avian3d/dynamics/solver/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
//! Manages and solves contacts, joints, and other constraints.
//!
//! See [`SolverPlugin`].

pub mod contact;
pub mod joints;
pub mod schedule;
pub mod softness_parameters;
pub mod xpbd;

use crate::prelude::*;
use bevy::prelude::*;
use schedule::SubstepSolverSet;

use self::{
    contact::ContactConstraint,
    softness_parameters::{SoftnessCoefficients, SoftnessParameters},
};

/// Manages and solves contacts, joints, and other constraints.
///
/// Note that the [`ContactConstraints`] are currently generated by tbe [`NarrowPhasePlugin`].
///
/// # Implementation
///
/// The solver primarily uses TGS Soft, an impulse-based solver with substepping and [soft constraints](softness_parameters).
/// Warm starting is used to improve convergence, along with a relaxation pass to reduce overshooting.
///
/// [Speculative collision](dynamics::ccd#speculative-collision) is used by default to prevent tunneling.
/// Optional [sweep-based Continuous Collision Detection (CCD)](dynamics::ccd#swept-ccd) is handled by the [`CcdPlugin`].
///
/// [Joints](joints) and user constraints are currently solved using [Extended Position-Based Dynamics (XPBD)](xpbd).
/// In the future, they may transition to an impulse-based approach as well.
///
/// # Steps
///
/// Below are the main steps of the `SolverPlugin`.
///
/// 1. [Generate and prepare constraints](collision::narrow_phase::NarrowPhaseSet::GenerateConstraints)
/// 2. Substepping loop (runs the [`SubstepSchedule`] [`SubstepCount`] times)
///     1. [Integrate velocities](super::integrator::IntegrationSet::Velocity)
///     2. [Warm start](SubstepSolverSet::WarmStart)
///     3. [Solve constraints with bias](SubstepSolverSet::SolveConstraints)
///     4. [Integrate positions](super::integrator::IntegrationSet::Position)
///     5. [Solve constraints without bias to relax velocities](SubstepSolverSet::Relax)
///     6. [Solve XPBD constraints (joints)](SubstepSolverSet::SolveXpbdConstraints)
///     7. [Solve user-defined constraints](SubstepSolverSet::SolveUserConstraints)
///     8. [Update velocities after XPBD constraint solving.](SubstepSolverSet::XpbdVelocityProjection)
/// 3. [Apply restitution](SolverSet::Restitution)
/// 4. [Finalize positions by applying](SolverSet::ApplyTranslation) [`AccumulatedTranslation`]
/// 5. [Store contact impulses for next frame's warm starting](SolverSet::StoreContactImpulses)
pub struct SolverPlugin {
    length_unit: Scalar,
}

impl Default for SolverPlugin {
    fn default() -> Self {
        Self::new_with_length_unit(1.0)
    }
}

impl SolverPlugin {
    /// Creates a [`SolverPlugin`] with the given approximate dimensions of most objects.
    ///
    /// The length unit will be used for initializing the [`PhysicsLengthUnit`]
    /// resource unless it already exists.
    pub fn new_with_length_unit(unit: Scalar) -> Self {
        Self { length_unit: unit }
    }
}

impl Plugin for SolverPlugin {
    fn build(&self, app: &mut App) {
        app.init_resource::<SolverConfig>()
            .init_resource::<ContactSoftnessCoefficients>()
            .init_resource::<ContactConstraints>();

        if app
            .world()
            .get_resource::<PhysicsLengthUnit>()
            .is_none_or(|unit| unit.0 == 1.0)
        {
            app.insert_resource(PhysicsLengthUnit(self.length_unit));
        }

        // Get the `PhysicsSchedule`, and panic if it doesn't exist.
        let physics = app
            .get_schedule_mut(PhysicsSchedule)
            .expect("add PhysicsSchedule first");

        physics.add_systems(update_contact_softness.before(PhysicsStepSet::NarrowPhase));

        // Update previous rotations before the substepping loop.
        physics.add_systems(
            (|mut query: Query<(&Rotation, &mut PreviousRotation)>| {
                for (rot, mut prev_rot) in &mut query {
                    prev_rot.0 = *rot;
                }
            })
            .in_set(SolverSet::PreSubstep),
        );

        // Finalize the positions of bodies by applying the `AccumulatedTranslation`.
        // This runs after the substepping loop.
        physics.add_systems(
            apply_translation
                .chain()
                .in_set(SolverSet::ApplyTranslation),
        );

