/// }
/// ```
///
/// Avian will automatically add any missing components, like the following:
///
/// - [`Position`]
/// - [`Rotation`]
/// - [`LinearVelocity`]
/// - [`AngularVelocity`]
/// - [`ExternalForce`]
/// - [`ExternalTorque`]
/// - [`ExternalImpulse`]
/// - [`ExternalAngularImpulse`]
/// - [`Friction`]
/// - [`Restitution`]
/// - [`Mass`]
/// - [`Inertia`]
/// - [`CenterOfMass`]
///
/// You can change any of these during initialization and runtime in order to alter the behaviour of the body.
///
/// By default, rigid bodies will get a mass based on the attached colliders and their densities.
/// See [mass properties](#mass-properties).
///
/// ## Movement
///
/// A rigid body can be moved in three ways: by modifying its position directly,
/// by changing its velocity, or by applying forces or impulses.
///
/// To change the position of a rigid body, you can simply modify its `Transform`:
///
/// ```
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
/// use bevy::prelude::*;
///
/// fn move_bodies(mut query: Query<&mut Transform, With<RigidBody>>) {
/// for mut transform in query.iter_mut() {
/// transform.translation.x += 0.1;
/// }
/// }
/// ```
///
/// However, moving a dynamic body by changing its position directly is similar
/// to teleporting the body, which can result in unexpected behavior since the body can move
/// inside walls.
///
/// You can instead change the velocity of a dynamic or kinematic body with the [`LinearVelocity`]
/// and [`AngularVelocity`] components:
///
/// ```
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
/// use bevy::prelude::*;
///
/// fn accelerate_bodies(mut query: Query<(&mut LinearVelocity, &mut AngularVelocity)>) {
/// for (mut linear_velocity, mut angular_velocity) in query.iter_mut() {
/// linear_velocity.x += 0.05;
#[cfg_attr(feature = "2d", doc = " angular_velocity.0 += 0.05;")]
#[cfg_attr(feature = "3d", doc = " angular_velocity.z += 0.05;")]
/// }
/// }
/// ```
///
/// For applying forces and impulses to dynamic bodies, see the [`ExternalForce`], [`ExternalTorque`],
/// [`ExternalImpulse`] and [`ExternalAngularImpulse`] components.
///
/// Avian does not have a built-in character controller, so if you need one,
/// you will need to implement it yourself or use a third party option.
/// You can take a look at the [`basic_dynamic_character`] and [`basic_kinematic_character`]
/// examples for a simple implementation.
///
/// [`basic_dynamic_character`]: https://github.com/Jondolf/avian/blob/42fb8b21c756a7f4dd91071597dc251245ddaa8f/crates/avian3d/examples/basic_dynamic_character.rs
/// [`basic_kinematic_character`]: https://github.com/Jondolf/avian/blob/42fb8b21c756a7f4dd91071597dc251245ddaa8f/crates/avian3d/examples/basic_kinematic_character.rs
///
/// ## Mass properties
///
/// The mass properties of a rigid body consist of its [`Mass`], [`Inertia`]
/// and local [`CenterOfMass`]. They control how forces and torques impact a rigid body
/// and how it affects other bodies.
///
/// You should always give dynamic rigid bodies mass properties so that forces
/// are applied to them correctly. The easiest way to do that is to simply [add a collider](Collider):
///
/// ```
#[cfg_attr(feature = "2d", doc = "# use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "# use avian3d::prelude::*;")]
/// # use bevy::prelude::*;
/// #
/// # fn setup(mut commands: Commands) {
#[cfg_attr(
feature = "2d",
doc = "commands.spawn((RigidBody::Dynamic, Collider::circle(0.5)));"
)]
#[cfg_attr(
feature = "3d",
doc = "commands.spawn((RigidBody::Dynamic, Collider::sphere(0.5)));"
)]
/// # }
/// ```
///
/// This will automatically compute the [collider's mass properties](ColliderMassProperties)
/// and add them to the body's own mass properties.
