avian3d/interpolation.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
//! Physics interpolation and extrapolation for rigid bodies.
//!
//! See [`PhysicsInterpolationPlugin`].
use bevy::{ecs::query::QueryData, prelude::*};
use bevy_transform_interpolation::{prelude::*, VelocitySource};
pub use bevy_transform_interpolation::prelude::{
NoRotationEasing, NoScaleEasing, NoTransformEasing, NoTranslationEasing, RotationExtrapolation,
RotationHermiteEasing, RotationInterpolation, ScaleInterpolation, TransformExtrapolation,
TransformHermiteEasing, TransformInterpolation, TranslationExtrapolation,
TranslationHermiteEasing, TranslationInterpolation,
};
use crate::prelude::*;
/// A plugin for [`Transform`] interpolation and extrapolation for rigid bodies.
///
/// # Overview
///
/// To make behavior deterministic and independent of frame rate, Avian runs physics at a fixed timestep
/// in [`FixedPostUpdate`] by default. However, when this timestep doesn't match the display frame rate,
/// movement can appear choppy, especially on displays with high refresh rates.
///
/// The conventional solution is to ease transforms in between physics ticks to smooth out the visual result.
/// This can be done using either interpolation or extrapolation.
///
/// ## Interpolation
///
/// [`Transform`] interpolation computes a `Transform` that is somewhere in between the current position
/// and the position from the previous physics tick. This produces smooth and accurate movement.
///
/// The downside of interpolation is that it causes rendering to be slightly behind the physics simulation.
/// This can make movement feel slightly delayed, but this is rarely noticeable unless using a very small
/// physics tick rate.
///
/// ## Extrapolation
///
/// [`Transform`] extrapolation computes a `Transform` that is somewhere in between the current position
/// and a future position predicted based on velocity. This produces movement that looks smooth and feels
/// very responsive.
///
/// The downside of extrapolation is that it can be less accurate. When the prediction is wrong, the rendered
/// positions may jump to correct the mispredictions. This can be noticeable when the entity changes direction
/// or speed rapidly.
///
/// Extrapolation is primarily inteded for cases where low latency and high responsiveness are crucial for gameplay,
/// such as first-person shooters and racing games. For most other games, interpolation is often the better choice.
///
/// # Usage
///
/// The [`PhysicsInterpolationPlugin`] is included in the [`PhysicsPlugins`] by default,
/// so most apps don't need to add it manually.
///
/// [`Transform`] interpolation and extrapolation can be enabled for individual entities
/// using the [`TransformInterpolation`] and [`TransformExtrapolation`] components respectively:
///
/// ```
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
/// use bevy::prelude::*;
///
/// fn setup(mut commands: Commands) {
/// // Enable interpolation for this rigid body.
/// commands.spawn((
/// RigidBody::Dynamic,
/// Transform::default(),
/// TransformInterpolation,
/// ));
///
/// // Enable extrapolation for this rigid body.
/// commands.spawn((
/// RigidBody::Dynamic,
/// Transform::default(),
/// TransformExtrapolation,
/// ));
/// }
/// ```
///
/// Now, any changes made to the [`Transform`] of the entity in [`FixedPreUpdate`], [`FixedUpdate`],
/// or [`FixedPostUpdate`] will automatically be smoothed in between fixed timesteps.
///
/// Transform properties can also be interpolated individually by adding the [`TranslationInterpolation`],
/// [`RotationInterpolation`], and [`ScaleInterpolation`] components, and similarly for extrapolation.
///
/// ```
#[cfg_attr(feature = "2d", doc = "# use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "# use avian3d::prelude::*;")]
/// # use bevy::prelude::*;
/// #
/// fn setup(mut commands: Commands) {
/// // Only interpolate translation.
/// commands.spawn((Transform::default(), TranslationInterpolation));
///
/// // Only interpolate rotation.
/// commands.spawn((Transform::default(), RotationInterpolation));
///
/// // Only interpolate scale.
/// commands.spawn((Transform::default(), ScaleInterpolation));
///
/// // Mix and match!
/// // Extrapolate translation and interpolate rotation.
/// commands.spawn((
/// Transform::default(),
/// TranslationExtrapolation,
/// RotationInterpolation,
/// ));
/// }
/// ```
///
/// If you want *all* rigid bodies to be interpolated or extrapolated by default, you can use
/// [`PhysicsInterpolationPlugin::interpolate_all()`] or [`PhysicsInterpolationPlugin::extrapolate_all()`]:
///
/// ```no_run
#[cfg_attr(feature = "2d", doc = "# use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "# use avian3d::prelude::*;")]
/// # use bevy::prelude::*;
/// #
/// fn main() {
/// App::new()
/// .add_plugins(PhysicsPlugins::default().set(PhysicsInterpolationPlugin::interpolate_all()))
/// // ...