        // Apply restitution.
        physics.add_systems(solve_restitution.in_set(SolverSet::Restitution));

        // Store the current contact impulses for the next frame's warm starting.
        physics.add_systems(store_contact_impulses.in_set(SolverSet::StoreContactImpulses));

        // Get the `SubstepSchedule`, and panic if it doesn't exist.
        let substeps = app
            .get_schedule_mut(SubstepSchedule)
            .expect("add SubstepSchedule first");

        // Warm start the impulses.
        // This applies the impulses stored from the previous substep,
        // which improves convergence.
        substeps.add_systems(warm_start.in_set(SubstepSolverSet::WarmStart));

        // Solve velocities using a position bias.
        substeps.add_systems(solve_contacts::<true>.in_set(SubstepSolverSet::SolveConstraints));

        // Relax biased velocities and impulses.
        // This reduces overshooting caused by warm starting.
        substeps.add_systems(solve_contacts::<false>.in_set(SubstepSolverSet::Relax));

        // Solve joints with XPBD.
        substeps.add_systems(
            (
                |mut query: Query<
                    (
                        &AccumulatedTranslation,
                        &mut PreSolveAccumulatedTranslation,
                        &Rotation,
                        &mut PreSolveRotation,
                    ),
                    Without<RigidBodyDisabled>,
                >| {
                    for (translation, mut pre_solve_translation, rotation, mut previous_rotation) in
                        &mut query
                    {
                        pre_solve_translation.0 = translation.0;
                        previous_rotation.0 = *rotation;
                    }
                },
                xpbd::solve_constraint::<FixedJoint, 2>,
                xpbd::solve_constraint::<RevoluteJoint, 2>,
                #[cfg(feature = "3d")]
                xpbd::solve_constraint::<SphericalJoint, 2>,
                xpbd::solve_constraint::<PrismaticJoint, 2>,
                xpbd::solve_constraint::<DistanceJoint, 2>,
            )
                .chain()
                .in_set(SubstepSolverSet::SolveXpbdConstraints),
        );

        // Perform XPBD velocity updates after constraint solving.
        substeps.add_systems(
            (
                xpbd::project_linear_velocity,
                xpbd::project_angular_velocity,
                joint_damping::<FixedJoint>,
                joint_damping::<RevoluteJoint>,
                #[cfg(feature = "3d")]
                joint_damping::<SphericalJoint>,
                joint_damping::<PrismaticJoint>,
                joint_damping::<DistanceJoint>,
            )
                .chain()
                .in_set(SubstepSolverSet::XpbdVelocityProjection),
        );
    }
}

// TODO: Where should this type be and which plugin should initialize it?
/// A units-per-meter scaling factor that adjusts the engine's internal properties
/// to the scale of the world.
///
/// For example, a 2D game might use pixels as units and have an average object size
/// of around 100 pixels. By setting the length unit to `100.0`, the physics engine
/// will interpret 100 pixels as 1 meter for internal thresholds, improving stability.
///
/// Note that this is *not* used to scale forces or any other user-facing inputs or outputs.
/// Instead, the value is only used to scale some internal length-based tolerances, such as
/// [`SleepingThreshold::linear`] and [`NarrowPhaseConfig::default_speculative_margin`],
/// as well as the scale used for [debug rendering](PhysicsDebugPlugin).
///
/// Choosing the appropriate length unit can help improve stability and robustness.
///
/// Default: `1.0`
///
/// # Example
///
/// The [`PhysicsLengthUnit`] can be inserted as a resource like normal,
/// but it can also be specified through the [`PhysicsPlugins`] plugin group.
///
/// ```no_run
/// # #[cfg(feature = "2d")]
/// use avian2d::prelude::*;
/// use bevy::prelude::*;
///
/// # #[cfg(feature = "2d")]
/// fn main() {
///     App::new()
///         .add_plugins((
///             DefaultPlugins,
///             // A 2D game with 100 pixels per meter
///             PhysicsPlugins::default().with_length_unit(100.0),
///         ))
///         .run();
/// }
/// # #[cfg(not(feature = "2d"))]
/// # fn main() {} // Doc test needs main
/// ```
#[derive(Resource, Clone, Debug, Deref, DerefMut, PartialEq, Reflect)]
#[reflect(Resource)]
pub struct PhysicsLengthUnit(pub Scalar);

impl Default for PhysicsLengthUnit {
    fn default() -> Self {
        Self(1.0)
    }
}

