avian3d/dynamics/solver/contact/tangent_part.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
use crate::prelude::*;
use bevy::reflect::Reflect;
#[cfg(feature = "2d")]
pub type TangentImpulse = Scalar;
#[cfg(feature = "3d")]
pub type TangentImpulse = Vector2;
// TODO: One-body constraint version
/// The tangential friction part of a [`ContactConstraintPoint`](super::ContactConstraintPoint).
#[derive(Clone, Debug, Default, PartialEq, Reflect)]
pub struct ContactTangentPart {
/// The contact impulse magnitude along the contact tangent.
///
/// This corresponds to the magnitude of the friction impulse.
pub impulse: TangentImpulse,
/// The inertial properties of the bodies projected onto the contact tangent,
/// or in other words, the mass "seen" by the constraint along the tangent.
#[cfg(feature = "2d")]
pub effective_mass: Scalar,
/// The inverse of the inertial properties of the bodies projected onto the contact tangents,
/// or in other words, the inverse mass "seen" by the constraint along the tangents.
#[cfg(feature = "3d")]
pub effective_inverse_mass: [Scalar; 3],
}
impl ContactTangentPart {
/// Generates a new [`ContactTangentPart`].
#[allow(clippy::too_many_arguments)]
pub fn generate(
inverse_mass_sum: Scalar,
angular_inertia1: impl Into<ComputedAngularInertia>,
angular_inertia2: impl Into<ComputedAngularInertia>,
r1: Vector,
r2: Vector,
tangents: [Vector; DIM - 1],
warm_start_impulse: Option<TangentImpulse>,
) -> Self {
let angular_inertia1: ComputedAngularInertia = angular_inertia1.into();
let angular_inertia2: ComputedAngularInertia = angular_inertia2.into();
let i1 = angular_inertia1.inverse();
let i2 = angular_inertia2.inverse();
let mut part = Self {
impulse: warm_start_impulse.unwrap_or_default(),
#[cfg(feature = "2d")]
effective_mass: 0.0,
#[cfg(feature = "3d")]
effective_inverse_mass: [0.0; 3],
};
// Derivation for the projected tangent masses. This is for 3D, but the 2D version is largely the same.
//
// Friction constraints aim to prevent relative tangential motion at contact points.
// The velocity constraint is satisfied when the relative velocity along the tangent
// is equal to zero.
//
// In 3D, there are two tangent directions and therefore two constraints:
//
// dot(lin_vel1_p, tangent_x) = dot(lin_vel2_p, tangent_x)
// dot(lin_vel1_p, tangent_y) = dot(lin_vel2_p, tangent_y)
//
// where lin_vel1_p and lin_vel2_p are the velocities of the bodies at the contact point p:
//
// lin_vel1_p = lin_vel1 + ang_vel1 x r1
// lin_vel2_p = lin_vel2 + ang_vel2 x r2
//
// Based on this, we get:
//
// dot(lin_vel1_p, tangent_x) = dot(lin_vel1, tangent_x) + dot(ang_vel1 x r1, tangent_x)
// = dot(lin_vel1, tangent_x) + dot(r1 x tangent_x, ang_vel1)
//
// Restating the original constraints with the derived formula:
//
// dot(lin_vel1, tangent_x) + dot(r1 x tangent_x, ang_vel1) = dot(lin_vel2, tangent_x) + dot(r2 x tangent_x, ang_vel2)
// dot(lin_vel1, tangent_y) + dot(r1 x tangent_y, ang_vel1) = dot(lin_vel2, tangent_y) + dot(r2 x tangent_y, ang_vel2)
//
// Finally, moving the right-hand side to the left:
//
// dot(lin_vel1, tangent_x) + dot(r1 x tangent_x, ang_vel1) - dot(lin_vel2, tangent_x) - dot(r2 x tangent_x, ang_vel2) = 0
// dot(lin_vel1, tangent_y) + dot(r1 x tangent_y, ang_vel1) - dot(lin_vel2, tangent_y) - dot(r2 x tangent_y, ang_vel2) = 0
//
// By inspection, we can see that the Jacobian is the following:
//
// linear1 angular1 linear2 angular2
// J_x = [ -tangent_x, -(r1 x tangent_x), tangent_x, r2 x tangent_x ]
// J_y = [ -tangent_y, -(r1 x tangent_y), tangent_y, r2 x tangent_y ]
//
// From this, we can derive the effective inverse mass for both tangent directions:
//
// K_x = J_x * M^-1 * J_x^T
// = m1 + m2 + (r1 x tangent_x)^T * I1 * (r1 x tangent_x) + (r2 x tangent_x)^T * I2 * (r2 x tangent_x)
// K_y = J_y * M^-1 * J_y^T
// = m1 + m2 + (r1 x tangent_y)^T * I1 * (r1 x tangent_y) + (r2 x tangent_y)^T * I2 * (r2 x tangent_y)
//
// See "Constraints Derivation for Rigid Body Simulation in 3D" section 2.1.3
// by Daniel Chappuis for the full derivation of the effective inverse mass.
//
// Finally, the transposes can be simplified with dot products, because a^T * b = dot(a, b),
// where a and b are two column vectors.
