avian3d/dynamics/solver/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
//! Manages and solves contacts, joints, and other constraints.
//!
//! See [`SolverPlugin`].
pub mod contact;
pub mod joints;
pub mod schedule;
pub mod softness_parameters;
pub mod xpbd;
use crate::prelude::*;
use bevy::prelude::*;
use schedule::SubstepSolverSet;
use self::{
contact::ContactConstraint,
softness_parameters::{SoftnessCoefficients, SoftnessParameters},
};
/// Manages and solves contacts, joints, and other constraints.
///
/// Note that the [`ContactConstraints`] are currently generated by tbe [`NarrowPhasePlugin`].
///
/// # Implementation
///
/// The solver primarily uses TGS Soft, an impulse-based solver with substepping and [soft constraints](softness_parameters).
/// Warm starting is used to improve convergence, along with a relaxation pass to reduce overshooting.
///
/// [Speculative collision](dynamics::ccd#speculative-collision) is used by default to prevent tunneling.
/// Optional [sweep-based Continuous Collision Detection (CCD)](dynamics::ccd#swept-ccd) is handled by the [`CcdPlugin`].
///
/// [Joints](joints) and user constraints are currently solved using [Extended Position-Based Dynamics (XPBD)](xpbd).
/// In the future, they may transition to an impulse-based approach as well.
///
/// # Steps
///
/// Below are the main steps of the `SolverPlugin`.
///
/// 1. [Generate and prepare constraints](collision::narrow_phase::NarrowPhaseSet::GenerateConstraints)
/// 2. Substepping loop (runs the [`SubstepSchedule`] [`SubstepCount`] times)
/// 1. [Integrate velocities](super::integrator::IntegrationSet::Velocity)
/// 2. [Warm start](SubstepSolverSet::WarmStart)
/// 3. [Solve constraints with bias](SubstepSolverSet::SolveConstraints)
/// 4. [Integrate positions](super::integrator::IntegrationSet::Position)
/// 5. [Solve constraints without bias to relax velocities](SubstepSolverSet::Relax)
/// 6. [Solve XPBD constraints (joints)](SubstepSolverSet::SolveXpbdConstraints)
/// 7. [Solve user-defined constraints](SubstepSolverSet::SolveUserConstraints)
/// 8. [Update velocities after XPBD constraint solving.](SubstepSolverSet::XpbdVelocityProjection)
/// 3. [Apply restitution](SolverSet::Restitution)
/// 4. [Finalize positions by applying](SolverSet::ApplyTranslation) [`AccumulatedTranslation`]
/// 5. [Store contact impulses for next frame's warm starting](SolverSet::StoreContactImpulses)
pub struct SolverPlugin {
length_unit: Scalar,
}
impl Default for SolverPlugin {
fn default() -> Self {
Self::new_with_length_unit(1.0)
}
}
impl SolverPlugin {
/// Creates a [`SolverPlugin`] with the given approximate dimensions of most objects.
///
/// The length unit will be used for initializing the [`PhysicsLengthUnit`]
/// resource unless it already exists.
pub fn new_with_length_unit(unit: Scalar) -> Self {
Self { length_unit: unit }
}
}
impl Plugin for SolverPlugin {
fn build(&self, app: &mut App) {
app.init_resource::<SolverConfig>()
.init_resource::<ContactSoftnessCoefficients>()
.init_resource::<ContactConstraints>();
if app
.world()
.get_resource::<PhysicsLengthUnit>()
.is_none_or(|unit| unit.0 == 1.0)
{
app.insert_resource(PhysicsLengthUnit(self.length_unit));
}
// Get the `PhysicsSchedule`, and panic if it doesn't exist.
let physics = app
.get_schedule_mut(PhysicsSchedule)
.expect("add PhysicsSchedule first");
physics.add_systems(update_contact_softness.before(PhysicsStepSet::NarrowPhase));
// Update previous rotations before the substepping loop.
physics.add_systems(
(|mut query: Query<(&Rotation, &mut PreviousRotation)>| {
for (rot, mut prev_rot) in &mut query {
prev_rot.0 = *rot;
}
})
.in_set(SolverSet::PreSubstep),
);
// Finalize the positions of bodies by applying the `AccumulatedTranslation`.