/// Configuration parameters for the constraint solver that handles
/// things like contacts and joints.
///
/// These are tuned to give good results for most applications, but can
/// be configured if more control over the simulation behavior is needed.
#[derive(Resource, Clone, Debug, PartialEq, Reflect)]
#[reflect(Resource)]
pub struct SolverConfig {
    /// The damping ratio used for contact stabilization.
    ///
    /// Lower values make contacts more compliant or "springy",
    /// allowing more visible penetration before overlap has been
    /// resolved and the contact has been stabilized.
    ///
    /// Consider using a higher damping ratio if contacts seem too soft.
    /// Note that making the value too large can cause instability.
    ///
    /// Default: `10.0`.
    pub contact_damping_ratio: Scalar,

    /// Scales the frequency used for contacts. A higher frequency
    /// makes contact responses faster and reduces visible springiness,
    /// but can hurt stability.
    ///
    /// The solver computes the frequency using the time step and substep count,
    /// and limits the maximum frequency to be at most half of the time step due to
    /// [Nyquist's theorem](https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem).
    /// This factor scales the resulting frequency, which can lead to unstable behavior
    /// if the factor is too large.
    ///
    /// Default: `1.5`
    pub contact_frequency_factor: Scalar,

    /// The maximum speed at which overlapping bodies are pushed apart by the solver.
    ///
    /// With a small value, overlap is resolved gently and gradually, while large values
    /// can result in more snappy behavior.
    ///
    /// This is implicitly scaled by the [`PhysicsLengthUnit`].
    ///
    /// Default: `4.0`
    pub max_overlap_solve_speed: Scalar,

    /// The coefficient in the `[0, 1]` range applied to
    /// [warm start](SubstepSolverSet::WarmStart) impulses.
    ///
    /// Warm starting uses the impulses from the previous frame as the initial
    /// solution for the current frame. This helps the solver reach the desired
    /// state much faster, meaning that *convergence* is improved.
    ///
    /// The coefficient should typically be set to `1.0`.
    ///
    /// Default: `1.0`
    pub warm_start_coefficient: Scalar,

    /// The minimum speed along the contact normal in units per second
    /// for [restitution](Restitution) to be applied.
    ///
    /// An appropriate threshold should typically be small enough that objects
    /// keep bouncing until the bounces are effectively unnoticeable,
    /// but large enough that restitution is not applied unnecessarily,
    /// improving performance and stability.
    ///
    /// This is implicitly scaled by the [`PhysicsLengthUnit`].
    ///
    /// Default: `1.0`
    pub restitution_threshold: Scalar,

    /// The number of iterations used for applying [restitution](Restitution).
    ///
    /// A higher number of iterations can result in more accurate bounces,
    /// but it only makes a difference when there are more than one contact point.
    ///
    /// For example, with just one iteration, a cube falling flat on the ground
    /// might bounce and rotate to one side, because the impulses are applied
    /// to the corners sequentially, and some of the impulses are likely to be larger
    /// than the others. With multiple iterations, the impulses are applied more evenly.
    ///
    /// Default: `1`
    pub restitution_iterations: usize,
}

impl Default for SolverConfig {
    fn default() -> Self {
        Self {
            contact_damping_ratio: 10.0,
            contact_frequency_factor: 1.5,
            max_overlap_solve_speed: 4.0,
            warm_start_coefficient: 1.0,
            restitution_threshold: 1.0,
            restitution_iterations: 1,
        }
    }
}

/// The [`SoftnessCoefficients`] used for contacts.
///
/// **Note**: This resource is updated automatically and not intended to be modified manually.
/// Use the [`SolverConfig`] resource instead for tuning contact behavior.
#[derive(Resource, Clone, Copy, PartialEq, Reflect)]
#[reflect(Resource)]
pub struct ContactSoftnessCoefficients {
    /// The [`SoftnessCoefficients`] used for contacts against dynamic bodies.
    pub dynamic: SoftnessCoefficients,
    /// The [`SoftnessCoefficients`] used for contacts against static or kinematic bodies.
    pub non_dynamic: SoftnessCoefficients,
}

impl Default for ContactSoftnessCoefficients {
    fn default() -> Self {
        Self {
            dynamic: SoftnessParameters::new(10.0, 30.0).compute_coefficients(1.0 / 60.0),
            non_dynamic: SoftnessParameters::new(10.0, 60.0).compute_coefficients(1.0 / 60.0),
        }
    }
}

fn update_contact_softness(
    mut coefficients: ResMut<ContactSoftnessCoefficients>,
    solver_config: Res<SolverConfig>,
    physics_time: Res<Time<Physics>>,
    substep_time: Res<Time<Substeps>>,
) {
    if solver_config.is_changed() || physics_time.is_changed() || substep_time.is_changed() {
        let dt = physics_time.delta_secs_f64() as Scalar;
        let h = substep_time.delta_secs_f64() as Scalar;