//
// K_x = m1 + m2 + dot(r1 x tangent_x, I1 * (r1 x tangent_x)) + dot(r2 x tangent_x, I2 * (r2 x tangent_x))
// K_y = m1 + m2 + dot(r1 x tangent_y, I1 * (r1 x tangent_y)) + dot(r2 x tangent_y, I2 * (r2 x tangent_y))
#[cfg(feature = "2d")]
{
let rt1 = cross(r1, tangents[0]);
let rt2 = cross(r2, tangents[0]);
let k = inverse_mass_sum + i1 * rt1 * rt1 + i2 * rt2 * rt2;
part.effective_mass = k.recip_or_zero();
}
#[cfg(feature = "3d")]
{
// Based on Rapier's two-body constraint.
// https://github.com/dimforge/rapier/blob/af1ac9baa26b1199ae2728e91adf5345bcd1c693/src/dynamics/solver/contact_constraint/two_body_constraint.rs#L257-L289
let rt11 = cross(r1, tangents[0]);
let rt12 = cross(r2, tangents[0]);
let rt21 = cross(r1, tangents[1]);
let rt22 = cross(r2, tangents[1]);
// Multiply by the inverse inertia early to reuse the values.
let i1_rt11 = i1 * rt11;
let i2_rt12 = i2 * rt12;
let i1_rt21 = i1 * rt21;
let i2_rt22 = i2 * rt22;
let k1 = inverse_mass_sum + rt11.dot(i1_rt11) + rt12.dot(i2_rt12);
let k2 = inverse_mass_sum + rt21.dot(i1_rt21) + rt22.dot(i2_rt22);
// Note: The invertion is done in `solve_impulse`, unlike in 2D.
part.effective_inverse_mass[0] = k1;
part.effective_inverse_mass[1] = k2;
// This is needed for solving the two tangent directions simultaneously.
// TODO. Derive and explain the math for this, or consider an alternative approach,
// like using the Jacobians to compute the actual effective mass matrix.
part.effective_inverse_mass[2] = 2.0 * (i1_rt11.dot(i1_rt21) + i2_rt12.dot(i2_rt22));
}
part
}
/// Solves the friction constraint, updating the total impulse in `self` and returning
/// the incremental impulse to apply to each body.
pub fn solve_impulse(
&mut self,
tangent_directions: [Vector; DIM - 1],
relative_velocity: Vector,
friction: Friction,
normal_impulse: Scalar,
) -> Vector {
// Compute the maximum bound for the friction impulse.
//
// According to the Coulomb friction law:
//
// length(friction_force) <= coefficient * length(normal_force)
//
// Now, we need to find the Lagrange multiplier, which corresponds
// to the constraint force magnitude.
//
// F_c = J^T * lagrange, where J is the Jacobian, which in this case is of unit length.
//
// We get the following:
//
// length(J^T * force_magnitude) <= coefficient * length(normal_force)
// <=> abs(force_magnitude) <= coefficient * length(normal_force)
// <=> -coefficient * length(normal_force) <= force_magnitude <= coefficient * length(normal_force)
//
// We are dealing with impulses instead of forces. Multiplying by delta time,
// we get the minimum and maximum bound for the friction impulse:
//
// -coefficient * length(normal_impulse) <= impulse_magnitude <= coefficient * length(normal_impulse)
// TODO: Separate static and dynamic friction
let impulse_limit = friction.dynamic_coefficient * normal_impulse;
#[cfg(feature = "2d")]
{
// Compute the relative velocity along the tangent.
let tangent = tangent_directions[0];
let tangent_speed = relative_velocity.dot(tangent);
// Compute the incremental tangent impoulse magnitude.
let mut impulse = self.effective_mass * (-tangent_speed);
// Clamp the accumulated impulse.
let new_impulse = (self.impulse + impulse).clamp(-impulse_limit, impulse_limit);
impulse = new_impulse - self.impulse;
self.impulse = new_impulse;
// Return the incremental friction impulse.
impulse * tangent
}
#[cfg(feature = "3d")]
{
// Compute the relative velocity along the tangents.
let tangent_speed1 = relative_velocity.dot(tangent_directions[0]);
let tangent_speed2 = relative_velocity.dot(tangent_directions[1]);
// Solve the two tangent directions simultaneously.
// Based on Rapier's two-body constraint.
// https://github.com/dimforge/rapier/blob/af1ac9baa26b1199ae2728e91adf5345bcd1c693/src/dynamics/solver/contact_constraint/two_body_constraint_element.rs#L127-L133
let t11 = tangent_speed1.powi(2);
let t22 = tangent_speed2.powi(2);
let t12 = tangent_speed1 * tangent_speed2;
let inv = t11 * self.effective_inverse_mass[0]
+ t22 * self.effective_inverse_mass[1]
+ t12 * self.effective_inverse_mass[2];
// Compute the effective mass "seen" by the constraint along the tangent.
// Note the guard against division by zero.
let effective_mass = (t11 + t22) * inv.max(1e-16).recip();
// Compute the incremental tangent impoulse.
let delta_impulse = effective_mass * Vector2::new(tangent_speed1, tangent_speed2);
// Clamp the accumulated impulse.
let new_impulse = (self.impulse - delta_impulse).clamp_length_max(impulse_limit);
let impulse = new_impulse - self.impulse;
if !impulse.is_finite() {
return Vector::ZERO;
}
self.impulse = new_impulse;
// Return the clamped incremental friction impulse.
impulse.x * tangent_directions[0] + impulse.y * tangent_directions[1]
}
}
}