/// .run();
/// }
/// ```
///
/// When interpolation or extrapolation is enabled for all entities by default, you can still opt out of it
/// for individual entities by adding the [`NoTransformEasing`] component, or the individual
/// [`NoTranslationEasing`], [`NoRotationEasing`], and [`NoScaleEasing`] components.
///
/// Note that changing [`Transform`] manually in any schedule that *doesn't* use a fixed timestep is also supported,
/// but it is equivalent to teleporting, and disables interpolation for the entity for the remainder of that fixed timestep.
///
/// ## Hermite Interpolation
///
/// By default, *linear interpolation* (`lerp`) is used for easing translation and scale,
/// and *spherical linear interpolation* (`slerp`) is used for easing rotation.
/// This is computationally efficient and works well for most cases.
///
/// However, linear interpolation doesn't consider velocity, which can make trajectories look less smooth
/// at low tick rates. Very high angular velocities (ex: for car wheels or fan blades) can be especially problematic,
/// as `slerp` always takes the shortest path between two rotations, which can sometimes cause entities to rotate
/// in the opposite direction.
///
/// Unlike linear interpolation, *Hermite interpolation* uses both position and velocity information
/// to estimate the trajectories of entities, producing smoother results. To enable it for interpolation
/// or extrapolation, add the [`TransformHermiteEasing`] component or the individual [`TranslationHermiteEasing`]
/// and [`RotationHermiteEasing`] components:
///
/// ```
#[cfg_attr(feature = "2d", doc = "# use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "# use avian3d::prelude::*;")]
/// # use bevy::prelude::*;
/// #
/// fn setup(mut commands: Commands) {
/// // Enable Hermite interpolation for this rigid body.
/// commands.spawn((
/// RigidBody::Dynamic,
/// Transform::default(),
/// TransformInterpolation,
/// TransformHermiteEasing,
/// ));
/// }
/// ```
///
/// Hermite interpolation is more expensive than linear interpolation, so it is generally recommended
/// to only use it when it produces noticeable benefits. For most cases, linear interpolation should be sufficient.
///
/// Note that scale interpolation is always linear, and does not support Hermite interpolation.
///
/// # General Interpolation or Extrapolation
///
/// Avian uses [`bevy_transform_interpolation`] for interpolation and extrapolation.
/// It is not limited to physics entities, so it is actually possible to use the components
/// shown here for interpolating the [`Transform`] of *any* entity!
///
/// Refer to the [`bevy_transform_interpolation`] documentation for more information on how to use it.
#[derive(Debug, Default)]
pub struct PhysicsInterpolationPlugin {
interpolate_translation_all: bool,
interpolate_rotation_all: bool,
extrapolate_translation_all: bool,
extrapolate_rotation_all: bool,
}
impl PhysicsInterpolationPlugin {
/// Enables interpolation of translation and rotation for all rigid bodies.
///
/// This can be overridden for individual entities by adding the [`NoTransformEasing`] component,
/// or the individual [`NoTranslationEasing`] and [`NoRotationEasing`] components.
pub const fn interpolate_all() -> Self {
Self {
interpolate_translation_all: true,
interpolate_rotation_all: true,
extrapolate_translation_all: false,
extrapolate_rotation_all: false,
}
}
/// Enables interpolation of translation for all rigid bodies.
///
/// This can be overridden for individual entities by adding the [`NoTranslationEasing`] component.
pub const fn interpolate_translation_all() -> Self {
Self {
interpolate_translation_all: true,
interpolate_rotation_all: false,
extrapolate_translation_all: false,
extrapolate_rotation_all: false,
}
}
/// Enables interpolation of rotation for all rigid bodies.
///
/// This can be overridden for individual entities by adding the [`NoRotationEasing`] component.
pub const fn interpolate_rotation_all() -> Self {
Self {
interpolate_translation_all: false,
interpolate_rotation_all: true,
extrapolate_translation_all: false,
extrapolate_rotation_all: false,
}
}
/// Enables extrapolation of translation and rotation for all rigid bodies.
