avian3d/dynamics/rigid_body/physics_material.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
use crate::prelude::*;
use bevy::prelude::*;
/// Determines how coefficients are combined for [`Restitution`] and [`Friction`].
/// The default is `Average`.
///
/// When combine rules clash with each other, the following priority order is used:
/// `Max > Multiply > Min > GeometricMean > Average`.
#[derive(Reflect, Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, PartialEq)]
pub enum CoefficientCombine {
/// Coefficients are combined by computing their average `(a + b) / 2.0`.
Average = 1,
/// Coefficients are combined by computing their geometric mean `sqrt(a * b)`.
GeometricMean = 2,
/// Coefficients are combined by choosing the smaller coefficient `min(a, b)`.
Min = 3,
/// Coefficients are combined by computing their product `a * b`.
Multiply = 4,
/// Coefficients are combined by choosing the larger coefficient `max(a, b)`.
Max = 5,
}
impl CoefficientCombine {
/// Combines two coefficients according to the combine rule.
pub fn mix(&self, a: Scalar, b: Scalar) -> Scalar {
match self {
CoefficientCombine::Average => (a + b) * 0.5,
CoefficientCombine::GeometricMean => (a * b).sqrt(),
CoefficientCombine::Min => a.min(b),
CoefficientCombine::Multiply => a * b,
CoefficientCombine::Max => a.max(b),
}
}
}
/// A resource for the default [`Friction`] to use for physics objects.
///
/// Friction can be set for individual colliders and rigid bodies using the [`Friction`] component.
///
/// Defaults to dynamic and static friction coefficients of `0.5` with a combine rule of [`CoefficientCombine::Average`].
#[derive(Resource, Clone, Copy, Debug, Default, Deref, DerefMut, PartialEq, Reflect)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Default, PartialEq)]
pub struct DefaultFriction(pub Friction);
/// A resource for the default [`Restitution`] to use for physics objects.
///
/// Restitution can be set for individual colliders and rigid bodies using the [`Restitution`] component.
///
/// Defaults to a coefficient of `0.0` with a combine rule of [`CoefficientCombine::Average`].
#[derive(Resource, Clone, Copy, Debug, Default, Deref, DerefMut, PartialEq, Reflect)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Default, PartialEq)]
pub struct DefaultRestitution(pub Restitution);
/// A component for [dry friction], controlling how strongly a [rigid body](RigidBody) or [collider](Collider)
/// opposes sliding along other surfaces while in contact.
///
/// For surfaces that are at rest relative to each other, **static friction** is used.
/// Once the static friction is overcome, the bodies will start sliding, and **dynamic friction** is applied instead.
/// The friction force is proportional to the normal force of the contact, following the [Coulomb friction model].
///
/// The friction coefficients should typically be between 0 and 1, where 0 corresponds to no friction at all, and 1 corresponds to high friction.
/// However, any non-negative value is allowed.
///
/// If a collider does not have [`Friction`] specified, the [`Friction`] of its rigid body entity will be used instead.
/// If that is not specified either, collisions use the [`DefaultFriction`] resource. The default dynamic and static friction
/// coefficients are set to `0.5`.
///
/// [dry friction]: https://en.wikipedia.org/wiki/Friction#Dry_friction
/// [Coulomb friction model]: https://en.wikipedia.org/wiki/Friction#Dry_friction
///
/// # Combine Rule
///
/// When two bodies collide, their coefficients are combined using the specified [`CoefficientCombine`] rule.
/// In the case of clashing rules, the following priority order is used: `Max > Multiply > Min > GeometricMean > Average`.
///
/// By default, friction uses [`CoefficientCombine::Average`], computing the average `(a + b) / 2.0`.
