avian3d/
position.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
//! Components for physics positions and rotations.

#![allow(clippy::unnecessary_cast)]

use crate::prelude::*;
use bevy::{math::DQuat, prelude::*};
use derive_more::From;

#[cfg(feature = "2d")]
use crate::math::Matrix;

/// The global position of a [rigid body](RigidBody) or a [collider](Collider).
///
/// # Relation to `Transform` and `GlobalTransform`
///
/// [`Position`] is used for physics internally and kept in sync with `Transform`
/// by the [`SyncPlugin`]. It rarely needs to be used directly in your own code, as `Transform` can still
/// be used for almost everything. Using [`Position`] should only be required for managing positions
/// in systems running in the [`SubstepSchedule`]. However, if you prefer, you can also use [`Position`]
/// for everything.
///
/// The reasons why the engine uses a separate [`Position`] component can be found
/// [here](crate#why-are-there-separate-position-and-rotation-components).
///
/// # Example
///
/// ```
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
/// use bevy::prelude::*;
///
/// fn setup(mut commands: Commands) {
///     commands.spawn((
///         RigidBody::Dynamic,
#[cfg_attr(feature = "2d", doc = "         Position::from_xy(0.0, 20.0),")]
#[cfg_attr(feature = "3d", doc = "         Position::from_xyz(0.0, 2.0, 0.0),")]
///     ));
/// }
/// ```
#[derive(Reflect, Clone, Copy, Component, Debug, Default, Deref, DerefMut, PartialEq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct Position(pub Vector);

impl Position {
    /// Creates a [`Position`] component with the given global `position`.
    pub fn new(position: Vector) -> Self {
        Self(position)
    }

    /// Creates a [`Position`] component with the global position `(x, y)`.
    #[cfg(feature = "2d")]
    pub fn from_xy(x: Scalar, y: Scalar) -> Self {
        Self(Vector::new(x, y))
    }

    /// Creates a [`Position`] component with the global position `(x, y, z)`.
    #[cfg(feature = "3d")]
    pub fn from_xyz(x: Scalar, y: Scalar, z: Scalar) -> Self {
        Self(Vector::new(x, y, z))
    }
}

impl From<GlobalTransform> for Position {
    #[cfg(feature = "2d")]
    fn from(value: GlobalTransform) -> Self {
        Self::from_xy(
            value.translation().adjust_precision().x,
            value.translation().adjust_precision().y,
        )
    }

    #[cfg(feature = "3d")]
    fn from(value: GlobalTransform) -> Self {
        Self::from_xyz(
            value.translation().adjust_precision().x,
            value.translation().adjust_precision().y,
            value.translation().adjust_precision().z,
        )
    }
}

impl From<&GlobalTransform> for Position {
    #[cfg(feature = "2d")]
    fn from(value: &GlobalTransform) -> Self {
        Self::from_xy(
            value.translation().adjust_precision().x,
            value.translation().adjust_precision().y,
        )
    }

    #[cfg(feature = "3d")]
    fn from(value: &GlobalTransform) -> Self {
        Self::from_xyz(
            value.translation().adjust_precision().x,
            value.translation().adjust_precision().y,
            value.translation().adjust_precision().z,
        )
    }
}

/// The translation accumulated before the XPBD position solve.
#[derive(Reflect, Clone, Copy, Component, Debug, Default, Deref, DerefMut, PartialEq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct PreSolveAccumulatedTranslation(pub Vector);

/// The rotation accumulated before the XPBD position solve.
#[derive(Reflect, Clone, Copy, Component, Debug, Default, Deref, DerefMut, PartialEq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct PreSolveRotation(pub Rotation);

/// Radians
#[cfg(all(feature = "2d", feature = "default-collider"))]
pub(crate) type RotationValue = Scalar;
/// Quaternion
#[cfg(all(feature = "3d", feature = "default-collider"))]
pub(crate) type RotationValue = Quaternion;