///
/// This can be overridden for individual entities by adding the [`NoTransformEasing`] component,
/// or the individual [`NoTranslationEasing`] and [`NoRotationEasing`] components.
pub const fn extrapolate_all() -> Self {
Self {
interpolate_translation_all: false,
interpolate_rotation_all: false,
extrapolate_translation_all: true,
extrapolate_rotation_all: true,
}
}
/// Enables extrapolation of translation for all rigid bodies.
///
/// This can be overridden for individual entities by adding the [`NoTranslationEasing`] component.
pub const fn extrapolate_translation_all() -> Self {
Self {
interpolate_translation_all: false,
interpolate_rotation_all: false,
extrapolate_translation_all: true,
extrapolate_rotation_all: false,
}
}
/// Enables extrapolation of rotation for all rigid bodies.
///
/// This can be overridden for individual entities by adding the [`NoRotationEasing`] component.
pub const fn extrapolate_rotation_all() -> Self {
Self {
interpolate_translation_all: false,
interpolate_rotation_all: false,
extrapolate_translation_all: false,
extrapolate_rotation_all: true,
}
}
}
impl Plugin for PhysicsInterpolationPlugin {
fn build(&self, app: &mut App) {
app.add_plugins((
TransformInterpolationPlugin::default(),
TransformExtrapolationPlugin::<LinVelSource, AngVelSource>::default(),
TransformHermiteEasingPlugin::<LinVelSource, AngVelSource>::default(),
));
// Make the previous velocity components required for Hermite interpolation to insert them automatically.
app.register_required_components::<TranslationHermiteEasing, PreviousLinearVelocity>();
app.register_required_components::<RotationHermiteEasing, PreviousAngularVelocity>();
// Enable interpolation for all entities with a rigid body.
if self.interpolate_translation_all {
let _ = app.try_register_required_components::<RigidBody, TranslationInterpolation>();
}
if self.interpolate_rotation_all {
let _ = app.try_register_required_components::<RigidBody, RotationInterpolation>();
}
// Enable extrapolation for all entities with a rigid body.
if self.extrapolate_translation_all {
let _ = app.try_register_required_components::<RigidBody, TranslationExtrapolation>();
}
if self.extrapolate_rotation_all {
let _ = app.try_register_required_components::<RigidBody, RotationExtrapolation>();
}
// Update previous velocity components for Hermite interpolation.
app.add_systems(
PhysicsSchedule,
update_previous_velocity.in_set(PhysicsStepSet::First),
);
}
}
/// The previous linear velocity of an entity indicating its movement speed and direction during the previous frame.
#[derive(Component, Default, Deref, DerefMut)]
struct PreviousLinearVelocity(Vector);
/// The previous angular velocity of an entity indicating its rotation speed during the previous frame.
#[derive(Component, Default, Deref, DerefMut)]
struct PreviousAngularVelocity(AngularVelocity);
#[derive(QueryData)]
struct LinVelSource;
impl VelocitySource for LinVelSource {
type Previous = PreviousLinearVelocity;
type Current = LinearVelocity;
fn previous(previous: &Self::Previous) -> Vec3 {
#[cfg(feature = "2d")]
{
previous.f32().extend(0.0)
}
#[cfg(feature = "3d")]
{
previous.f32()
}
}
fn current(current: &Self::Current) -> Vec3 {
#[cfg(feature = "2d")]
{
current.0.f32().extend(0.0)
}
#[cfg(feature = "3d")]
{
current.0.f32()
}
}
}
#[derive(QueryData)]
struct AngVelSource;
#[allow(clippy::unnecessary_cast)]
impl VelocitySource for AngVelSource {
type Previous = PreviousAngularVelocity;
type Current = AngularVelocity;
fn previous(previous: &Self::Previous) -> Vec3 {
#[cfg(feature = "2d")]
{
Vec3::Z * previous.0 .0 as f32
}
#[cfg(feature = "3d")]
{
previous.0.f32()
}
}
fn current(current: &Self::Current) -> Vec3 {
#[cfg(feature = "2d")]
{
Vec3::Z * current.0 as f32
}
#[cfg(feature = "3d")]
{
current.0.f32()
}
}
}
fn update_previous_velocity(
mut lin_vel_query: Query<(&LinearVelocity, &mut PreviousLinearVelocity)>,
mut ang_vel_query: Query<(&AngularVelocity, &mut PreviousAngularVelocity)>,
) {
for (lin_vel, mut prev_lin_vel) in &mut lin_vel_query {
prev_lin_vel.0 = lin_vel.0;
}
for (ang_vel, mut prev_ang_vel) in &mut ang_vel_query {
prev_ang_vel.0 = *ang_vel;
}
}