avian3d/dynamics/solver/contact/
tangent_part.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
use crate::prelude::*;
use bevy::reflect::Reflect;

#[cfg(feature = "2d")]
pub type TangentImpulse = Scalar;
#[cfg(feature = "3d")]
pub type TangentImpulse = Vector2;

// TODO: One-body constraint version
/// The tangential friction part of a [`ContactConstraintPoint`](super::ContactConstraintPoint).
#[derive(Clone, Debug, Default, PartialEq, Reflect)]
pub struct ContactTangentPart {
    /// The contact impulse magnitude along the contact tangent.
    ///
    /// This corresponds to the magnitude of the friction impulse.
    pub impulse: TangentImpulse,

    /// The inertial properties of the bodies projected onto the contact tangent,
    /// or in other words, the mass "seen" by the constraint along the tangent.
    #[cfg(feature = "2d")]
    pub effective_mass: Scalar,
    /// The inverse of the inertial properties of the bodies projected onto the contact tangents,
    /// or in other words, the inverse mass "seen" by the constraint along the tangents.
    #[cfg(feature = "3d")]
    pub effective_inverse_mass: [Scalar; 3],
}

impl ContactTangentPart {
    /// Generates a new [`ContactTangentPart`].
    #[allow(clippy::too_many_arguments)]
    pub fn generate(
        inverse_mass_sum: Scalar,
        angular_inertia1: impl Into<ComputedAngularInertia>,
        angular_inertia2: impl Into<ComputedAngularInertia>,
        r1: Vector,
        r2: Vector,
        tangents: [Vector; DIM - 1],
        warm_start_impulse: Option<TangentImpulse>,
    ) -> Self {
        let angular_inertia1: ComputedAngularInertia = angular_inertia1.into();
        let angular_inertia2: ComputedAngularInertia = angular_inertia2.into();
        let i1 = angular_inertia1.inverse();
        let i2 = angular_inertia2.inverse();

        let mut part = Self {
            impulse: warm_start_impulse.unwrap_or_default(),
            #[cfg(feature = "2d")]
            effective_mass: 0.0,
            #[cfg(feature = "3d")]
            effective_inverse_mass: [0.0; 3],
        };

        // Derivation for the projected tangent masses. This is for 3D, but the 2D version is largely the same.
        //
        // Friction constraints aim to prevent relative tangential motion at contact points.
        // The velocity constraint is satisfied when the relative velocity along the tangent
        // is equal to zero.
        //
        // In 3D, there are two tangent directions and therefore two constraints:
        //
        // dot(lin_vel1_p, tangent_x) = dot(lin_vel2_p, tangent_x)
        // dot(lin_vel1_p, tangent_y) = dot(lin_vel2_p, tangent_y)
        //
        // where lin_vel1_p and lin_vel2_p are the velocities of the bodies at the contact point p:
        //
        // lin_vel1_p = lin_vel1 + ang_vel1 x r1
        // lin_vel2_p = lin_vel2 + ang_vel2 x r2
        //
        // Based on this, we get:
        //
        // dot(lin_vel1_p, tangent_x) = dot(lin_vel1, tangent_x) + dot(ang_vel1 x r1, tangent_x)
        //                            = dot(lin_vel1, tangent_x) + dot(r1 x tangent_x, ang_vel1)
        //
        // Restating the original constraints with the derived formula:
        //
        // dot(lin_vel1, tangent_x) + dot(r1 x tangent_x, ang_vel1) = dot(lin_vel2, tangent_x) + dot(r2 x tangent_x, ang_vel2)
        // dot(lin_vel1, tangent_y) + dot(r1 x tangent_y, ang_vel1) = dot(lin_vel2, tangent_y) + dot(r2 x tangent_y, ang_vel2)
        //
        // Finally, moving the right-hand side to the left:
        //
        // dot(lin_vel1, tangent_x) + dot(r1 x tangent_x, ang_vel1) - dot(lin_vel2, tangent_x) - dot(r2 x tangent_x, ang_vel2) = 0
        // dot(lin_vel1, tangent_y) + dot(r1 x tangent_y, ang_vel1) - dot(lin_vel2, tangent_y) - dot(r2 x tangent_y, ang_vel2) = 0
        //
        // By inspection, we can see that the Jacobian is the following:
        //
        //          linear1      angular1       linear2       angular2
        // J_x = [ -tangent_x, -(r1 x tangent_x), tangent_x, r2 x tangent_x ]
        // J_y = [ -tangent_y, -(r1 x tangent_y), tangent_y, r2 x tangent_y ]
        //
        // From this, we can derive the effective inverse mass for both tangent directions:
        //
        // K_x = J_x * M^-1 * J_x^T
        //     = m1 + m2 + (r1 x tangent_x)^T * I1 * (r1 x tangent_x) + (r2 x tangent_x)^T * I2 * (r2 x tangent_x)
        // K_y = J_y * M^-1 * J_y^T
        //     = m1 + m2 + (r1 x tangent_y)^T * I1 * (r1 x tangent_y) + (r2 x tangent_y)^T * I2 * (r2 x tangent_y)
        //
        // See "Constraints Derivation for Rigid Body Simulation in 3D" section 2.1.3
        // by Daniel Chappuis for the full derivation of the effective inverse mass.
        //
        // Finally, the transposes can be simplified with dot products, because a^T * b = dot(a, b),
        // where a and b are two column vectors.
        //
        // K_x = m1 + m2 + dot(r1 x tangent_x, I1 * (r1 x tangent_x)) + dot(r2 x tangent_x, I2 * (r2 x tangent_x))
        // K_y = m1 + m2 + dot(r1 x tangent_y, I1 * (r1 x tangent_y)) + dot(r2 x tangent_y, I2 * (r2 x tangent_y))