/// The global counterclockwise physics rotation of a [rigid body](RigidBody)
/// or a [collider](Collider) in radians.
///
/// The rotation angle is wrapped to be within the `(-pi, pi]` range.
///
/// # Relation to `Transform` and `GlobalTransform`
///
/// [`Rotation`] is used for physics internally and kept in sync with `Transform`
/// by the [`SyncPlugin`]. It rarely needs to be used directly in your own code, as `Transform` can still
/// be used for almost everything. Using [`Rotation`] should only be required for managing rotations
/// in systems running in the [`SubstepSchedule`], but if you prefer, you can also use [`Rotation`]
/// for everything.
///
/// The reasons why the engine uses a separate [`Rotation`] component can be found
/// [here](crate#why-are-there-separate-position-and-rotation-components).
///
/// # Example
///
/// ```
/// use avian2d::prelude::*;
/// use bevy::prelude::*;
///
/// fn setup(mut commands: Commands) {
///     // Spawn a dynamic rigid body rotated by 90 degrees
///     commands.spawn((RigidBody::Dynamic, Rotation::degrees(90.0)));
/// }
/// ```
#[derive(Reflect, Clone, Copy, Component, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, PartialEq)]
#[cfg(feature = "2d")]
pub struct Rotation {
    /// The cosine of the rotation angle in radians.
    ///
    /// This is the real part of the unit complex number representing the rotation.
    pub cos: Scalar,
    /// The sine of the rotation angle in radians.
    ///
    /// This is the imaginary part of the unit complex number representing the rotation.
    pub sin: Scalar,
}

#[cfg(feature = "2d")]
impl Default for Rotation {
    fn default() -> Self {
        Self::IDENTITY
    }
}

#[cfg(feature = "2d")]
impl Rotation {
    /// No rotation.
    pub const IDENTITY: Self = Self { cos: 1.0, sin: 0.0 };

    /// A rotation of π radians.
    pub const PI: Self = Self {
        cos: -1.0,
        sin: 0.0,
    };

    /// A counterclockwise rotation of π/2 radians.
    pub const FRAC_PI_2: Self = Self { cos: 0.0, sin: 1.0 };

    /// A counterclockwise rotation of π/3 radians.
    pub const FRAC_PI_3: Self = Self {
        cos: 0.5,
        sin: 0.866_025_4,
    };

    /// A counterclockwise rotation of π/4 radians.
    pub const FRAC_PI_4: Self = Self {
        cos: FRAC_1_SQRT_2,
        sin: FRAC_1_SQRT_2,
    };

    /// A counterclockwise rotation of π/6 radians.
    pub const FRAC_PI_6: Self = Self {
        cos: 0.866_025_4,
        sin: 0.5,
    };

    /// A counterclockwise rotation of π/8 radians.
    pub const FRAC_PI_8: Self = Self {
        cos: 0.923_879_5,
        sin: 0.382_683_43,
    };

    /// Creates a [`Rotation`] from a counterclockwise angle in radians.
    #[inline]
    pub fn radians(radians: Scalar) -> Self {
        #[cfg(feature = "enhanced-determinism")]
        let (sin, cos) = (
            libm::sin(radians as f64) as Scalar,
            libm::cos(radians as f64) as Scalar,
        );
        #[cfg(not(feature = "enhanced-determinism"))]
        let (sin, cos) = radians.sin_cos();

        Self::from_sin_cos(sin, cos)
    }

    /// Creates a [`Rotation`] from a counterclockwise angle in degrees.
    #[inline]
    pub fn degrees(degrees: Scalar) -> Self {
        Self::radians(degrees.to_radians())
    }

    /// Creates a [`Rotation`] from radians.
    #[deprecated(note = "renamed to just `radians` to match Bevy")]
    pub fn from_radians(radians: Scalar) -> Self {
        Self::radians(radians)
    }

    /// Creates a [`Rotation`] from degrees.
    #[deprecated(note = "renamed to just `degrees` to match Bevy")]
    pub fn from_degrees(degrees: Scalar) -> Self {
        Self::degrees(degrees)
    }