///
/// By default, each collider has a density of `1.0`. This can be configured with
/// the [`ColliderDensity`] component:
///
/// ```
#[cfg_attr(feature = "2d", doc = "# use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "# use avian3d::prelude::*;")]
/// # use bevy::prelude::*;
/// #
/// # fn setup(mut commands: Commands) {
/// commands.spawn((
/// RigidBody::Dynamic,
#[cfg_attr(feature = "2d", doc = " Collider::circle(0.5),")]
#[cfg_attr(feature = "3d", doc = " Collider::sphere(0.5),")]
/// ColliderDensity(2.5),
/// ));
/// # }
/// ```
///
/// If you don't want to add a collider, you can instead add a [`MassPropertiesBundle`]
/// with the mass properties computed from a collider shape using the
/// [`MassPropertiesBundle::new_computed`](MassPropertiesBundle::new_computed) method.
///
/// ```
#[cfg_attr(feature = "2d", doc = "# use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "# use avian3d::prelude::*;")]
/// # use bevy::prelude::*;
/// #
/// # fn setup(mut commands: Commands) {
/// // This is equivalent to the earlier approach, but no collider will be added
/// commands.spawn((
/// RigidBody::Dynamic,
#[cfg_attr(
feature = "2d",
doc = " MassPropertiesBundle::new_computed(&Collider::circle(0.5), 2.5),"
)]
#[cfg_attr(
feature = "3d",
doc = " MassPropertiesBundle::new_computed(&Collider::sphere(0.5), 2.5),"
)]
/// ));
/// # }
/// ```
///
/// You can also specify the exact values of the mass properties by adding the components manually.
/// To avoid the collider mass properties from being added to the body's own mass properties,
/// you can simply set the collider's density to zero.
///
/// ```
#[cfg_attr(feature = "2d", doc = "# use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "# use avian3d::prelude::*;")]
/// # use bevy::prelude::*;
/// #
/// # fn setup(mut commands: Commands) {
/// // Create a rigid body with a mass of 5.0 and a collider with no mass
/// commands.spawn((
/// RigidBody::Dynamic,
#[cfg_attr(feature = "2d", doc = " Collider::circle(0.5),")]
#[cfg_attr(feature = "3d", doc = " Collider::sphere(0.5),")]
/// ColliderDensity(0.0),
/// Mass(5.0),
/// // ...the rest of the mass properties
/// ));
/// # }
///
/// ```
///
/// ## See more
///
/// - [Colliders](Collider)
/// - [Gravity] and [gravity scale](GravityScale)
/// - [Linear](LinearDamping) and [angular](AngularDamping) velocity damping
/// - [Lock translational and rotational axes](LockedAxes)
/// - [Dominance]
/// - [Continuous Collision Detection](dynamics::ccd)
/// - [Automatic deactivation with sleeping](Sleeping)
#[derive(Reflect, Clone, Copy, Component, Debug, Default, PartialEq, Eq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub enum RigidBody {
/// Dynamic bodies are bodies that are affected by forces, velocity and collisions.
#[default]
Dynamic,
/// Static bodies are not affected by any forces, collisions or velocity, and they act as if they have an infinite mass and moment of inertia.
/// The only way to move a static body is to manually change its position.
///
/// Collisions with static bodies will affect dynamic bodies, but not other static bodies or kinematic bodies.
///
/// Static bodies are typically used for things like the ground, walls and any other objects that you don't want to move.
Static,
/// Kinematic bodies are bodies that are not affected by any external forces or collisions.
/// They will realistically affect colliding dynamic bodies, but not other kinematic bodies.
///
/// Unlike static bodies, kinematic bodies can have velocity.
/// The engine doesn't modify the values of a kinematic body's components,
/// so you have full control of them.
Kinematic,
}
impl RigidBody {
/// Checks if the rigid body is dynamic.
pub fn is_dynamic(&self) -> bool {
*self == Self::Dynamic
}
/// Checks if the rigid body is static.
pub fn is_static(&self) -> bool {
*self == Self::Static
}
/// Checks if the rigid body is kinematic.
pub fn is_kinematic(&self) -> bool {
*self == Self::Kinematic
}
}
/// Indicates that a [rigid body](RigidBody) is not simulated by the physics engine until woken up again.