        // The contact frequency should at most be half of the time step due to Nyquist's theorem.
        // https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
        let max_hz = 1.0 / (dt * 2.0);
        let hz = solver_config.contact_frequency_factor * max_hz.min(0.25 / h);

        coefficients.dynamic = SoftnessParameters::new(solver_config.contact_damping_ratio, hz)
            .compute_coefficients(h);

        // TODO: Perhaps the non-dynamic softness should be configurable separately.
        // Make contacts against static and kinematic bodies stiffer to avoid clipping through the environment.
        coefficients.non_dynamic =
            SoftnessParameters::new(solver_config.contact_damping_ratio, 2.0 * hz)
                .compute_coefficients(h);
    }
}

/// A resource that stores the contact constraints.
#[derive(Resource, Default, Deref, DerefMut)]
pub struct ContactConstraints(pub Vec<ContactConstraint>);

/// Warm starts the solver by applying the impulses from the previous frame or substep.
///
/// See [`SubstepSolverSet::WarmStart`] for more information.
fn warm_start(
    mut bodies: Query<RigidBodyQuery, Without<RigidBodyDisabled>>,
    mut constraints: ResMut<ContactConstraints>,
    solver_config: Res<SolverConfig>,
) {
    for constraint in constraints.iter_mut() {
        debug_assert!(!constraint.points.is_empty());

        let Ok([mut body1, mut body2]) =
            bodies.get_many_mut([constraint.entity1, constraint.entity2])
        else {
            continue;
        };

        let normal = constraint.normal;
        let tangent_directions =
            constraint.tangent_directions(body1.linear_velocity.0, body2.linear_velocity.0);

        constraint.warm_start(
            &mut body1,
            &mut body2,
            normal,
            tangent_directions,
            solver_config.warm_start_coefficient,
        );
    }
}

/// Solves contacts by iterating through the given contact constraints
/// and applying impulses to colliding rigid bodies.
///
/// This solve is done `iterations` times. With a substepped solver,
/// `iterations` should typically be `1`, as substeps will handle the iteration.
///
/// If `use_bias` is `true`, the impulses will be boosted to account for overlap.
/// The solver should often be run twice per frame or substep: first with the bias,
/// and then without it to *relax* the velocities and reduce overshooting caused by
/// [warm starting](SubstepSolverSet::WarmStart).
///
/// See [`SubstepSolverSet::SolveConstraints`] and [`SubstepSolverSet::Relax`] for more information.
#[allow(clippy::too_many_arguments)]
#[allow(clippy::type_complexity)]
fn solve_contacts<const USE_BIAS: bool>(
    mut bodies: Query<RigidBodyQuery, Without<RigidBodyDisabled>>,
    mut constraints: ResMut<ContactConstraints>,
    solver_config: Res<SolverConfig>,
    length_unit: Res<PhysicsLengthUnit>,
    time: Res<Time>,
) {
    let delta_secs = time.delta_seconds_adjusted();
    let max_overlap_solve_speed = solver_config.max_overlap_solve_speed * length_unit.0;

    for constraint in &mut constraints.0 {
        let Ok([mut body1, mut body2]) =
            bodies.get_many_mut([constraint.entity1, constraint.entity2])
        else {
            continue;
        };

        constraint.solve(
            &mut body1,
            &mut body2,
            delta_secs,
            USE_BIAS,
            max_overlap_solve_speed,
        );
    }
}

/// Iterates through contact constraints and applies impulses to account for [`Restitution`].
///
/// Note that restitution with TGS Soft and speculative contacts may not be perfectly accurate.
/// This is a tradeoff, but cheap CCD is often more important than perfect restitution.
///
/// The number of iterations can be increased with [`SolverConfig::restitution_iterations`]
/// to apply restitution for multiple contact points more evenly.
#[allow(clippy::too_many_arguments)]
#[allow(clippy::type_complexity)]
fn solve_restitution(
    mut bodies: Query<RigidBodyQuery, Without<RigidBodyDisabled>>,
    mut constraints: ResMut<ContactConstraints>,
    solver_config: Res<SolverConfig>,
    length_unit: Res<PhysicsLengthUnit>,
) {
    // The restitution threshold determining the speed required for restitution to be applied.
    let threshold = solver_config.restitution_threshold * length_unit.0;

    for constraint in constraints.iter_mut() {
        let restitution = constraint.restitution.coefficient;

        if restitution == 0.0 {
            continue;
        }

        let Ok([mut body1, mut body2]) =
            bodies.get_many_mut([constraint.entity1, constraint.entity2])
        else {
            continue;
        };