    /// Creates a [`Rotation`] from the sine and cosine of an angle in radians.
    ///
    /// The rotation is only valid if `sin * sin + cos * cos == 1.0`.
    ///
    /// # Panics
    ///
    /// Panics if `sin * sin + cos * cos != 1.0` when the `glam_assert` feature is enabled.
    #[inline]
    pub fn from_sin_cos(sin: Scalar, cos: Scalar) -> Self {
        let rotation = Self { sin, cos };
        debug_assert!(
            rotation.is_normalized(),
            "the given sine and cosine produce an invalid rotation"
        );
        rotation
    }

    /// Returns the rotation in radians in the `(-pi, pi]` range.
    #[inline]
    pub fn as_radians(self) -> Scalar {
        #[cfg(feature = "enhanced-determinism")]
        {
            libm::atan2(self.sin as f64, self.cos as f64) as Scalar
        }
        #[cfg(not(feature = "enhanced-determinism"))]
        {
            Scalar::atan2(self.sin, self.cos)
        }
    }

    /// Returns the rotation in degrees in the `(-180, 180]` range.
    #[inline]
    pub fn as_degrees(self) -> Scalar {
        self.as_radians().to_degrees()
    }

    /// Returns the sine and cosine of the rotation angle in radians.
    #[inline]
    pub const fn sin_cos(self) -> (Scalar, Scalar) {
        (self.sin, self.cos)
    }

    /// Rotates the given vector by `self`.
    #[deprecated(note = "use the `Mul` impl instead, like `rot * vec`")]
    pub fn rotate(&self, vec: Vector) -> Vector {
        self * vec
    }

    /// Computes the length or norm of the complex number used to represent the rotation.
    ///
    /// The length is typically expected to be `1.0`. Unexpectedly denormalized rotations
    /// can be a result of incorrect construction or floating point error caused by
    /// successive operations.
    #[inline]
    #[doc(alias = "norm")]
    pub fn length(self) -> Scalar {
        Vector::new(self.sin, self.cos).length()
    }

    /// Computes the squared length or norm of the complex number used to represent the rotation.
    ///
    /// This is generally faster than [`Rotation::length()`], as it avoids a square
    /// root operation.
    ///
    /// The length is typically expected to be `1.0`. Unexpectedly denormalized rotations
    /// can be a result of incorrect construction or floating point error caused by
    /// successive operations.
    #[inline]
    #[doc(alias = "norm2")]
    pub fn length_squared(self) -> Scalar {
        Vector::new(self.sin, self.cos).length_squared()
    }

    /// Computes `1.0 / self.length()`.
    ///
    /// For valid results, `self` must _not_ have a length of zero.
    #[inline]
    pub fn length_recip(self) -> Scalar {
        Vector::new(self.sin, self.cos).length_recip()
    }

    /// Returns `self` with a length of `1.0` if possible, and `None` otherwise.
    ///
    /// `None` will be returned if the sine and cosine of `self` are both zero (or very close to zero),
    /// or if either of them is NaN or infinite.
    ///
    /// Note that [`Rotation`] should typically already be normalized by design.
    /// Manual normalization is only needed when successive operations result in
    /// accumulated floating point error, or if the rotation was constructed
    /// with invalid values.
    #[inline]
    #[must_use]
    pub fn try_normalize(self) -> Option<Self> {
        let recip = self.length_recip();
        if recip.is_finite() && recip > 0.0 {
            Some(Self::from_sin_cos(self.sin * recip, self.cos * recip))
        } else {
            None
        }
    }

    /// Returns `self` with a length of `1.0`.
    ///
    /// Note that [`Rotation`] should typically already be normalized by design.
    /// Manual normalization is only needed when successive operations result in
    /// accumulated floating point error, or if the rotation was constructed
    /// with invalid values.
    ///
    /// # Panics
    ///
    /// Panics if `self` has a length of zero, NaN, or infinity when debug assertions are enabled.
    #[inline]
    #[must_use]
    pub fn normalize(self) -> Self {
        let length_recip = self.length_recip();
        Self::from_sin_cos(self.sin * length_recip, self.cos * length_recip)
    }

