avian3d/dynamics/solver/xpbd/positional_constraint.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
use super::XpbdConstraint;
use crate::prelude::*;
/// A positional constraint applies a positional correction
/// with a given direction and magnitude at the local contact points `r1` and `r2`.
pub trait PositionConstraint: XpbdConstraint<2> {
/// Applies a positional correction to two bodies.
///
/// Returns the positional impulse that is applied proportional to the inverse masses of the bodies.
#[allow(clippy::too_many_arguments)]
fn apply_positional_lagrange_update(
&self,
body1: &mut RigidBodyQueryItem,
body2: &mut RigidBodyQueryItem,
delta_lagrange: Scalar,
direction: Vector,
r1: Vector,
r2: Vector,
) -> Vector {
if delta_lagrange.abs() <= Scalar::EPSILON {
return Vector::ZERO;
}
let impulse = delta_lagrange * direction;
self.apply_positional_impulse(body1, body2, impulse, r1, r2)
}
/// Applies a positional impulse to two bodies.
///
/// Returns the impulse that is applied proportional to the inverse masses of the bodies.
fn apply_positional_impulse(
&self,
body1: &mut RigidBodyQueryItem,
body2: &mut RigidBodyQueryItem,
impulse: Vector,
r1: Vector,
r2: Vector,
) -> Vector {
let inv_mass1 = body1.effective_inverse_mass();
let inv_mass2 = body2.effective_inverse_mass();
let inv_inertia1 = body1.effective_global_angular_inertia().inverse();
let inv_inertia2 = body2.effective_global_angular_inertia().inverse();
// Apply positional and rotational updates
if body1.rb.is_dynamic() && body1.dominance() <= body2.dominance() {
body1.accumulated_translation.0 += impulse * inv_mass1;
#[cfg(feature = "2d")]
{
let delta_angle = Self::get_delta_rot(inv_inertia1, r1, impulse);
*body1.rotation = body1.rotation.add_angle(delta_angle);
}
#[cfg(feature = "3d")]
{
// In 3D, adding quaternions can result in unnormalized rotations,
// which causes stability issues (see #235) and panics when trying to rotate unit vectors.
// TODO: It would be nice to avoid normalization if possible.
// Maybe the math above can be done in a way that keeps rotations normalized?
let delta_quat = Self::get_delta_rot(inv_inertia1, r1, impulse);
body1.rotation.0 = delta_quat * body1.rotation.0;
*body1.rotation = body1.rotation.fast_renormalize();
}
}
if body2.rb.is_dynamic() && body2.dominance() <= body1.dominance() {
body2.accumulated_translation.0 -= impulse * inv_mass2;
#[cfg(feature = "2d")]
{
let delta_angle = Self::get_delta_rot(inv_inertia2, r2, -impulse);
*body2.rotation = body2.rotation.add_angle(delta_angle);
}
#[cfg(feature = "3d")]
{
// See comments for `body1` above.
let delta_quat = Self::get_delta_rot(inv_inertia2, r2, -impulse);
body2.rotation.0 = delta_quat * body2.rotation.0;
*body2.rotation = body2.rotation.fast_renormalize();
}
}
impulse
}
/// Computes the generalized inverse mass of a body when applying a positional correction
/// at point `r` along the vector `n`.
#[cfg(feature = "2d")]
fn compute_generalized_inverse_mass(
&self,
body: &RigidBodyQueryItem,
r: Vector,
n: Vector,
) -> Scalar {
if body.rb.is_dynamic() {
body.mass.inverse() + body.angular_inertia.inverse() * r.perp_dot(n).powi(2)
} else {
// Static and kinematic bodies are a special case, where 0.0 can be thought of as infinite mass.
0.0
}
}
/// Computes the generalized inverse mass of a body when applying a positional correction
/// at point `r` along the vector `n`.
#[cfg(feature = "3d")]
fn compute_generalized_inverse_mass(
&self,
body: &RigidBodyQueryItem,
r: Vector,
n: Vector,
) -> Scalar {
if body.rb.is_dynamic() {
let inverse_inertia = body.effective_global_angular_inertia().inverse();
let r_cross_n = r.cross(n); // Compute the cross product only once
// The line below is equivalent to Eq (2) because the component-wise multiplication of a transposed vector and another vector is equal to the dot product of the two vectors.
// a^T * b = a • b
body.mass.inverse() + r_cross_n.dot(inverse_inertia * r_cross_n)
} else {
// Static and kinematic bodies are a special case, where 0.0 can be thought of as infinite mass.
0.0
}
}
/// Computes the update in rotation when applying a positional correction `p` at point `r`.
#[cfg(feature = "2d")]
fn get_delta_rot(inverse_inertia: Scalar, r: Vector, p: Vector) -> Scalar {
// Equation 8/9 but in 2D
inverse_inertia * r.perp_dot(p)
}
/// Computes the update in rotation when applying a positional correction `p` at point `r`.
#[cfg(feature = "3d")]
fn get_delta_rot(inverse_inertia: Matrix3, r: Vector, p: Vector) -> Quaternion {
// Equation 8/9
Quaternion::from_scaled_axis(inverse_inertia * r.cross(p))
}
/// Computes the force acting along the constraint using the equation f = lambda * n / h^2
fn compute_force(&self, lagrange: Scalar, direction: Vector, dt: Scalar) -> Vector {
lagrange * direction / dt.powi(2)
}
}