// This runs after the substepping loop.
physics.add_systems(
apply_translation
.chain()
.in_set(SolverSet::ApplyTranslation),
);
// Apply restitution.
physics.add_systems(solve_restitution.in_set(SolverSet::Restitution));
// Store the current contact impulses for the next frame's warm starting.
physics.add_systems(store_contact_impulses.in_set(SolverSet::StoreContactImpulses));
// Get the `SubstepSchedule`, and panic if it doesn't exist.
let substeps = app
.get_schedule_mut(SubstepSchedule)
.expect("add SubstepSchedule first");
// Warm start the impulses.
// This applies the impulses stored from the previous substep,
// which improves convergence.
substeps.add_systems(warm_start.in_set(SubstepSolverSet::WarmStart));
// Solve velocities using a position bias.
substeps.add_systems(solve_contacts::<true>.in_set(SubstepSolverSet::SolveConstraints));
// Relax biased velocities and impulses.
// This reduces overshooting caused by warm starting.
substeps.add_systems(solve_contacts::<false>.in_set(SubstepSolverSet::Relax));
// Solve joints with XPBD.
substeps.add_systems(
(
|mut query: Query<
(
&AccumulatedTranslation,
&mut PreSolveAccumulatedTranslation,
&Rotation,
&mut PreSolveRotation,
),
Without<RigidBodyDisabled>,
>| {
for (translation, mut pre_solve_translation, rotation, mut previous_rotation) in
&mut query
{
pre_solve_translation.0 = translation.0;
previous_rotation.0 = *rotation;
}
},
xpbd::solve_constraint::<FixedJoint, 2>,
xpbd::solve_constraint::<RevoluteJoint, 2>,
#[cfg(feature = "3d")]
xpbd::solve_constraint::<SphericalJoint, 2>,
xpbd::solve_constraint::<PrismaticJoint, 2>,
xpbd::solve_constraint::<DistanceJoint, 2>,
)
.chain()
.in_set(SubstepSolverSet::SolveXpbdConstraints),
);
// Perform XPBD velocity updates after constraint solving.
substeps.add_systems(
(
xpbd::project_linear_velocity,
xpbd::project_angular_velocity,
joint_damping::<FixedJoint>,
joint_damping::<RevoluteJoint>,
#[cfg(feature = "3d")]
joint_damping::<SphericalJoint>,
joint_damping::<PrismaticJoint>,
joint_damping::<DistanceJoint>,
)
.chain()
.in_set(SubstepSolverSet::XpbdVelocityProjection),
);
}
}
// TODO: Where should this type be and which plugin should initialize it?
/// A units-per-meter scaling factor that adjusts the engine's internal properties
/// to the scale of the world.
///
/// For example, a 2D game might use pixels as units and have an average object size
/// of around 100 pixels. By setting the length unit to `100.0`, the physics engine
/// will interpret 100 pixels as 1 meter for internal thresholds, improving stability.
///
/// Note that this is *not* used to scale forces or any other user-facing inputs or outputs.
/// Instead, the value is only used to scale some internal length-based tolerances, such as
/// [`SleepingThreshold::linear`] and [`NarrowPhaseConfig::default_speculative_margin`],
/// as well as the scale used for [debug rendering](PhysicsDebugPlugin).
///
/// Choosing the appropriate length unit can help improve stability and robustness.
///
/// Default: `1.0`
///
/// # Example
///
/// The [`PhysicsLengthUnit`] can be inserted as a resource like normal,
/// but it can also be specified through the [`PhysicsPlugins`] plugin group.
///
/// ```no_run
/// # #[cfg(feature = "2d")]
/// use avian2d::prelude::*;
/// use bevy::prelude::*;
///
/// # #[cfg(feature = "2d")]
/// fn main() {
/// App::new()
/// .add_plugins((
/// DefaultPlugins,
/// // A 2D game with 100 pixels per meter
/// PhysicsPlugins::default().with_length_unit(100.0),
/// ))
/// .run();
/// }
/// # #[cfg(not(feature = "2d"))]
/// # fn main() {} // Doc test needs main
/// ```
#[derive(Resource, Clone, Debug, Deref, DerefMut, PartialEq, Reflect)]
#[reflect(Resource)]
pub struct PhysicsLengthUnit(pub Scalar);
impl Default for PhysicsLengthUnit {
fn default() -> Self {
Self(1.0)
}
}
/// Configuration parameters for the constraint solver that handles
/// things like contacts and joints.