    /// Returns `self` after an approximate normalization,
    /// assuming the value is already nearly normalized.
    /// Useful for preventing numerical error accumulation.
    #[inline]
    #[must_use]
    pub fn fast_renormalize(self) -> Self {
        // First-order Tayor approximation
        // 1/L = (L^2)^(-1/2) ≈ 1 - (L^2 - 1) / 2 = (3 - L^2) / 2
        let length_squared = self.length_squared();
        let approx_inv_length = 0.5 * (3.0 - length_squared);
        Self::from_sin_cos(self.sin * approx_inv_length, self.cos * approx_inv_length)
    }

    /// Returns `true` if the rotation is neither infinite nor NaN.
    #[inline]
    pub fn is_finite(self) -> bool {
        self.sin.is_finite() && self.cos.is_finite()
    }

    /// Returns `true` if the rotation is NaN.
    #[inline]
    pub fn is_nan(self) -> bool {
        self.sin.is_nan() || self.cos.is_nan()
    }

    /// Returns whether `self` has a length of `1.0` or not.
    ///
    /// Uses a precision threshold of approximately `1e-4`.
    #[inline]
    pub fn is_normalized(self) -> bool {
        // The allowed length is 1 +/- 1e-4, so the largest allowed
        // squared length is (1 + 1e-4)^2 = 1.00020001, which makes
        // the threshold for the squared length approximately 2e-4.
        (self.length_squared() - 1.0).abs() <= 2e-4
    }

    /// Returns `true` if the rotation is near [`Rotation::IDENTITY`].
    #[inline]
    pub fn is_near_identity(self) -> bool {
        // Same as `Quat::is_near_identity`, but using sine and cosine
        let threshold_angle_sin = 0.000_049_692_047; // let threshold_angle = 0.002_847_144_6;
        self.cos > 0.0 && self.sin.abs() < threshold_angle_sin
    }

    /// Returns the angle in radians needed to make `self` and `other` coincide.
    #[inline]
    pub fn angle_between(self, other: Self) -> Scalar {
        (other * self.inverse()).as_radians()
    }

    /// Returns the inverse of the rotation. This is also the conjugate
    /// of the unit complex number representing the rotation.
    #[inline]
    #[must_use]
    #[doc(alias = "conjugate")]
    pub fn inverse(self) -> Self {
        Self {
            cos: self.cos,
            sin: -self.sin,
        }
    }

    #[inline]
    #[must_use]
    /// Adds the given counterclockiwise angle in radians to the [`Rotation`].
    /// Uses small-angle approximation
    pub fn add_angle(&self, radians: Scalar) -> Self {
        let (sin, cos) = (self.sin + radians * self.cos, self.cos - radians * self.sin);
        let magnitude_squared = sin * sin + cos * cos;
        let magnitude_recip = if magnitude_squared > 0.0 {
            magnitude_squared.sqrt().recip()
        } else {
            0.0
        };
        Rotation::from_sin_cos(sin * magnitude_recip, cos * magnitude_recip)
    }

    /// Performs a linear interpolation between `self` and `rhs` based on
    /// the value `s`, and normalizes the rotation afterwards.
    ///
    /// When `s == 0.0`, the result will be equal to `self`.
    /// When `s == 1.0`, the result will be equal to `rhs`.
    ///
    /// This is slightly more efficient than [`slerp`](Self::slerp), and produces a similar result
    /// when the difference between the two rotations is small. At larger differences,
    /// the result resembles a kind of ease-in-out effect.
    ///
    /// If you would like the angular velocity to remain constant, consider using [`slerp`](Self::slerp) instead.
    ///
    /// # Details
    ///
    /// `nlerp` corresponds to computing an angle for a point at position `s` on a line drawn
    /// between the endpoints of the arc formed by `self` and `rhs` on a unit circle,
    /// and normalizing the result afterwards.
    ///
    /// Note that if the angles are opposite like 0 and π, the line will pass through the origin,
    /// and the resulting angle will always be either `self` or `rhs` depending on `s`.
    /// If `s` happens to be `0.5` in this case, a valid rotation cannot be computed, and `self`
    /// will be returned as a fallback.
    ///
    /// # Example
    ///
    /// ```
    /// # use approx::assert_relative_eq;
    /// # use avian2d::prelude::Rotation;
    /// #
    /// let rot1 = Rotation::IDENTITY;
    /// let rot2 = Rotation::degrees(135.0);
    ///
    /// let result1 = rot1.nlerp(rot2, 1.0 / 3.0);
    /// assert_relative_eq!(result1.as_degrees(), 28.675055, epsilon = 0.0001);
    ///
    /// let result2 = rot1.nlerp(rot2, 0.5);
    /// assert_relative_eq!(result2.as_degrees(), 67.5);
    /// ```
    #[inline]
    pub fn nlerp(self, end: Self, s: Scalar) -> Self {
        Self {
            sin: self.sin.lerp(end.sin, s),
            cos: self.cos.lerp(end.cos, s),
        }
        .try_normalize()
        // Fall back to the start rotation.
        // This can happen when `self` and `end` are opposite angles and `s == 0.5`,
        // because the resulting rotation would be zero, which cannot be normalized.
        .unwrap_or(self)
    }