/// This is done to improve performance and to help prevent small jitter that is typically present in collisions.
///
/// Bodies are marked as sleeping when their linear and angular velocity is below the [`SleepingThreshold`] for a time
/// indicated by [`DeactivationTime`]. A sleeping body is woken up when an active body interacts with it through
/// collisions or other constraints, or when gravity changes, or when the body's
/// position, rotation, velocity, or external forces are modified.
///
/// Sleeping can be disabled for specific entities with the [`SleepingDisabled`] component,
/// or for all entities by setting the [`SleepingThreshold`] to a negative value.
#[derive(Reflect, Clone, Copy, Component, Debug, Default, PartialEq, Eq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct Sleeping;
/// How long the velocity of the body has been below the [`SleepingThreshold`],
/// i.e. how long the body has been able to sleep.
///
/// See [`Sleeping`] for further information.
#[derive(Reflect, Clone, Copy, Component, Debug, Default, PartialEq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct TimeSleeping(pub Scalar);
/// Indicates that the body can not be deactivated by the physics engine. See [`Sleeping`] for information about sleeping.
#[derive(Reflect, Clone, Copy, Component, Debug, Default, PartialEq, Eq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct SleepingDisabled;
/// Translation accumulated during the physics frame.
///
/// When updating position during integration or constraint solving, the required translation
/// is added to [`AccumulatedTranslation`], instead of [`Position`]. This improves numerical stability
/// of the simulation, especially for bodies far away from world origin.
///
/// At the end of each physics frame, the actual [`Position`] is updated in [`SolverSet::ApplyTranslation`].
#[derive(Reflect, Clone, Copy, Component, Debug, Default, Deref, DerefMut, PartialEq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct AccumulatedTranslation(pub Vector);
/// The linear velocity of a [rigid body](RigidBody).
///
/// ## Example
///
/// ```
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
/// use bevy::prelude::*;
///
/// fn accelerate_bodies(mut query: Query<&mut LinearVelocity>) {
/// for mut linear_velocity in query.iter_mut() {
/// linear_velocity.x += 0.05;
/// }
/// }
/// ```
#[derive(Reflect, Clone, Copy, Component, Debug, Default, Deref, DerefMut, PartialEq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct LinearVelocity(pub Vector);
impl LinearVelocity {
/// Zero linear velocity.
pub const ZERO: LinearVelocity = LinearVelocity(Vector::ZERO);
}
/// The linear velocity of a [rigid body](RigidBody) before the velocity solve is performed.
#[derive(Reflect, Clone, Copy, Component, Debug, Default, Deref, DerefMut, PartialEq, From)]
#[reflect(Component)]
pub(crate) struct PreSolveLinearVelocity(pub Vector);
/// The angular velocity of a [rigid body](RigidBody) in radians per second.
/// Positive values will result in counterclockwise rotation.
///
/// ## Example
///
/// ```
/// use avian2d::prelude::*;
/// use bevy::prelude::*;
///
/// fn increase_angular_velocities(mut query: Query<&mut AngularVelocity>) {
/// for mut angular_velocity in query.iter_mut() {
/// angular_velocity.0 += 0.05;
/// }
/// }
/// ```
#[cfg(feature = "2d")]
#[derive(Reflect, Clone, Copy, Component, Debug, Default, PartialEq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct AngularVelocity(pub Scalar);
/// The angular velocity of a [rigid body](RigidBody) as a rotation axis
/// multiplied by the angular speed in radians per second.
///
/// ## Example
///
/// ```
/// use avian3d::prelude::*;
/// use bevy::prelude::*;
///
/// fn increase_angular_velocities(mut query: Query<&mut AngularVelocity>) {
/// for mut angular_velocity in query.iter_mut() {
/// angular_velocity.z += 0.05;
/// }
/// }
/// ```
#[cfg(feature = "3d")]
#[derive(Reflect, Clone, Copy, Component, Debug, Default, Deref, DerefMut, PartialEq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct AngularVelocity(pub Vector);
impl AngularVelocity {
/// Zero angular velocity.
