1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
//! [`PrismaticJoint`] component.

use crate::{dynamics::solver::xpbd::*, prelude::*};
use bevy::{
    ecs::{
        entity::{EntityMapper, MapEntities},
        reflect::ReflectMapEntities,
    },
    prelude::*,
};

/// A prismatic joint prevents relative movement of the attached bodies, except for translation along one `free_axis`.
///
/// Prismatic joints can be useful for things like elevators, pistons, sliding doors and moving platforms.
#[derive(Component, Clone, Copy, Debug, PartialEq, Reflect)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, MapEntities, PartialEq)]
pub struct PrismaticJoint {
    /// First entity constrained by the joint.
    pub entity1: Entity,
    /// Second entity constrained by the joint.
    pub entity2: Entity,
    /// Attachment point on the first body.
    pub local_anchor1: Vector,
    /// Attachment point on the second body.
    pub local_anchor2: Vector,
    /// A free axis that the attached bodies can translate along relative to each other.
    pub free_axis: Vector,
    /// The extents of the allowed relative translation along the free axis.
    pub free_axis_limits: Option<DistanceLimit>,
    /// Linear damping applied by the joint.
    pub damping_linear: Scalar,
    /// Angular damping applied by the joint.
    pub damping_angular: Scalar,
    /// Lagrange multiplier for the positional correction.
    pub position_lagrange: Scalar,
    /// Lagrange multiplier for the angular correction caused by the alignment of the bodies.
    pub align_lagrange: Scalar,
    /// The joint's compliance, the inverse of stiffness, has the unit meters / Newton.
    pub compliance: Scalar,
    /// The force exerted by the joint.
    pub force: Vector,
    /// The torque exerted by the joint when aligning the bodies.
    pub align_torque: Torque,
}

impl XpbdConstraint<2> for PrismaticJoint {
    fn entities(&self) -> [Entity; 2] {
        [self.entity1, self.entity2]
    }

    fn clear_lagrange_multipliers(&mut self) {
        self.position_lagrange = 0.0;
        self.align_lagrange = 0.0;
    }

    fn solve(&mut self, bodies: [&mut RigidBodyQueryItem; 2], dt: Scalar) {
        let [body1, body2] = bodies;
        let compliance = self.compliance;

        // Align orientations
        let difference = self.get_rotation_difference(&body1.rotation, &body2.rotation);
        let mut lagrange = self.align_lagrange;
        self.align_torque =
            self.align_orientation(body1, body2, difference, &mut lagrange, compliance, dt);
        self.align_lagrange = lagrange;

        // Constrain the relative positions of the bodies, only allowing translation along one free axis
        self.force = self.constrain_positions(body1, body2, dt);
    }
}

impl Joint for PrismaticJoint {
    fn new(entity1: Entity, entity2: Entity) -> Self {
        Self {
            entity1,
            entity2,
            local_anchor1: Vector::ZERO,
            local_anchor2: Vector::ZERO,
            free_axis: Vector::X,
            free_axis_limits: None,
            damping_linear: 1.0,
            damping_angular: 1.0,
            position_lagrange: 0.0,
            align_lagrange: 0.0,
            compliance: 0.0,
            force: Vector::ZERO,
            #[cfg(feature = "2d")]
            align_torque: 0.0,
            #[cfg(feature = "3d")]
            align_torque: Vector::ZERO,
        }
    }

    fn with_compliance(self, compliance: Scalar) -> Self {
        Self { compliance, ..self }
    }

    fn with_local_anchor_1(self, anchor: Vector) -> Self {
        Self {
            local_anchor1: anchor,
            ..self
        }
    }

    fn with_local_anchor_2(self, anchor: Vector) -> Self {
        Self {
            local_anchor2: anchor,
            ..self
        }
    }

    fn with_linear_velocity_damping(self, damping: Scalar) -> Self {
        Self {
            damping_linear: damping,
            ..self
        }
    }

    fn with_angular_velocity_damping(self, damping: Scalar) -> Self {
        Self {
            damping_angular: damping,
            ..self
        }
    }