    /// Performs a spherical linear interpolation between `self` and `end`
    /// based on the value `s`.
    ///
    /// This corresponds to interpolating between the two angles at a constant angular velocity.
    ///
    /// When `s == 0.0`, the result will be equal to `self`.
    /// When `s == 1.0`, the result will be equal to `rhs`.
    ///
    /// If you would like the rotation to have a kind of ease-in-out effect, consider
    /// using the slightly more efficient [`nlerp`](Self::nlerp) instead.
    ///
    /// # Example
    ///
    /// ```
    /// # use avian2d::prelude::Rotation;
    /// #
    /// let rot1 = Rotation::IDENTITY;
    /// let rot2 = Rotation::degrees(135.0);
    ///
    /// let result1 = rot1.slerp(rot2, 1.0 / 3.0);
    /// assert_eq!(result1.as_degrees(), 45.0);
    ///
    /// let result2 = rot1.slerp(rot2, 0.5);
    /// assert_eq!(result2.as_degrees(), 67.5);
    /// ```
    #[inline]
    pub fn slerp(self, end: Self, s: Scalar) -> Self {
        self * Self::radians(self.angle_between(end) * s)
    }
}

#[cfg(feature = "2d")]
impl From<Scalar> for Rotation {
    /// Creates a [`Rotation`] from a counterclockwise angle in radians.
    fn from(rotation: Scalar) -> Self {
        Self::radians(rotation)
    }
}

#[cfg(feature = "2d")]
impl From<Rotation> for Matrix {
    /// Creates a [`Matrix`] rotation matrix from a [`Rotation`].
    fn from(rot: Rotation) -> Self {
        Matrix::from_cols_array(&[rot.cos, -rot.sin, rot.sin, rot.cos])
    }
}

#[cfg(feature = "2d")]
impl From<Rot2> for Rotation {
    /// Creates a [`Rotation`] from a [`Rot2`].
    fn from(rot: Rot2) -> Self {
        Self::from_sin_cos(rot.sin as Scalar, rot.cos as Scalar)
    }
}

#[cfg(feature = "2d")]
impl From<Rotation> for Rot2 {
    /// Creates a [`Rot2`] from a [`Rotation`].
    fn from(rot: Rotation) -> Self {
        Self::from_sin_cos(rot.cos as f32, rot.sin as f32)
    }
}

#[cfg(feature = "2d")]
impl std::ops::Mul for Rotation {
    type Output = Self;

    fn mul(self, rhs: Self) -> Self::Output {
        Self {
            cos: self.cos * rhs.cos - self.sin * rhs.sin,
            sin: self.sin * rhs.cos + self.cos * rhs.sin,
        }
    }
}

#[cfg(feature = "2d")]
impl std::ops::MulAssign for Rotation {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

#[cfg(feature = "2d")]
impl std::ops::Mul<Vector> for Rotation {
    type Output = Vector;

