avian3d/dynamics/solver/joints/
fixed.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
//! [`FixedJoint`] component.

use crate::{dynamics::solver::xpbd::*, prelude::*};
use bevy::{
    ecs::{
        entity::{EntityMapper, MapEntities},
        reflect::ReflectMapEntities,
    },
    prelude::*,
};

/// A fixed joint prevents any relative movement of the attached bodies.
///
/// You should generally prefer using a single body instead of multiple bodies fixed together,
/// but fixed joints can be useful for things like rigid structures where a force can dynamically break the joints connecting individual bodies.
#[derive(Component, Clone, Copy, Debug, PartialEq, Reflect)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, MapEntities, PartialEq)]
pub struct FixedJoint {
    /// First entity constrained by the joint.
    pub entity1: Entity,
    /// Second entity constrained by the joint.
    pub entity2: Entity,
    /// Attachment point on the first body.
    pub local_anchor1: Vector,
    /// Attachment point on the second body.
    pub local_anchor2: Vector,
    /// Linear damping applied by the joint.
    pub damping_linear: Scalar,
    /// Angular damping applied by the joint.
    pub damping_angular: Scalar,
    /// Lagrange multiplier for the positional correction.
    pub position_lagrange: Scalar,
    /// Lagrange multiplier for the angular correction caused by the alignment of the bodies.
    pub align_lagrange: Scalar,
    /// The joint's compliance, the inverse of stiffness, has the unit meters / Newton.
    pub compliance: Scalar,
    /// The force exerted by the joint.
    pub force: Vector,
    /// The torque exerted by the joint when aligning the bodies.
    pub align_torque: Torque,
}

impl XpbdConstraint<2> for FixedJoint {
    fn entities(&self) -> [Entity; 2] {
        [self.entity1, self.entity2]
    }

    fn clear_lagrange_multipliers(&mut self) {
        self.position_lagrange = 0.0;
        self.align_lagrange = 0.0;
    }

    fn solve(&mut self, bodies: [&mut RigidBodyQueryItem; 2], dt: Scalar) {
        let [body1, body2] = bodies;
        let compliance = self.compliance;

        // Align orientation
        let difference = self.get_rotation_difference(&body1.rotation, &body2.rotation);
        let mut lagrange = self.align_lagrange;
        self.align_torque =
            self.align_orientation(body1, body2, difference, &mut lagrange, compliance, dt);
        self.align_lagrange = lagrange;

        // Align position of local attachment points
        let mut lagrange = self.position_lagrange;
        self.force = self.align_position(
            body1,
            body2,
            self.local_anchor1,
            self.local_anchor2,
            &mut lagrange,
            compliance,
            dt,
        );
        self.position_lagrange = lagrange;
    }
}

impl Joint for FixedJoint {
    fn new(entity1: Entity, entity2: Entity) -> Self {
        Self {
            entity1,
            entity2,
            local_anchor1: Vector::ZERO,
            local_anchor2: Vector::ZERO,
            damping_linear: 1.0,
            damping_angular: 1.0,
            position_lagrange: 0.0,
            align_lagrange: 0.0,
            compliance: 0.0,
            force: Vector::ZERO,
            #[cfg(feature = "2d")]
            align_torque: 0.0,
            #[cfg(feature = "3d")]
            align_torque: Vector::ZERO,
        }
    }

    fn with_compliance(self, compliance: Scalar) -> Self {
        Self { compliance, ..self }
    }

    fn with_local_anchor_1(self, anchor: Vector) -> Self {
        Self {
            local_anchor1: anchor,
            ..self
        }
    }

    fn with_local_anchor_2(self, anchor: Vector) -> Self {
        Self {
            local_anchor2: anchor,
            ..self
        }
    }

    fn with_linear_velocity_damping(self, damping: Scalar) -> Self {
        Self {
            damping_linear: damping,
            ..self
        }
    }

    fn with_angular_velocity_damping(self, damping: Scalar) -> Self {
        Self {
            damping_angular: damping,
            ..self
        }
    }

    fn local_anchor_1(&self) -> Vector {
        self.local_anchor1
    }

    fn local_anchor_2(&self) -> Vector {
        self.local_anchor2
    }

    fn damping_linear(&self) -> Scalar {
        self.damping_linear
    }

    fn damping_angular(&self) -> Scalar {
        self.damping_angular
    }
}

impl FixedJoint {
    #[cfg(feature = "2d")]
    fn get_rotation_difference(&self, rot1: &Rotation, rot2: &Rotation) -> Scalar {
        rot1.angle_between(*rot2)
    }

    #[cfg(feature = "3d")]
    fn get_rotation_difference(&self, rot1: &Rotation, rot2: &Rotation) -> Vector {
        // TODO: The XPBD paper doesn't have this minus sign, but it seems to be needed for stability.
        //       The angular correction code might have a wrong sign elsewhere.
        -2.0 * (rot1.0 * rot2.inverse().0).xyz()
    }
}

impl PositionConstraint for FixedJoint {}

impl AngularConstraint for FixedJoint {}

impl MapEntities for FixedJoint {
    fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) {
        self.entity1 = entity_mapper.map_entity(self.entity1);
        self.entity2 = entity_mapper.map_entity(self.entity2);
    }
}