#[cfg(feature = "2d")]
pub const ZERO: AngularVelocity = AngularVelocity(0.0);
/// Zero angular velocity.
#[cfg(feature = "3d")]
pub const ZERO: AngularVelocity = AngularVelocity(Vector::ZERO);
}
/// The angular velocity of a [rigid body](RigidBody) in radians per second, before
/// the velocity solve is performed. Positive values will result in counterclockwise rotation.
#[cfg(feature = "2d")]
#[derive(Reflect, Clone, Copy, Component, Debug, Default, PartialEq, From)]
#[reflect(Component)]
pub(crate) struct PreSolveAngularVelocity(pub Scalar);
/// The angular velocity of a [rigid body](RigidBody) as a rotation axis
/// multiplied by the angular speed in radians per second, before the velocity solve is performed.
#[cfg(feature = "3d")]
#[derive(Reflect, Clone, Copy, Component, Debug, Default, Deref, DerefMut, PartialEq, From)]
#[reflect(Component)]
pub(crate) struct PreSolveAngularVelocity(pub Vector);
/// Controls how [gravity](Gravity) affects a specific [rigid body](RigidBody).
///
/// A gravity scale of `0.0` will disable gravity, while `2.0` will double the gravity.
/// Using a negative value will flip the direction of the gravity.
///
/// ## Example
///
/// ```
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
/// use bevy::prelude::*;
///
/// // Spawn a body with 1.5 times the normal gravity
/// fn setup(mut commands: Commands) {
/// commands.spawn((
/// RigidBody::Dynamic,
/// GravityScale(1.5),
/// ));
/// }
/// ```
#[derive(Component, Reflect, Debug, Clone, Copy, PartialEq, PartialOrd, Deref, DerefMut, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct GravityScale(pub Scalar);
impl Default for GravityScale {
fn default() -> Self {
Self(1.0)
}
}
/// Determines how coefficients are combined for [`Restitution`] and [`Friction`].
/// The default is `Average`.
///
/// When combine rules clash with each other, the following priority order is used:
/// `Max > Multiply > Min > Average`.
#[derive(Reflect, Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Default, PartialEq)]
pub enum CoefficientCombine {
// The discriminants allow priority ordering to work automatically via comparison methods
/// Coefficients are combined by computing their average.
#[default]
Average = 1,
/// Coefficients are combined by choosing the smaller coefficient.
Min = 2,
/// Coefficients are combined by computing their product.
Multiply = 3,
/// Coefficients are combined by choosing the larger coefficient.
Max = 4,
}
/// A component for the [coefficient of restitution](https://en.wikipedia.org/wiki/Coefficient_of_restitution).
/// This controls how bouncy a [rigid body](RigidBody) is.
///
/// The coefficient is between 0 and 1, where 0 corresponds to a **perfectly inelastic collision**, and 1 corresponds
/// to a **perfectly elastic collision** that preserves all kinetic energy. The default coefficient is 0.3, and it currently
/// can not be configured at a global level.
///
/// When two bodies collide, their restitution coefficients are combined using the specified [`CoefficientCombine`] rule.
///
/// ## Example
///
/// Create a new [`Restitution`] component with a restitution coefficient of 0.4:
///
/// ```ignore
/// Restitution::new(0.4)
/// ```
///
/// Configure how two restitution coefficients are combined with [`CoefficientCombine`]:
///
/// ```ignore
/// Restitution::new(0.4).with_combine_rule(CoefficientCombine::Multiply)
/// ```
///
/// Combine the properties of two [`Restitution`] components:
///
/// ```
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
///
/// let first = Restitution::new(0.8).with_combine_rule(CoefficientCombine::Average);
/// let second = Restitution::new(0.5).with_combine_rule(CoefficientCombine::Multiply);
///
/// // CoefficientCombine::Multiply has higher priority, so the coefficients are multiplied
/// assert_eq!(
/// first.combine(second),
/// Restitution::new(0.4).with_combine_rule(CoefficientCombine::Multiply)
/// );
/// ```
#[doc(alias = "Bounciness")]
#[doc(alias = "Elasticity")]
#[derive(Reflect, Clone, Copy, Component, Debug, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, PartialEq)]
pub struct Restitution {
/// The [coefficient of restitution](https://en.wikipedia.org/wiki/Coefficient_of_restitution).