    /// Rotates a [`Vector`] by a [`Rotation`].
    fn mul(self, rhs: Vector) -> Self::Output {
        Vector::new(
            rhs.x * self.cos - rhs.y * self.sin,
            rhs.x * self.sin + rhs.y * self.cos,
        )
    }
}

#[cfg(feature = "2d")]
impl core::ops::Mul<Vector3> for Rotation {
    type Output = Vector3;

    fn mul(self, rhs: Vector3) -> Self::Output {
        Vector3::new(
            rhs.x * self.cos - rhs.y * self.sin,
            rhs.x * self.sin + rhs.y * self.cos,
            rhs.z,
        )
    }
}

#[cfg(feature = "2d")]
impl core::ops::Mul<&Vector3> for Rotation {
    type Output = Vector3;

    fn mul(self, rhs: &Vector3) -> Self::Output {
        self * *rhs
    }
}

#[cfg(feature = "2d")]
impl core::ops::Mul<&mut Vector3> for Rotation {
    type Output = Vector3;

    fn mul(self, rhs: &mut Vector3) -> Self::Output {
        self * *rhs
    }
}

#[cfg(feature = "2d")]
impl core::ops::Mul<Vector3> for &Rotation {
    type Output = Vector3;

    fn mul(self, rhs: Vector3) -> Self::Output {
        *self * rhs
    }
}

#[cfg(feature = "2d")]
impl core::ops::Mul<&Vector3> for &Rotation {
    type Output = Vector3;

    fn mul(self, rhs: &Vector3) -> Self::Output {
        *self * *rhs
    }
}

#[cfg(feature = "2d")]
impl core::ops::Mul<&mut Vector3> for &Rotation {
    type Output = Vector3;

    fn mul(self, rhs: &mut Vector3) -> Self::Output {
        *self * *rhs
    }
}

#[cfg(feature = "2d")]
impl core::ops::Mul<Vector3> for &mut Rotation {
    type Output = Vector3;

    fn mul(self, rhs: Vector3) -> Self::Output {
        *self * rhs
    }
}

#[cfg(feature = "2d")]
impl core::ops::Mul<&Vector3> for &mut Rotation {
    type Output = Vector3;

    fn mul(self, rhs: &Vector3) -> Self::Output {
        *self * *rhs
    }
}

#[cfg(feature = "2d")]
impl core::ops::Mul<&mut Vector3> for &mut Rotation {
    type Output = Vector3;

    fn mul(self, rhs: &mut Vector3) -> Self::Output {
        *self * *rhs
    }
}

/// The global physics rotation of a [rigid body](RigidBody) or a [collider](Collider).
///
/// # Relation to `Transform` and `GlobalTransform`
///
/// [`Rotation`] is used for physics internally and kept in sync with `Transform`
/// by the [`SyncPlugin`]. It rarely needs to be used directly in your own code, as `Transform` can still
/// be used for almost everything. Using [`Rotation`] should only be required for managing rotations
/// in systems running in the [`SubstepSchedule`], but if you prefer, you can also use [`Rotation`]
/// for everything.
///
/// The reasons why the engine uses a separate [`Rotation`] component can be found
/// [here](crate#why-are-there-separate-position-and-rotation-components).
///
/// # Example
///
/// ```
/// use avian3d::prelude::*;
/// use bevy::prelude::*;
///
/// # #[cfg(feature = "f32")]
/// fn setup(mut commands: Commands) {
///     // Spawn a dynamic rigid body rotated by 1.5 radians around the x axis
///     commands.spawn((RigidBody::Dynamic, Rotation(Quat::from_rotation_x(1.5))));
/// }
/// ```
#[cfg(feature = "3d")]
#[derive(Reflect, Clone, Copy, Component, Debug, Default, Deref, DerefMut, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct Rotation(pub Quaternion);

#[cfg(feature = "3d")]
impl Rotation {
    /// Inverts the rotation.
    #[inline]
    #[must_use]
    pub fn inverse(&self) -> Self {
        Self(self.0.inverse())
    }