///
/// These are tuned to give good results for most applications, but can
/// be configured if more control over the simulation behavior is needed.
#[derive(Resource, Clone, Debug, PartialEq, Reflect)]
#[reflect(Resource)]
pub struct SolverConfig {
/// The damping ratio used for contact stabilization.
///
/// Lower values make contacts more compliant or "springy",
/// allowing more visible penetration before overlap has been
/// resolved and the contact has been stabilized.
///
/// Consider using a higher damping ratio if contacts seem too soft.
/// Note that making the value too large can cause instability.
///
/// Default: `10.0`.
pub contact_damping_ratio: Scalar,
/// Scales the frequency used for contacts. A higher frequency
/// makes contact responses faster and reduces visible springiness,
/// but can hurt stability.
///
/// The solver computes the frequency using the time step and substep count,
/// and limits the maximum frequency to be at most half of the time step due to
/// [Nyquist's theorem](https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem).
/// This factor scales the resulting frequency, which can lead to unstable behavior
/// if the factor is too large.
///
/// Default: `1.5`
pub contact_frequency_factor: Scalar,
/// The maximum speed at which overlapping bodies are pushed apart by the solver.
///
/// With a small value, overlap is resolved gently and gradually, while large values
/// can result in more snappy behavior.
///
/// This is implicitly scaled by the [`PhysicsLengthUnit`].
///
/// Default: `4.0`
pub max_overlap_solve_speed: Scalar,
/// The coefficient in the `[0, 1]` range applied to
/// [warm start](SubstepSolverSet::WarmStart) impulses.
///
/// Warm starting uses the impulses from the previous frame as the initial
/// solution for the current frame. This helps the solver reach the desired
/// state much faster, meaning that *convergence* is improved.
///
/// The coefficient should typically be set to `1.0`.
///
/// Default: `1.0`
pub warm_start_coefficient: Scalar,
/// The minimum speed along the contact normal in units per second
/// for [restitution](Restitution) to be applied.
///
/// An appropriate threshold should typically be small enough that objects
/// keep bouncing until the bounces are effectively unnoticeable,
/// but large enough that restitution is not applied unnecessarily,
/// improving performance and stability.
///
/// This is implicitly scaled by the [`PhysicsLengthUnit`].
///
/// Default: `1.0`
pub restitution_threshold: Scalar,
/// The number of iterations used for applying [restitution](Restitution).
///
/// A higher number of iterations can result in more accurate bounces,
/// but it only makes a difference when there are more than one contact point.
///
/// For example, with just one iteration, a cube falling flat on the ground
/// might bounce and rotate to one side, because the impulses are applied
/// to the corners sequentially, and some of the impulses are likely to be larger
/// than the others. With multiple iterations, the impulses are applied more evenly.
///
/// Default: `1`
pub restitution_iterations: usize,
}
impl Default for SolverConfig {
fn default() -> Self {
Self {
contact_damping_ratio: 10.0,
contact_frequency_factor: 1.5,
max_overlap_solve_speed: 4.0,
warm_start_coefficient: 1.0,
restitution_threshold: 1.0,
restitution_iterations: 1,
}
}
}
/// The [`SoftnessCoefficients`] used for contacts.
///
/// **Note**: This resource is updated automatically and not intended to be modified manually.
/// Use the [`SolverConfig`] resource instead for tuning contact behavior.
#[derive(Resource, Clone, Copy, PartialEq, Reflect)]
#[reflect(Resource)]
pub struct ContactSoftnessCoefficients {
/// The [`SoftnessCoefficients`] used for contacts against dynamic bodies.
pub dynamic: SoftnessCoefficients,
/// The [`SoftnessCoefficients`] used for contacts against static or kinematic bodies.
pub non_dynamic: SoftnessCoefficients,
}
impl Default for ContactSoftnessCoefficients {
fn default() -> Self {
Self {
dynamic: SoftnessParameters::new(10.0, 30.0).compute_coefficients(1.0 / 60.0),
non_dynamic: SoftnessParameters::new(10.0, 60.0).compute_coefficients(1.0 / 60.0),
}
}
}
fn update_contact_softness(
mut coefficients: ResMut<ContactSoftnessCoefficients>,
solver_config: Res<SolverConfig>,
physics_time: Res<Time<Physics>>,
substep_time: Res<Time<Substeps>>,
) {
if solver_config.is_changed() || physics_time.is_changed() || substep_time.is_changed() {
let dt = physics_time.delta_secs_f64() as Scalar;
let h = substep_time.delta_secs_f64() as Scalar;
// The contact frequency should at most be half of the time step due to Nyquist's theorem.