///
/// This should be between 0 and 1, where 0 corresponds to a **perfectly inelastic collision**, and 1 corresponds
/// to a **perfectly elastic collision** that preserves all kinetic energy. The default value is 0.3.
pub coefficient: Scalar,
/// The coefficient combine rule used when two bodies collide.
pub combine_rule: CoefficientCombine,
}
impl Restitution {
/// A restitution coefficient of 0.0 and a combine rule of [`CoefficientCombine::Average`].
///
/// This is equivalent to [`Restitution::PERFECTLY_INELASTIC`].
pub const ZERO: Self = Self {
coefficient: 0.0,
combine_rule: CoefficientCombine::Average,
};
/// A restitution coefficient of 0.0, which corresponds to a perfectly inelastic collision.
///
/// Uses [`CoefficientCombine::Average`].
pub const PERFECTLY_INELASTIC: Self = Self {
coefficient: 0.0,
combine_rule: CoefficientCombine::Average,
};
/// A restitution coefficient of 1.0, which corresponds to a perfectly elastic collision.
///
/// Uses [`CoefficientCombine::Average`].
pub const PERFECTLY_ELASTIC: Self = Self {
coefficient: 1.0,
combine_rule: CoefficientCombine::Average,
};
/// Creates a new [`Restitution`] component with the given restitution coefficient.
pub fn new(coefficient: Scalar) -> Self {
Self {
coefficient: coefficient.clamp(0.0, 1.0),
combine_rule: CoefficientCombine::Average,
}
}
/// Sets the [`CoefficientCombine`] rule used.
pub fn with_combine_rule(&self, combine_rule: CoefficientCombine) -> Self {
Self {
combine_rule,
..*self
}
}
/// Combines the properties of two [`Restitution`] components.
pub fn combine(&self, other: Self) -> Self {
// Choose rule with higher priority
let rule = self.combine_rule.max(other.combine_rule);
Self {
coefficient: match rule {
CoefficientCombine::Average => (self.coefficient + other.coefficient) * 0.5,
CoefficientCombine::Min => self.coefficient.min(other.coefficient),
CoefficientCombine::Multiply => self.coefficient * other.coefficient,
CoefficientCombine::Max => self.coefficient.max(other.coefficient),
},
combine_rule: rule,
}
}
}
impl Default for Restitution {
fn default() -> Self {
Self {
coefficient: 0.3,
combine_rule: CoefficientCombine::default(),
}
}
}
impl From<Scalar> for Restitution {
fn from(coefficient: Scalar) -> Self {
Self {
coefficient,
..default()
}
}
}
/// Controls how strongly the material of an entity prevents relative tangential movement at contact points.
///
/// For surfaces that are at rest relative to each other, static friction is used.
/// Once the static friction is overcome, the bodies will start sliding relative to each other, and dynamic friction is applied instead.