    /// Performs a linear interpolation between `self` and `end` based on
    /// the value `s`, and normalizes the rotation afterwards.
    ///
    /// When `s == 0.0`, the result will be equal to `self`.
    /// When `s == 1.0`, the result will be equal to `end`.
    ///
    /// This is slightly more efficient than [`slerp`](Self::slerp), and produces a similar result
    /// when the difference between the two rotations is small. At larger differences,
    /// the result resembles a kind of ease-in-out effect.
    ///
    /// If you would like the angular velocity to remain constant, consider using [`slerp`](Self::slerp) instead.
    #[inline]
    pub fn nlerp(self, end: Self, t: Scalar) -> Self {
        Self(self.0.lerp(end.0, t))
    }

    /// Performs a spherical linear interpolation between `self` and `end`
    /// based on the value `s`.
    ///
    /// This corresponds to interpolating between the two angles at a constant angular velocity.
    ///
    /// When `s == 0.0`, the result will be equal to `self`.
    /// When `s == 1.0`, the result will be equal to `end`.
    ///
    /// If you would like the rotation to have a kind of ease-in-out effect, consider
    /// using the slightly more efficient [`nlerp`](Self::nlerp) instead.
    #[inline]
    pub fn slerp(self, end: Self, t: Scalar) -> Self {
        Self(self.0.slerp(end.0, t))
    }

    /// Returns `self` after an approximate normalization,
    /// assuming the value is already nearly normalized.
    /// Useful for preventing numerical error accumulation.
    #[inline]
    #[must_use]
    pub fn fast_renormalize(self) -> Self {
        // First-order Tayor approximation
        // 1/L = (L^2)^(-1/2) ≈ 1 - (L^2 - 1) / 2 = (3 - L^2) / 2
        let length_squared = self.length_squared();
        let approx_inv_length = 0.5 * (3.0 - length_squared);
        Self(self.0 * approx_inv_length)
    }
}

#[cfg(feature = "3d")]
impl core::ops::Mul<Vector> for Rotation {
    type Output = Vector;

    fn mul(self, vector: Vector) -> Self::Output {
        self.0 * vector
    }
}

impl core::ops::Mul<Dir> for Rotation {
    type Output = Dir;

    fn mul(self, direction: Dir) -> Self::Output {
        Dir::new_unchecked((self * direction.adjust_precision()).f32())
    }
}

impl core::ops::Mul<Vector> for &Rotation {
    type Output = Vector;

    fn mul(self, vector: Vector) -> Self::Output {
        *self * vector
    }
}

impl core::ops::Mul<Dir> for &Rotation {
    type Output = Dir;

    fn mul(self, direction: Dir) -> Self::Output {
        Dir::new_unchecked((*self * direction.adjust_precision()).f32())
    }
}

impl core::ops::Mul<Vector> for &mut Rotation {
    type Output = Vector;

    fn mul(self, vector: Vector) -> Self::Output {
        *self * vector
    }
}

impl core::ops::Mul<Dir> for &mut Rotation {
    type Output = Dir;

    fn mul(self, direction: Dir) -> Self::Output {
        Dir::new_unchecked((*self * direction.adjust_precision()).f32())
    }
}

impl core::ops::Mul<&Vector> for Rotation {
    type Output = Vector;

    fn mul(self, vector: &Vector) -> Self::Output {
        self * *vector
    }
}

impl core::ops::Mul<&Dir> for Rotation {
    type Output = Dir;

    fn mul(self, direction: &Dir) -> Self::Output {
        Dir::new_unchecked((self * direction.adjust_precision()).f32())
    }
}

impl core::ops::Mul<&mut Vector> for Rotation {
    type Output = Vector;

    fn mul(self, vector: &mut Vector) -> Self::Output {
        self * *vector
    }
}

impl core::ops::Mul<&mut Dir> for Rotation {
    type Output = Dir;

    fn mul(self, direction: &mut Dir) -> Self::Output {
        Dir::new_unchecked((self * direction.adjust_precision()).f32())
    }
}

impl core::ops::Mul<&Vector> for &Rotation {
    type Output = Vector;