// https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
let max_hz = 1.0 / (dt * 2.0);
let hz = solver_config.contact_frequency_factor * max_hz.min(0.25 / h);
coefficients.dynamic = SoftnessParameters::new(solver_config.contact_damping_ratio, hz)
.compute_coefficients(h);
// TODO: Perhaps the non-dynamic softness should be configurable separately.
// Make contacts against static and kinematic bodies stiffer to avoid clipping through the environment.
coefficients.non_dynamic =
SoftnessParameters::new(solver_config.contact_damping_ratio, 2.0 * hz)
.compute_coefficients(h);
}
}
/// A resource that stores the contact constraints.
#[derive(Resource, Default, Deref, DerefMut)]
pub struct ContactConstraints(pub Vec<ContactConstraint>);
/// Warm starts the solver by applying the impulses from the previous frame or substep.
///
/// See [`SubstepSolverSet::WarmStart`] for more information.
fn warm_start(
mut bodies: Query<RigidBodyQuery, Without<RigidBodyDisabled>>,
mut constraints: ResMut<ContactConstraints>,
solver_config: Res<SolverConfig>,
) {
for constraint in constraints.iter_mut() {
debug_assert!(!constraint.points.is_empty());
let Ok([mut body1, mut body2]) =
bodies.get_many_mut([constraint.entity1, constraint.entity2])
else {
continue;
};
let normal = constraint.normal;
let tangent_directions =
constraint.tangent_directions(body1.linear_velocity.0, body2.linear_velocity.0);
constraint.warm_start(
&mut body1,
&mut body2,
normal,
tangent_directions,
solver_config.warm_start_coefficient,
);
}
}
/// Solves contacts by iterating through the given contact constraints
/// and applying impulses to colliding rigid bodies.
///
/// This solve is done `iterations` times. With a substepped solver,
/// `iterations` should typically be `1`, as substeps will handle the iteration.
///
/// If `use_bias` is `true`, the impulses will be boosted to account for overlap.
/// The solver should often be run twice per frame or substep: first with the bias,
/// and then without it to *relax* the velocities and reduce overshooting caused by
/// [warm starting](SubstepSolverSet::WarmStart).
///
/// See [`SubstepSolverSet::SolveConstraints`] and [`SubstepSolverSet::Relax`] for more information.
#[allow(clippy::too_many_arguments)]
#[allow(clippy::type_complexity)]
fn solve_contacts<const USE_BIAS: bool>(
mut bodies: Query<RigidBodyQuery, Without<RigidBodyDisabled>>,
mut constraints: ResMut<ContactConstraints>,
solver_config: Res<SolverConfig>,
length_unit: Res<PhysicsLengthUnit>,
time: Res<Time>,
) {
let delta_secs = time.delta_seconds_adjusted();
let max_overlap_solve_speed = solver_config.max_overlap_solve_speed * length_unit.0;
for constraint in &mut constraints.0 {
let Ok([mut body1, mut body2]) =
bodies.get_many_mut([constraint.entity1, constraint.entity2])
else {
continue;
};
constraint.solve(
&mut body1,
&mut body2,
delta_secs,
USE_BIAS,
max_overlap_solve_speed,
);
}
}
/// Iterates through contact constraints and applies impulses to account for [`Restitution`].
///
/// Note that restitution with TGS Soft and speculative contacts may not be perfectly accurate.
/// This is a tradeoff, but cheap CCD is often more important than perfect restitution.
///
/// The number of iterations can be increased with [`SolverConfig::restitution_iterations`]
/// to apply restitution for multiple contact points more evenly.