        // Performing multiple iterations can result in more accurate restitution,
        // but only if there are more than one contact point.
        let restitution_iterations = if constraint.points.len() > 1 {
            solver_config.restitution_iterations
        } else {
            1
        };

        for _ in 0..restitution_iterations {
            constraint.apply_restitution(&mut body1, &mut body2, threshold);
        }
    }
}

/// Copies contact impulses from [`ContactConstraints`] to the contacts in [`Collisions`].
/// They will be used for [warm starting](SubstepSolverSet::WarmStart).
fn store_contact_impulses(
    constraints: Res<ContactConstraints>,
    mut collisions: ResMut<Collisions>,
) {
    for constraint in constraints.iter() {
        let Some(contacts) =
            collisions.get_mut(constraint.collider_entity1, constraint.collider_entity2)
        else {
            continue;
        };

        let manifold = &mut contacts.manifolds[constraint.manifold_index];

        for (contact, constraint_point) in
            manifold.contacts.iter_mut().zip(constraint.points.iter())
        {
            contact.normal_impulse = constraint_point.normal_part.impulse;
            contact.tangent_impulse = constraint_point
                .tangent_part
                .as_ref()
                .map_or(default(), |part| part.impulse);
        }
    }
}

/// Finalizes the positions of bodies by applying the [`AccumulatedTranslation`].
#[allow(clippy::type_complexity)]
fn apply_translation(
    mut bodies: Query<
        (
            &RigidBody,
            &mut Position,
            &Rotation,
            &PreviousRotation,
            &mut AccumulatedTranslation,
            &ComputedCenterOfMass,
        ),
        Changed<AccumulatedTranslation>,
    >,
) {
    for (rb, mut pos, rot, prev_rot, mut translation, center_of_mass) in &mut bodies {
        if rb.is_static() {
            continue;
        }

        // We must also account for the translation caused by rotations around the center of mass,
        // as it may be offset from `Position`.
        pos.0 += crate::utils::get_pos_translation(&translation, prev_rot, rot, center_of_mass);
        translation.0 = Vector::ZERO;
    }
}

/// Applies velocity corrections caused by joint damping.
#[allow(clippy::type_complexity)]
pub fn joint_damping<T: Joint>(
    mut bodies: Query<
        (
            &RigidBody,
            &mut LinearVelocity,
            &mut AngularVelocity,
            &ComputedMass,
            Option<&Dominance>,
        ),
        RigidBodyActiveFilter,
    >,
    joints: Query<&T, Without<RigidBody>>,
    time: Res<Time>,
) {
    let delta_secs = time.delta_seconds_adjusted();

    for joint in &joints {
        if let Ok(
            [(rb1, mut lin_vel1, mut ang_vel1, mass1, dominance1), (rb2, mut lin_vel2, mut ang_vel2, mass2, dominance2)],
        ) = bodies.get_many_mut(joint.entities())
        {
            let delta_omega =
                (ang_vel2.0 - ang_vel1.0) * (joint.damping_angular() * delta_secs).min(1.0);

            if rb1.is_dynamic() {
                ang_vel1.0 += delta_omega;
            }
            if rb2.is_dynamic() {
                ang_vel2.0 -= delta_omega;
            }

            let delta_v =
                (lin_vel2.0 - lin_vel1.0) * (joint.damping_linear() * delta_secs).min(1.0);

            let w1 = if rb1.is_dynamic() {
                mass1.inverse()
            } else {
                0.0
            };
            let w2 = if rb2.is_dynamic() {
                mass2.inverse()
            } else {
                0.0
            };

            if w1 + w2 <= Scalar::EPSILON {
                continue;
            }

            let p = delta_v / (w1 + w2);

            let dominance1 = dominance1.map_or(0, |dominance| dominance.0);
            let dominance2 = dominance2.map_or(0, |dominance| dominance.0);

            if rb1.is_dynamic() && (!rb2.is_dynamic() || dominance1 <= dominance2) {
                lin_vel1.0 += p * mass1.inverse();
            }
            if rb2.is_dynamic() && (!rb1.is_dynamic() || dominance2 <= dominance1) {
                lin_vel2.0 -= p * mass2.inverse();
            }
        }
    }
}