///
/// # Usage
///
/// Create a new [`Friction`] component with dynamic and static friction coefficients of 0.4:
///
/// ```ignore
/// Friction::new(0.4)
/// ```
///
/// Set the other friction coefficient:
///
/// ```ignore
/// // 0.4 static and 0.6 dynamic
/// Friction::new(0.4).with_dynamic_coefficient(0.6)
/// // 0.4 dynamic and 0.6 static
/// Friction::new(0.4).with_static_coefficient(0.6)
/// ```
///
/// Configure how the friction coefficients of two [`Friction`] components are combined with [`CoefficientCombine`]:
///
/// ```ignore
/// Friction::new(0.4).with_combine_rule(CoefficientCombine::Multiply)
/// ```
///
/// Combine the properties of two [`Friction`] components:
///
/// ```
#[cfg_attr(feature = "2d", doc = "# use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "# use avian3d::prelude::*;")]
/// #
/// let first = Friction::new(0.8).with_combine_rule(CoefficientCombine::Average);
/// let second = Friction::new(0.5).with_combine_rule(CoefficientCombine::Multiply);
///
/// // `CoefficientCombine::Multiply` has higher priority, so the coefficients are multiplied
/// assert_eq!(
/// first.combine(second),
/// Friction::new(0.4).with_combine_rule(CoefficientCombine::Multiply)
/// );
/// ```
///
/// # Accuracy
///
/// Avian attempts to simulate friction accurately, but [Coulomb friction][Coulomb friction model] is still a simplification of real-world friction.
/// Each collision typically has only a small number of contact points, so friction cannot consider the entire surface perfectly.
/// Still, friction should be reasonably accurate for most cases, particularly for game purposes.
///
/// It is worth noting that in real life, friction coefficients can vary greatly based on material combinations, surface roughness,
/// and numerous other factors, and they are not uniform across surfaces. For game purposes however, it is impractical to consider
/// all of these factors, so instead, material interactions are controlled using simple [`CoefficientCombine`] rules.
#[derive(Reflect, Clone, Copy, Component, Debug, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, PartialEq)]
pub struct Friction {
/// Coefficient of dynamic friction. Applied when bodies are sliding relative to each other.
///
/// Defaults to `0.5`.
pub dynamic_coefficient: Scalar,
/// Coefficient of static friction. Applied when bodies are at rest relative to each other.
///
/// Defaults to `0.5`.
pub static_coefficient: Scalar,
/// The rule used for computing the combined coefficients of friction when two bodies collide.
///
/// Defaults to [`CoefficientCombine::Average`].
pub combine_rule: CoefficientCombine,
}
impl Default for Friction {
/// The default [`Friction`] with dynamic and static friction coefficients of `0.5` and a combine rule of [`CoefficientCombine::Average`].
fn default() -> Self {
Self {
dynamic_coefficient: 0.5,
static_coefficient: 0.5,
combine_rule: CoefficientCombine::Average,
}
}
}
impl Friction {
/// Zero dynamic and static friction and [`CoefficientCombine::Average`].
pub const ZERO: Self = Self {
dynamic_coefficient: 0.0,
static_coefficient: 0.0,
combine_rule: CoefficientCombine::Average,
};
/// Creates a new [`Friction`] component with the same dynamic and static friction coefficients.
pub fn new(friction_coefficient: Scalar) -> Self {
Self {
dynamic_coefficient: friction_coefficient,
static_coefficient: friction_coefficient,
..default()
}
}
/// Sets the [`CoefficientCombine`] rule used.
pub fn with_combine_rule(&self, combine_rule: CoefficientCombine) -> Self {
Self {
combine_rule,
..*self
}
}
/// Sets the coefficient of dynamic friction.
pub fn with_dynamic_coefficient(&self, coefficient: Scalar) -> Self {
Self {
dynamic_coefficient: coefficient,
..*self
}
}
/// Sets the coefficient of static friction.
pub fn with_static_coefficient(&self, coefficient: Scalar) -> Self {
Self {
static_coefficient: coefficient,
..*self
}
}
/// Combines the properties of two [`Friction`] components.
pub fn combine(&self, other: Self) -> Self {
// Choose rule with higher priority
let rule = self.combine_rule.max(other.combine_rule);
Self {
dynamic_coefficient: rule.mix(self.dynamic_coefficient, other.dynamic_coefficient),
static_coefficient: rule.mix(self.static_coefficient, other.static_coefficient),
combine_rule: rule,
}
}
}
impl From<Scalar> for Friction {
fn from(coefficient: Scalar) -> Self {
Self {
dynamic_coefficient: coefficient,
static_coefficient: coefficient,
..default()
}
}
}
/// A component for [restitution], controlling how bouncy a [rigid body](RigidBody) or [collider](Collider) is.
///
/// The coefficient should be between 0 and 1, where 0 corresponds to a **perfectly inelastic** collision with zero bounce,
/// and 1 corresponds to a **perfectly elastic** collision that tries to preserve all kinetic energy.