#[allow(clippy::too_many_arguments)]
#[allow(clippy::type_complexity)]
fn solve_restitution(
mut bodies: Query<RigidBodyQuery, Without<RigidBodyDisabled>>,
mut constraints: ResMut<ContactConstraints>,
solver_config: Res<SolverConfig>,
length_unit: Res<PhysicsLengthUnit>,
) {
// The restitution threshold determining the speed required for restitution to be applied.
let threshold = solver_config.restitution_threshold * length_unit.0;
for constraint in constraints.iter_mut() {
let restitution = constraint.restitution.coefficient;
if restitution == 0.0 {
continue;
}
let Ok([mut body1, mut body2]) =
bodies.get_many_mut([constraint.entity1, constraint.entity2])
else {
continue;
};
// Performing multiple iterations can result in more accurate restitution,
// but only if there are more than one contact point.
let restitution_iterations = if constraint.points.len() > 1 {
solver_config.restitution_iterations
} else {
1
};
for _ in 0..restitution_iterations {
constraint.apply_restitution(&mut body1, &mut body2, threshold);
}
}
}
/// Copies contact impulses from [`ContactConstraints`] to the contacts in [`Collisions`].
/// They will be used for [warm starting](SubstepSolverSet::WarmStart).
fn store_contact_impulses(
constraints: Res<ContactConstraints>,
mut collisions: ResMut<Collisions>,
) {
for constraint in constraints.iter() {
let Some(contacts) =
collisions.get_mut(constraint.collider_entity1, constraint.collider_entity2)
else {
continue;
};
let manifold = &mut contacts.manifolds[constraint.manifold_index];
for (contact, constraint_point) in
manifold.contacts.iter_mut().zip(constraint.points.iter())
{
contact.normal_impulse = constraint_point.normal_part.impulse;
contact.tangent_impulse = constraint_point
.tangent_part
.as_ref()
.map_or(default(), |part| part.impulse);
}
}
}
/// Finalizes the positions of bodies by applying the [`AccumulatedTranslation`].
#[allow(clippy::type_complexity)]
fn apply_translation(
mut bodies: Query<
(
&RigidBody,
&mut Position,
&Rotation,
&PreviousRotation,
&mut AccumulatedTranslation,
&ComputedCenterOfMass,
),
Changed<AccumulatedTranslation>,
>,
) {
for (rb, mut pos, rot, prev_rot, mut translation, center_of_mass) in &mut bodies {
if rb.is_static() {
continue;
}
// We must also account for the translation caused by rotations around the center of mass,
// as it may be offset from `Position`.
pos.0 += crate::utils::get_pos_translation(&translation, prev_rot, rot, center_of_mass);
translation.0 = Vector::ZERO;
}
}
/// Applies velocity corrections caused by joint damping.
#[allow(clippy::type_complexity)]
pub fn joint_damping<T: Joint>(
mut bodies: Query<
(
&RigidBody,
&mut LinearVelocity,
&mut AngularVelocity,
&ComputedMass,
Option<&Dominance>,
),
RigidBodyActiveFilter,
>,
joints: Query<&T, Without<RigidBody>>,
time: Res<Time>,
) {
let delta_secs = time.delta_seconds_adjusted();
for joint in &joints {
if let Ok(
[(rb1, mut lin_vel1, mut ang_vel1, mass1, dominance1), (rb2, mut lin_vel2, mut ang_vel2, mass2, dominance2)],
) = bodies.get_many_mut(joint.entities())
{
let delta_omega =
(ang_vel2.0 - ang_vel1.0) * (joint.damping_angular() * delta_secs).min(1.0);
if rb1.is_dynamic() {
ang_vel1.0 += delta_omega;
}
if rb2.is_dynamic() {
ang_vel2.0 -= delta_omega;
}
let delta_v =
(lin_vel2.0 - lin_vel1.0) * (joint.damping_linear() * delta_secs).min(1.0);
let w1 = if rb1.is_dynamic() {
mass1.inverse()
} else {
0.0
};
let w2 = if rb2.is_dynamic() {
mass2.inverse()
} else {
0.0
};
if w1 + w2 <= Scalar::EPSILON {
continue;
}
let p = delta_v / (w1 + w2);
let dominance1 = dominance1.map_or(0, |dominance| dominance.0);
let dominance2 = dominance2.map_or(0, |dominance| dominance.0);
if rb1.is_dynamic() && (!rb2.is_dynamic() || dominance1 <= dominance2) {
lin_vel1.0 += p * mass1.inverse();
}
if rb2.is_dynamic() && (!rb1.is_dynamic() || dominance2 <= dominance1) {
lin_vel2.0 -= p * mass2.inverse();
}
}
}
}