    fn local_anchor_1(&self) -> Vector {
        self.local_anchor1
    }

    fn local_anchor_2(&self) -> Vector {
        self.local_anchor2
    }

    fn damping_linear(&self) -> Scalar {
        self.damping_linear
    }

    fn damping_angular(&self) -> Scalar {
        self.damping_angular
    }
}

impl PrismaticJoint {
    /// Constrains the relative positions of the bodies, only allowing translation along one free axis.
    ///
    /// Returns the force exerted by this constraint.
    fn constrain_positions(
        &mut self,
        body1: &mut RigidBodyQueryItem,
        body2: &mut RigidBodyQueryItem,
        dt: Scalar,
    ) -> Vector {
        let world_r1 = *body1.rotation * self.local_anchor1;
        let world_r2 = *body2.rotation * self.local_anchor2;

        let mut delta_x = Vector::ZERO;

        let axis1 = *body1.rotation * self.free_axis;
        if let Some(limits) = self.free_axis_limits {
            delta_x += limits.compute_correction_along_axis(
                body1.current_position() + world_r1,
                body2.current_position() + world_r2,
                axis1,
            );
        }

        let zero_distance_limit = DistanceLimit::ZERO;

        #[cfg(feature = "2d")]
        {
            let axis2 = Vector::new(axis1.y, -axis1.x);
            delta_x += zero_distance_limit.compute_correction_along_axis(
                body1.current_position() + world_r1,
                body2.current_position() + world_r2,
                axis2,
            );
        }
        #[cfg(feature = "3d")]
        {
            let axis2 = axis1.any_orthogonal_vector();
            let axis3 = axis1.cross(axis2);

            delta_x += zero_distance_limit.compute_correction_along_axis(
                body1.current_position() + world_r1,
                body2.current_position() + world_r2,
                axis2,
            );
            delta_x += zero_distance_limit.compute_correction_along_axis(
                body1.current_position() + world_r1,
                body2.current_position() + world_r2,
                axis3,
            );
        }

        let magnitude = delta_x.length();

        if magnitude <= Scalar::EPSILON {
            return Vector::ZERO;
        }

        let dir = delta_x / magnitude;

        // Compute generalized inverse masses
        let w1 = PositionConstraint::compute_generalized_inverse_mass(self, body1, world_r1, dir);
        let w2 = PositionConstraint::compute_generalized_inverse_mass(self, body2, world_r2, dir);

        // Compute Lagrange multiplier update
        let delta_lagrange = self.compute_lagrange_update(
            self.position_lagrange,
            magnitude,
            &[w1, w2],
            self.compliance,
            dt,
        );
        self.position_lagrange += delta_lagrange;

        // Apply positional correction to align the positions of the bodies
        self.apply_positional_lagrange_update(
            body1,
            body2,
            delta_lagrange,
            dir,
            world_r1,
            world_r2,
        );

        // Return constraint force
        self.compute_force(self.position_lagrange, dir, dt)
    }

    /// Sets the joint's free axis. Relative translations are allowed along this free axis.
    pub fn with_free_axis(self, axis: Vector) -> Self {
        Self {
            free_axis: axis,
            ..self
        }
    }

    /// Sets the translational limits along the joint's free axis.
    pub fn with_limits(self, min: Scalar, max: Scalar) -> Self {
        Self {
            free_axis_limits: Some(DistanceLimit::new(min, max)),
            ..self
        }
    }

    #[cfg(feature = "2d")]
    fn get_rotation_difference(&self, rot1: &Rotation, rot2: &Rotation) -> Scalar {
        rot1.angle_between(*rot2)
    }

    #[cfg(feature = "3d")]
    fn get_rotation_difference(&self, rot1: &Rotation, rot2: &Rotation) -> Vector {
        // TODO: The XPBD paper doesn't have this minus sign, but it seems to be needed for stability.
        //       The angular correction code might have a wrong sign elsewhere.
        -2.0 * (rot1.0 * rot2.inverse().0).xyz()
    }
}

impl PositionConstraint for PrismaticJoint {}

impl AngularConstraint for PrismaticJoint {}

impl MapEntities for PrismaticJoint {
    fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) {
        self.entity1 = entity_mapper.map_entity(self.entity1);
        self.entity2 = entity_mapper.map_entity(self.entity2);
    }
}