/// Values larger than 1 can result in unstable or explosive behavior.
///
/// If a collider does not have [`Restitution`] specified, the [`Restitution`] of its rigid body entity will be used instead.
/// If that is not specified either, collisions use the [`DefaultRestitution`] resource. The default restitution is set to 0,
/// meaning that objects are not bouncy by default.
///
/// [restitution]: https://en.wikipedia.org/wiki/Coefficient_of_restitution
///
/// # Combine Rule
///
/// When two bodies collide, their coefficients are combined using the specified [`CoefficientCombine`] rule.
/// In the case of clashing rules, the following priority order is used: `Max > Multiply > Min > GeometricMean > Average`.
///
/// By default, restitution uses [`CoefficientCombine::Average`], computing the average `(a + b) / 2.0`.
///
/// # Usage
///
/// Create a new [`Restitution`] component with a restitution coefficient of `0.4`:
///
/// ```ignore
/// Restitution::new(0.4)
/// ```
///
/// Configure how two restitution coefficients are combined with [`CoefficientCombine`]:
///
/// ```ignore
/// Restitution::new(0.4).with_combine_rule(CoefficientCombine::Max)
/// ```
///
/// Combine the properties of two [`Restitution`] components:
///
/// ```
#[cfg_attr(feature = "2d", doc = "# use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "# use avian3d::prelude::*;")]
/// #
/// let first = Restitution::new(0.8).with_combine_rule(CoefficientCombine::Average);
/// let second = Restitution::new(0.5).with_combine_rule(CoefficientCombine::Multiply);
///
/// // `CoefficientCombine::Multiply` has higher priority, so the coefficients are multiplied
/// assert_eq!(
/// first.combine(second),
/// Restitution::new(0.4).with_combine_rule(CoefficientCombine::Multiply)
/// );
/// ```
///
/// # Accuracy
///
/// Restitution is not guaranteed to be entirely accurate, especially for fast-moving bodies or when there are multiple contact points.
///
/// - Even with a coefficient of 1, some kinetic energy can be lost over long periods of time for bouncing objects.
/// This can be caused by [friction](Friction), [damping](LinearDamping), or simulation inaccuracies.
///
/// - Collisions can have more or less bounce than expected, especially when objects are moving very fast.
/// This is largely due to the the sequential solver and [speculative collision](dynamics::ccd#speculative-collision).
/// For more accurate restitution, consider disabling speculative collision and using [`SweptCcd`] instead.
///
/// - An object falling flat on the ground with multiple contact points may tip over on one side or corner a bit.
/// This is because contact points are solved sequentially, and the order of contact points affects the result.
/// Configuring [`SolverConfig::restitution_iterations`](dynamics::solver::SolverConfig::restitution_iterations) may help mitigate this.
///
/// - When collision velocity is small, collisions are treated as inelastic to prevent jitter. The velocity threshold can be configured
/// using [`SolverConfig::restitution_threshold`](dynamics::solver::SolverConfig::restitution_threshold).
///
/// For game purposes however, restitution should still be reasonably accurate.
///
/// It is worth noting that in real life, restitution coefficients can vary greatly based on material combinations
/// and numerous other factors, and they are not uniform across surfaces. For game purposes however, it is impractical to consider
/// all of these factors, so instead, material interactions are controlled using simple [`CoefficientCombine`] rules.
#[doc(alias = "Bounciness")]
#[doc(alias = "Elasticity")]
#[derive(Reflect, Clone, Copy, Component, Debug, PartialEq, PartialOrd)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, PartialEq)]
pub struct Restitution {
/// The [coefficient of restitution](https://en.wikipedia.org/wiki/Coefficient_of_restitution).
///
/// This should be between 0 and 1, where 0 corresponds to a **perfectly inelastic** collision with zero bounce,
/// and 1 corresponds to a **perfectly elastic** collision that tries to preserve all kinetic energy.
/// Values larger than 1 can result in unstable or explosive behavior.
///
/// Defaults to `0.0`.
pub coefficient: Scalar,
/// The rule used for computing the combined coefficient of restitution when two bodies collide.
