avian3d/dynamics/solver/joints/
spherical.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//! [`SphericalJoint`] component.

use crate::{dynamics::solver::xpbd::*, prelude::*};
use bevy::{
    ecs::{
        entity::{EntityMapper, MapEntities},
        reflect::ReflectMapEntities,
    },
    prelude::*,
};

/// A spherical joint prevents relative translation of the attached bodies while allowing rotation around all axes.
///
/// Spherical joints can be useful for things like pendula, chains, ragdolls etc.
#[derive(Component, Clone, Copy, Debug, PartialEq, Reflect)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, MapEntities, PartialEq)]
pub struct SphericalJoint {
    /// First entity constrained by the joint.
    pub entity1: Entity,
    /// Second entity constrained by the joint.
    pub entity2: Entity,
    /// Attachment point on the first body.
    pub local_anchor1: Vector,
    /// Attachment point on the second body.
    pub local_anchor2: Vector,
    /// An axis that the attached bodies can swing around. This is normally the x-axis.
    pub swing_axis: Vector3,
    /// An axis that the attached bodies can twist around. This is normally the y-axis.
    pub twist_axis: Vector3,
    /// The extents of the allowed relative rotation of the bodies around the `swing_axis`.
    pub swing_limit: Option<AngleLimit>,
    /// The extents of the allowed relative rotation of the bodies around the `twist_axis`.
    pub twist_limit: Option<AngleLimit>,
    /// Linear damping applied by the joint.
    pub damping_linear: Scalar,
    /// Angular damping applied by the joint.
    pub damping_angular: Scalar,
    /// Lagrange multiplier for the positional correction.
    pub position_lagrange: Scalar,
    /// Lagrange multiplier for the angular correction caused by the swing limits.
    pub swing_lagrange: Scalar,
    /// Lagrange multiplier for the angular correction caused by the twist limits.
    pub twist_lagrange: Scalar,
    /// The joint's compliance, the inverse of stiffness, has the unit meters / Newton.
    pub compliance: Scalar,
    /// The force exerted by the joint.
    pub force: Vector,
    /// The torque exerted by the joint when limiting the relative rotation of the bodies around the `swing_axis`.
    pub swing_torque: Torque,
    /// The torque exerted by the joint when limiting the relative rotation of the bodies around the `twist_axis`.
    pub twist_torque: Torque,
}

impl XpbdConstraint<2> for SphericalJoint {
    fn entities(&self) -> [Entity; 2] {
        [self.entity1, self.entity2]
    }

    fn clear_lagrange_multipliers(&mut self) {
        self.position_lagrange = 0.0;
        self.swing_lagrange = 0.0;
        self.twist_lagrange = 0.0;
    }

    fn solve(&mut self, bodies: [&mut RigidBodyQueryItem; 2], dt: Scalar) {
        let [body1, body2] = bodies;
        let compliance = self.compliance;

        // Align positions
        let mut lagrange = self.position_lagrange;
        self.force = self.align_position(
            body1,
            body2,
            self.local_anchor1,
            self.local_anchor2,
            &mut lagrange,
            compliance,
            dt,
        );
        self.position_lagrange = lagrange;

        // Apply swing limits
        self.swing_torque = self.apply_swing_limits(body1, body2, dt);

        // Apply twist limits
        self.twist_torque = self.apply_twist_limits(body1, body2, dt);
    }
}

impl Joint for SphericalJoint {
    fn new(entity1: Entity, entity2: Entity) -> Self {
        Self {
            entity1,
            entity2,
            local_anchor1: Vector::ZERO,
            local_anchor2: Vector::ZERO,
            swing_axis: Vector3::X,
            twist_axis: Vector3::Y,
            swing_limit: None,
            twist_limit: None,
            damping_linear: 1.0,
            damping_angular: 1.0,
            position_lagrange: 0.0,
            swing_lagrange: 0.0,
            twist_lagrange: 0.0,
            compliance: 0.0,
            force: Vector::ZERO,
            #[cfg(feature = "2d")]
            swing_torque: 0.0,
            #[cfg(feature = "3d")]
            swing_torque: Vector::ZERO,
            #[cfg(feature = "2d")]
            twist_torque: 0.0,
            #[cfg(feature = "3d")]
            twist_torque: Vector::ZERO,
        }
    }

    fn with_compliance(self, compliance: Scalar) -> Self {
        Self { compliance, ..self }
    }

    fn with_local_anchor_1(self, anchor: Vector) -> Self {
        Self {
            local_anchor1: anchor,
            ..self
        }
    }