        #[cfg(feature = "2d")]
        {
            let rt1 = cross(r1, tangents[0]);
            let rt2 = cross(r2, tangents[0]);

            let k = inverse_mass_sum + i1 * rt1 * rt1 + i2 * rt2 * rt2;

            part.effective_mass = k.recip_or_zero();
        }

        #[cfg(feature = "3d")]
        {
            // Based on Rapier's two-body constraint.
            // https://github.com/dimforge/rapier/blob/af1ac9baa26b1199ae2728e91adf5345bcd1c693/src/dynamics/solver/contact_constraint/two_body_constraint.rs#L257-L289

            let rt11 = cross(r1, tangents[0]);
            let rt12 = cross(r2, tangents[0]);
            let rt21 = cross(r1, tangents[1]);
            let rt22 = cross(r2, tangents[1]);

            // Multiply by the inverse inertia early to reuse the values.
            let i1_rt11 = i1 * rt11;
            let i2_rt12 = i2 * rt12;
            let i1_rt21 = i1 * rt21;
            let i2_rt22 = i2 * rt22;

            let k1 = inverse_mass_sum + rt11.dot(i1_rt11) + rt12.dot(i2_rt12);
            let k2 = inverse_mass_sum + rt21.dot(i1_rt21) + rt22.dot(i2_rt22);

            // Note: The invertion is done in `solve_impulse`, unlike in 2D.
            part.effective_inverse_mass[0] = k1;
            part.effective_inverse_mass[1] = k2;

            // This is needed for solving the two tangent directions simultaneously.
            // TODO. Derive and explain the math for this, or consider an alternative approach,
            //       like using the Jacobians to compute the actual effective mass matrix.
            part.effective_inverse_mass[2] = 2.0 * (i1_rt11.dot(i1_rt21) + i2_rt12.dot(i2_rt22));
        }

        part
    }

    /// Solves the friction constraint, updating the total impulse in `self` and returning
    /// the incremental impulse to apply to each body.
    pub fn solve_impulse(
        &mut self,
        tangent_directions: [Vector; DIM - 1],
        relative_velocity: Vector,
        friction: Friction,
        normal_impulse: Scalar,
    ) -> Vector {
        // Compute the maximum bound for the friction impulse.
        //
        // According to the Coulomb friction law:
        //
        // length(friction_force) <= coefficient * length(normal_force)
        //
        // Now, we need to find the Lagrange multiplier, which corresponds
        // to the constraint force magnitude.
        //
        // F_c = J^T * lagrange, where J is the Jacobian, which in this case is of unit length.
        //
        // We get the following:
        //
        // length(J^T * force_magnitude) <= coefficient * length(normal_force)
        // <=> abs(force_magnitude) <= coefficient * length(normal_force)
        // <=> -coefficient * length(normal_force) <= force_magnitude <= coefficient * length(normal_force)
        //
        // We are dealing with impulses instead of forces. Multiplying by delta time,
        // we get the minimum and maximum bound for the friction impulse:
        //
        // -coefficient * length(normal_impulse) <= impulse_magnitude <= coefficient * length(normal_impulse)

        // TODO: Separate static and dynamic friction
        let impulse_limit = friction.dynamic_coefficient * normal_impulse;

        #[cfg(feature = "2d")]
        {
            // Compute the relative velocity along the tangent.
            let tangent = tangent_directions[0];
            let tangent_speed = relative_velocity.dot(tangent);

            // Compute the incremental tangent impoulse magnitude.
            let mut impulse = self.effective_mass * (-tangent_speed);

            // Clamp the accumulated impulse.
            let new_impulse = (self.impulse + impulse).clamp(-impulse_limit, impulse_limit);
            impulse = new_impulse - self.impulse;
            self.impulse = new_impulse;

            // Return the incremental friction impulse.
            impulse * tangent
        }

        #[cfg(feature = "3d")]
        {
            // Compute the relative velocity along the tangents.
            let tangent_speed1 = relative_velocity.dot(tangent_directions[0]);
            let tangent_speed2 = relative_velocity.dot(tangent_directions[1]);

            // Solve the two tangent directions simultaneously.
            // Based on Rapier's two-body constraint.
            // https://github.com/dimforge/rapier/blob/af1ac9baa26b1199ae2728e91adf5345bcd1c693/src/dynamics/solver/contact_constraint/two_body_constraint_element.rs#L127-L133
            let t11 = tangent_speed1.powi(2);
            let t22 = tangent_speed2.powi(2);
            let t12 = tangent_speed1 * tangent_speed2;
            let inv = t11 * self.effective_inverse_mass[0]
                + t22 * self.effective_inverse_mass[1]
                + t12 * self.effective_inverse_mass[2];

            // Compute the effective mass "seen" by the constraint along the tangent.
            // Note the guard against division by zero.
            let effective_mass = (t11 + t22) * inv.max(1e-16).recip();

            // Compute the incremental tangent impoulse.
            let delta_impulse = effective_mass * Vector2::new(tangent_speed1, tangent_speed2);

            // Clamp the accumulated impulse.
            let new_impulse = (self.impulse - delta_impulse).clamp_length_max(impulse_limit);
            let impulse = new_impulse - self.impulse;

            if !impulse.is_finite() {
                return Vector::ZERO;
            }

            self.impulse = new_impulse;

            // Return the clamped incremental friction impulse.
            impulse.x * tangent_directions[0] + impulse.y * tangent_directions[1]
        }
    }
}