///
/// 0.0: No friction at all, the body slides indefinitely\
/// 1.0: High friction\
///
/// ## Example
///
/// Create a new [`Friction`] component with dynamic and static friction coefficients of 0.4:
///
/// ```ignore
/// Friction::new(0.4)
/// ```
///
/// Set the other friction coefficient:
///
/// ```ignore
/// // 0.4 static and 0.6 dynamic
/// Friction::new(0.4).with_dynamic_coefficient(0.6)
/// // 0.4 dynamic and 0.6 static
/// Friction::new(0.4).with_static_coefficient(0.6)
/// ```
///
/// Configure how the friction coefficients of two [`Friction`] components are combined with [`CoefficientCombine`]:
///
/// ```ignore
/// Friction::new(0.4).with_combine_rule(CoefficientCombine::Multiply)
/// ```
///
/// Combine the properties of two [`Friction`] components:
///
/// ```
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
///
/// let first = Friction::new(0.8).with_combine_rule(CoefficientCombine::Average);
/// let second = Friction::new(0.5).with_combine_rule(CoefficientCombine::Multiply);
///
/// // CoefficientCombine::Multiply has higher priority, so the coefficients are multiplied
/// assert_eq!(
/// first.combine(second),
/// Friction::new(0.4).with_combine_rule(CoefficientCombine::Multiply)
/// );
/// ```
#[derive(Reflect, Clone, Copy, Component, Debug, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, PartialEq)]
pub struct Friction {
/// Coefficient of dynamic friction.
pub dynamic_coefficient: Scalar,
/// Coefficient of static friction.
pub static_coefficient: Scalar,
/// The coefficient combine rule used when two bodies collide.
pub combine_rule: CoefficientCombine,
}
impl Friction {
/// Zero dynamic and static friction and [`CoefficientCombine::Average`].
pub const ZERO: Self = Self {
dynamic_coefficient: 0.0,
static_coefficient: 0.0,
combine_rule: CoefficientCombine::Average,
};
/// Creates a new `Friction` component with the same dynamic and static friction coefficients.
pub fn new(friction_coefficient: Scalar) -> Self {
Self {
dynamic_coefficient: friction_coefficient,
static_coefficient: friction_coefficient,
..default()
}
}
/// Sets the [`CoefficientCombine`] rule used.
pub fn with_combine_rule(&self, combine_rule: CoefficientCombine) -> Self {
Self {
combine_rule,
..*self
}
}
/// Sets the coefficient of dynamic friction.
pub fn with_dynamic_coefficient(&self, coefficient: Scalar) -> Self {
Self {
dynamic_coefficient: coefficient,
..*self
}
}
/// Sets the coefficient of static friction.
pub fn with_static_coefficient(&self, coefficient: Scalar) -> Self {
Self {
static_coefficient: coefficient,
..*self
}
}
/// Combines the properties of two `Friction` components.
pub fn combine(&self, other: Self) -> Self {
// Choose rule with higher priority
let rule = self.combine_rule.max(other.combine_rule);
let (dynamic1, dynamic2) = (self.dynamic_coefficient, other.dynamic_coefficient);
let (static1, static2) = (self.static_coefficient, other.static_coefficient);
Self {
dynamic_coefficient: match rule {
CoefficientCombine::Average => (dynamic1 + dynamic2) * 0.5,
CoefficientCombine::Min => dynamic1.min(dynamic2),
CoefficientCombine::Multiply => dynamic1 * dynamic2,
CoefficientCombine::Max => dynamic1.max(dynamic2),
},
static_coefficient: match rule {
CoefficientCombine::Average => (static1 + static2) * 0.5,
CoefficientCombine::Min => static1.min(static2),
CoefficientCombine::Multiply => static1 * static2,
CoefficientCombine::Max => static1.max(static2),
},
combine_rule: rule,
}
}
}
impl Default for Friction {
fn default() -> Self {
Self {
dynamic_coefficient: 0.3,
static_coefficient: 0.3,
combine_rule: CoefficientCombine::default(),
}
}
}
impl From<Scalar> for Friction {
fn from(coefficient: Scalar) -> Self {
Self {
dynamic_coefficient: coefficient,
static_coefficient: coefficient,
..default()
}
}
}
/// Automatically slows down a dynamic [rigid body](RigidBody), decreasing its
/// [linear velocity](LinearVelocity) each frame. This can be used to simulate air resistance.
///
/// The default linear damping coefficient is `0.0`, which corresponds to no damping.