    fn with_local_anchor_2(self, anchor: Vector) -> Self {
        Self {
            local_anchor2: anchor,
            ..self
        }
    }

    fn with_linear_velocity_damping(self, damping: Scalar) -> Self {
        Self {
            damping_linear: damping,
            ..self
        }
    }

    fn with_angular_velocity_damping(self, damping: Scalar) -> Self {
        Self {
            damping_angular: damping,
            ..self
        }
    }

    fn local_anchor_1(&self) -> Vector {
        self.local_anchor1
    }

    fn local_anchor_2(&self) -> Vector {
        self.local_anchor2
    }

    fn damping_linear(&self) -> Scalar {
        self.damping_linear
    }

    fn damping_angular(&self) -> Scalar {
        self.damping_angular
    }
}

impl SphericalJoint {
    /// Sets the limits of the allowed relative rotation around the `swing_axis`.
    pub fn with_swing_limits(self, min: Scalar, max: Scalar) -> Self {
        Self {
            swing_limit: Some(AngleLimit::new(min, max)),
            ..self
        }
    }

    /// Sets the limits of the allowed relative rotation around the `twist_axis`.
    #[cfg(feature = "3d")]
    pub fn with_twist_limits(self, min: Scalar, max: Scalar) -> Self {
        Self {
            twist_limit: Some(AngleLimit::new(min, max)),
            ..self
        }
    }

    /// Applies angle limits to limit the relative rotation of the bodies around the `swing_axis`.
    fn apply_swing_limits(
        &mut self,
        body1: &mut RigidBodyQueryItem,
        body2: &mut RigidBodyQueryItem,
        dt: Scalar,
    ) -> Torque {
        if let Some(joint_limit) = self.swing_limit {
            let a1 = *body1.rotation * self.swing_axis;
            let a2 = *body2.rotation * self.swing_axis;

            let n = a1.cross(a2);
            let n_magnitude = n.length();

            if n_magnitude <= Scalar::EPSILON {
                return Torque::ZERO;
            }

            let n = n / n_magnitude;

            if let Some(correction) = joint_limit.compute_correction(n, a1, a2, PI) {
                let mut lagrange = self.swing_lagrange;
                let torque = self.align_orientation(
                    body1,
                    body2,
                    correction,
                    &mut lagrange,
                    self.compliance,
                    dt,
                );
                self.swing_lagrange = lagrange;
                return torque;
            }
        }
        Torque::ZERO
    }

    /// Applies angle limits to limit the relative rotation of the bodies around the `twist_axis`.
    fn apply_twist_limits(
        &mut self,
        body1: &mut RigidBodyQueryItem,
        body2: &mut RigidBodyQueryItem,
        dt: Scalar,
    ) -> Torque {
        if let Some(joint_limit) = self.twist_limit {
            let a1 = *body1.rotation * self.swing_axis;
            let a2 = *body2.rotation * self.swing_axis;

            let b1 = *body1.rotation * self.twist_axis;
            let b2 = *body2.rotation * self.twist_axis;

            let n = a1 + a2;
            let n_magnitude = n.length();

            if n_magnitude <= Scalar::EPSILON {
                return Torque::ZERO;
            }

            let n = n / n_magnitude;

            let n1 = b1 - n.dot(b1) * n;
            let n2 = b2 - n.dot(b2) * n;
            let n1_magnitude = n1.length();
            let n2_magnitude = n2.length();

            if n1_magnitude <= Scalar::EPSILON || n2_magnitude <= Scalar::EPSILON {
                return Torque::ZERO;
            }

            let n1 = n1 / n1_magnitude;
            let n2 = n2 / n2_magnitude;

            let max_correction = if a1.dot(a2) > -0.5 { 2.0 * PI } else { dt };

            if let Some(correction) = joint_limit.compute_correction(n, n1, n2, max_correction) {
                let mut lagrange = self.twist_lagrange;
                let torque = self.align_orientation(
                    body1,
                    body2,
                    correction,
                    &mut lagrange,
                    self.compliance,
                    dt,
                );
                self.twist_lagrange = lagrange;
                return torque;
            }
        }
        Torque::ZERO
    }
}

impl PositionConstraint for SphericalJoint {}

impl AngularConstraint for SphericalJoint {}

impl MapEntities for SphericalJoint {
    fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) {
        self.entity1 = entity_mapper.map_entity(self.entity1);
        self.entity2 = entity_mapper.map_entity(self.entity2);
    }
}