    fn mul(self, vector: &Vector) -> Self::Output {
        *self * *vector
    }
}

impl core::ops::Mul<&Dir> for &Rotation {
    type Output = Dir;

    fn mul(self, direction: &Dir) -> Self::Output {
        Dir::new_unchecked((*self * direction.adjust_precision()).f32())
    }
}

impl core::ops::Mul<&Vector> for &mut Rotation {
    type Output = Vector;

    fn mul(self, vector: &Vector) -> Self::Output {
        *self * *vector
    }
}

impl core::ops::Mul<&Dir> for &mut Rotation {
    type Output = Dir;

    fn mul(self, direction: &Dir) -> Self::Output {
        Dir::new_unchecked((*self * direction.adjust_precision()).f32())
    }
}

impl core::ops::Mul<&mut Vector> for &Rotation {
    type Output = Vector;

    fn mul(self, vector: &mut Vector) -> Self::Output {
        *self * *vector
    }
}

impl core::ops::Mul<&mut Dir> for &Rotation {
    type Output = Dir;

    fn mul(self, direction: &mut Dir) -> Self::Output {
        Dir::new_unchecked((*self * direction.adjust_precision()).f32())
    }
}

impl core::ops::Mul<&mut Vector> for &mut Rotation {
    type Output = Vector;

    fn mul(self, vector: &mut Vector) -> Self::Output {
        *self * *vector
    }
}

impl core::ops::Mul<&mut Dir> for &mut Rotation {
    type Output = Dir;

    fn mul(self, direction: &mut Dir) -> Self::Output {
        Dir::new_unchecked((*self * direction.adjust_precision()).f32())
    }
}

#[cfg(feature = "2d")]
impl From<Rotation> for Scalar {
    fn from(rot: Rotation) -> Self {
        rot.as_radians()
    }
}

#[cfg(feature = "2d")]
impl From<Rotation> for Quaternion {
    fn from(rot: Rotation) -> Self {
        let z = rot.sin.signum() * ((1.0 - rot.cos) / 2.0).abs().sqrt();
        let w = ((1.0 + rot.cos) / 2.0).abs().sqrt();
        Quaternion::from_xyzw(0.0, 0.0, z, w)
    }
}

#[cfg(feature = "3d")]
impl From<Rotation> for Quaternion {
    fn from(rot: Rotation) -> Self {
        rot.0
    }
}

impl From<Transform> for Rotation {
    fn from(value: Transform) -> Self {
        Self::from(value.rotation)
    }
}

impl From<GlobalTransform> for Rotation {
    fn from(value: GlobalTransform) -> Self {
        Self::from(value.compute_transform().rotation)
    }
}

impl From<&GlobalTransform> for Rotation {
    fn from(value: &GlobalTransform) -> Self {
        Self::from(value.compute_transform().rotation)
    }
}

#[cfg(feature = "2d")]
impl From<Quat> for Rotation {
    fn from(quat: Quat) -> Self {
        let angle = quat.to_euler(EulerRot::XYZ).2;
        Self::radians(angle as Scalar)
    }
}

#[cfg(feature = "2d")]
impl From<DQuat> for Rotation {
    fn from(quat: DQuat) -> Self {
        let angle = quat.to_euler(EulerRot::XYZ).2;
        Self::radians(angle as Scalar)
    }
}

#[cfg(feature = "3d")]
impl From<Quat> for Rotation {
    fn from(quat: Quat) -> Self {
        Self(Quaternion::from_xyzw(
            quat.x as Scalar,
            quat.y as Scalar,
            quat.z as Scalar,
            quat.w as Scalar,
        ))
    }
}

#[cfg(feature = "3d")]
impl From<DQuat> for Rotation {
    fn from(quat: DQuat) -> Self {
        Self(Quaternion::from_xyzw(
            quat.x as Scalar,
            quat.y as Scalar,
            quat.z as Scalar,
            quat.w as Scalar,
        ))
    }
}

/// The previous rotation of a body. See [`Rotation`].
#[derive(Reflect, Clone, Copy, Component, Debug, Default, Deref, DerefMut, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct PreviousRotation(pub Rotation);