///
/// Defaults to [`CoefficientCombine::Average`].
pub combine_rule: CoefficientCombine,
}
impl Default for Restitution {
/// The default [`Restitution`] with a coefficient of `0.0` and a combine rule of [`CoefficientCombine::Average`].
fn default() -> Self {
Self {
coefficient: 0.0,
combine_rule: CoefficientCombine::Average,
}
}
}
impl Restitution {
/// A restitution coefficient of `0.0` and a combine rule of [`CoefficientCombine::Average`].
///
/// This is equivalent to [`Restitution::PERFECTLY_INELASTIC`].
pub const ZERO: Self = Self {
coefficient: 0.0,
combine_rule: CoefficientCombine::Average,
};
/// A restitution coefficient of `0.0`, which corresponds to a perfectly inelastic collision.
///
/// Uses [`CoefficientCombine::Average`].
pub const PERFECTLY_INELASTIC: Self = Self {
coefficient: 0.0,
combine_rule: CoefficientCombine::Average,
};
/// A restitution coefficient of `1.0`, which corresponds to a perfectly elastic collision.
///
/// Uses [`CoefficientCombine::Average`].
pub const PERFECTLY_ELASTIC: Self = Self {
coefficient: 1.0,
combine_rule: CoefficientCombine::Average,
};
/// Creates a new [`Restitution`] component with the given restitution coefficient.
pub fn new(coefficient: Scalar) -> Self {
Self {
coefficient,
combine_rule: CoefficientCombine::Average,
}
}
/// Sets the [`CoefficientCombine`] rule used.
pub fn with_combine_rule(&self, combine_rule: CoefficientCombine) -> Self {
Self {
combine_rule,
..*self
}
}
/// Combines the properties of two [`Restitution`] components.
pub fn combine(&self, other: Self) -> Self {
// Choose rule with higher priority
let rule = self.combine_rule.max(other.combine_rule);
Self {
coefficient: rule.mix(self.coefficient, other.coefficient),
combine_rule: rule,
}
}
}
impl From<Scalar> for Restitution {
fn from(coefficient: Scalar) -> Self {
Self {
coefficient,
..default()
}
}
}
#[cfg(test)]
mod tests {
use crate::prelude::*;
use approx::assert_relative_eq;
// TODO: Test `CoefficientCombine` directly
#[test]
fn coefficient_combine_works() {
let r1 = Restitution::new(0.3).with_combine_rule(CoefficientCombine::Average);
// (0.3 + 0.7) / 2.0 == 0.5
let average_result =
r1.combine(Restitution::new(0.7).with_combine_rule(CoefficientCombine::Average));
let average_expected = Restitution::new(0.5).with_combine_rule(CoefficientCombine::Average);
assert_relative_eq!(
average_result.coefficient,
average_expected.coefficient,
epsilon = 0.0001
);
assert_eq!(average_result.combine_rule, average_expected.combine_rule);
// (0.3 * 0.7).sqrt() == 0.4582575694
let geometric_mean_result =
r1.combine(Restitution::new(0.7).with_combine_rule(CoefficientCombine::GeometricMean));
let geometric_mean_expected =
Restitution::new(0.458_257_56).with_combine_rule(CoefficientCombine::GeometricMean);
assert_relative_eq!(
geometric_mean_result.coefficient,
geometric_mean_expected.coefficient,
epsilon = 0.0001
);
assert_eq!(
geometric_mean_result.combine_rule,
geometric_mean_expected.combine_rule
);
// 0.3.min(0.7) == 0.3
assert_eq!(
r1.combine(Restitution::new(0.7).with_combine_rule(CoefficientCombine::Min)),
Restitution::new(0.3).with_combine_rule(CoefficientCombine::Min)
);
// 0.3 * 0.7 == 0.21
let multiply_result =
r1.combine(Restitution::new(0.7).with_combine_rule(CoefficientCombine::Multiply));
let multiply_expected =
Restitution::new(0.21).with_combine_rule(CoefficientCombine::Multiply);
assert_relative_eq!(
multiply_result.coefficient,
multiply_expected.coefficient,
epsilon = 0.0001
);
assert_eq!(multiply_result.combine_rule, multiply_expected.combine_rule);
// 0.3.max(0.7) == 0.7
assert_eq!(
r1.combine(Restitution::new(0.7).with_combine_rule(CoefficientCombine::Max)),
Restitution::new(0.7).with_combine_rule(CoefficientCombine::Max)
);
}
}