///
/// ## Example
///
/// ```
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
/// use bevy::prelude::*;
///
/// fn setup(mut commands: Commands) {
/// commands.spawn((
/// RigidBody::Dynamic,
/// LinearDamping(0.8),
/// ));
/// }
/// ```
#[derive(
Component, Reflect, Debug, Clone, Copy, PartialEq, PartialOrd, Default, Deref, DerefMut, From,
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct LinearDamping(pub Scalar);
/// Automatically slows down a dynamic [rigid body](RigidBody), decreasing its
/// [angular velocity](AngularVelocity) each frame. This can be used to simulate air resistance.
///
/// The default angular damping coefficient is `0.0`, which corresponds to no damping.
///
/// ## Example
///
/// ```
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
/// use bevy::prelude::*;
///
/// fn setup(mut commands: Commands) {
/// commands.spawn((
/// RigidBody::Dynamic,
/// AngularDamping(1.6),
/// ));
/// }
/// ```
#[derive(
Component, Reflect, Debug, Clone, Copy, PartialEq, PartialOrd, Default, Deref, DerefMut, From,
)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct AngularDamping(pub Scalar);
/// **Dominance** allows [dynamic rigid bodies](RigidBody::Dynamic) to dominate
/// each other during physical interactions.
///
/// The body with a higher dominance acts as if it had infinite mass, and will be unaffected during
/// collisions and other interactions, while the other body will be affected normally.
///
/// The dominance must be between `-127` and `127`, and the default value is `0`.
/// Note that static and kinematic bodies will always have a higher dominance value
/// than dynamic bodies regardless of the value of this component.
///
/// ## Example
///
/// ```
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
/// use bevy::prelude::*;
///
/// // Player dominates all dynamic bodies with a dominance lower than 5
/// fn spawn_player(mut commands: Commands) {
/// commands.spawn((
/// RigidBody::Dynamic,
/// Collider::capsule(0.4, 1.0),
/// Dominance(5),
/// ));
/// }
/// ```
#[rustfmt::skip]
#[derive(Component, Reflect, Debug, Clone, Copy, Default, Deref, DerefMut, From, PartialEq, PartialOrd, Eq, Ord)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct Dominance(pub i8);
#[cfg(test)]
mod tests {
use crate::prelude::*;
use approx::assert_relative_eq;
#[test]
fn restitution_clamping_works() {
assert_eq!(Restitution::new(-2.0).coefficient, 0.0);
assert_eq!(Restitution::new(0.6).coefficient, 0.6);
assert_eq!(Restitution::new(3.0).coefficient, 1.0);
}
#[test]
fn coefficient_combine_works() {
let r1 = Restitution::new(0.3).with_combine_rule(CoefficientCombine::Average);
// (0.3 + 0.7) / 2.0 == 0.5
let average_result =
r1.combine(Restitution::new(0.7).with_combine_rule(CoefficientCombine::Average));
let average_expected = Restitution::new(0.5).with_combine_rule(CoefficientCombine::Average);
assert_relative_eq!(
average_result.coefficient,
average_expected.coefficient,
epsilon = 0.0001
);
assert_eq!(average_result.combine_rule, average_expected.combine_rule);
// 0.3.min(0.7) == 0.3
assert_eq!(
r1.combine(Restitution::new(0.7).with_combine_rule(CoefficientCombine::Min)),
Restitution::new(0.3).with_combine_rule(CoefficientCombine::Min)
);
// 0.3 * 0.7 == 0.21
let multiply_result =
r1.combine(Restitution::new(0.7).with_combine_rule(CoefficientCombine::Multiply));
let multiply_expected =
Restitution::new(0.21).with_combine_rule(CoefficientCombine::Multiply);
assert_relative_eq!(
multiply_result.coefficient,
multiply_expected.coefficient,
epsilon = 0.0001
);
assert_eq!(multiply_result.combine_rule, multiply_expected.combine_rule);
// 0.3.max(0.7) == 0.7
assert_eq!(
r1.combine(Restitution::new(0.7).with_combine_rule(CoefficientCombine::Max)),
Restitution::new(0.7).with_combine_rule(CoefficientCombine::Max)
);
}
}