1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
//! Sets up the default scheduling, system set configuration, and time resources for physics.
//!
//! See [`PhysicsSchedulePlugin`].

mod time;
pub use time::*;

use std::time::Duration;

// For doc links
#[allow(unused_imports)]
use crate::prelude::*;

use bevy::{
    ecs::intern::Interned,
    ecs::schedule::{ExecutorKind, LogLevel, ScheduleBuildSettings, ScheduleLabel},
    prelude::*,
    transform::TransformSystem,
};

/// Sets up the default scheduling, system set configuration, and time resources for physics.
///
/// ## Schedules and sets
///
/// This plugin initializes and configures the following schedules and system sets:
///
/// - [`PhysicsSet`]: High-level system sets for the main phases of the physics engine.
///   You can use these to schedule your own systems before or after physics is run without
///   having to worry about implementation details.
/// - [`PhysicsSchedule`]: Responsible for advancing the simulation in [`PhysicsSet::StepSimulation`].
/// - [`PhysicsStepSet`]: System sets for the steps of the actual physics simulation loop, like
///   the broad phase and the substepping loop.
/// - [`SubstepSchedule`]: Responsible for running the substepping loop in [`SolverSet::Substep`].
pub struct PhysicsSchedulePlugin {
    schedule: Interned<dyn ScheduleLabel>,
}

impl PhysicsSchedulePlugin {
    /// Creates a [`PhysicsSchedulePlugin`] using the given schedule for running the [`PhysicsSchedule`].
    ///
    /// The default schedule is `PostUpdate`.
    pub fn new(schedule: impl ScheduleLabel) -> Self {
        Self {
            schedule: schedule.intern(),
        }
    }
}

impl Default for PhysicsSchedulePlugin {
    fn default() -> Self {
        Self::new(PostUpdate)
    }
}

impl Plugin for PhysicsSchedulePlugin {
    fn build(&self, app: &mut App) {
        app.init_resource::<Time<Physics>>()
            .insert_resource(Time::new_with(Substeps))
            .init_resource::<SubstepCount>();

        // Configure higher level system sets for the given schedule
        let schedule = self.schedule;

        app.configure_sets(
            schedule,
            (
                PhysicsSet::Prepare,
                PhysicsSet::StepSimulation,
                PhysicsSet::Sync,
            )
                .chain()
                .before(TransformSystem::TransformPropagate),
        );

        // Set up the physics schedule, the schedule that advances the physics simulation
        app.edit_schedule(PhysicsSchedule, |schedule| {
            schedule
                .set_executor_kind(ExecutorKind::SingleThreaded)
                .set_build_settings(ScheduleBuildSettings {
                    ambiguity_detection: LogLevel::Error,
                    ..default()
                });

            schedule.configure_sets(
                (
                    PhysicsStepSet::First,
                    PhysicsStepSet::BroadPhase,
                    PhysicsStepSet::NarrowPhase,
                    PhysicsStepSet::Solver,
                    PhysicsStepSet::ReportContacts,
                    PhysicsStepSet::Sleeping,
                    PhysicsStepSet::SpatialQuery,
                    PhysicsStepSet::Last,
                )
                    .chain(),
            );
        });

        app.add_systems(
            schedule,
            run_physics_schedule.in_set(PhysicsSet::StepSimulation),
        );

        // Set up the substep schedule, the schedule that runs the inner substepping loop
        app.edit_schedule(SubstepSchedule, |schedule| {
            schedule
                .set_executor_kind(ExecutorKind::SingleThreaded)
                .set_build_settings(ScheduleBuildSettings {
                    ambiguity_detection: LogLevel::Error,
                    ..default()
                });
        });

        // TODO: This should probably just be in the SolverPlugin.
        app.add_systems(
            PhysicsSchedule,
            run_substep_schedule.in_set(SolverSet::Substep),
        );
    }
}

/// True if a system is running for the first time.
struct IsFirstRun(bool);

impl Default for IsFirstRun {
    fn default() -> Self {
        Self(true)
    }
}

/// Responsible for advancing the physics simulation. This is run in [`PhysicsSet::StepSimulation`].
///
/// See [`PhysicsStepSet`] for the system sets that are run in this schedule.
#[derive(Debug, Hash, PartialEq, Eq, Clone, ScheduleLabel)]
pub struct PhysicsSchedule;

/// The substepping schedule that runs in [`SolverSet::Substep`].
/// The number of substeps per physics step is configured through the [`SubstepCount`] resource.
#[derive(Debug, Hash, PartialEq, Eq, Clone, ScheduleLabel)]
pub struct SubstepSchedule;

/// A schedule where you can add systems to filter or modify collisions
/// using the [`Collisions`] resource.
///
/// The schedule is empty by default and runs in
/// [`NarrowPhaseSet::PostProcess`](collision::narrow_phase::NarrowPhaseSet::PostProcess).
///
/// ## Example
///
/// Below is an example of how you could add a system that filters collisions.
///
/// ```no_run
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
/// use bevy::prelude::*;
///
/// #[derive(Component)]
/// struct Invulnerable;
///
/// fn main() {
///     App::new()
///         .add_plugins((DefaultPlugins, PhysicsPlugins::default()))
///         .add_systems(PostProcessCollisions, filter_collisions)
///         .run();
/// }
///
/// fn filter_collisions(mut collisions: ResMut<Collisions>, query: Query<(), With<Invulnerable>>) {
///     // Remove collisions where one of the colliders has an `Invulnerable` component.
///     // In a real project, this could be done more efficiently with collision layers.
///     collisions.retain(|contacts| {
///         !query.contains(contacts.entity1) && !query.contains(contacts.entity2)
///     });
/// }
/// ```
#[derive(Debug, Hash, PartialEq, Eq, Clone, ScheduleLabel)]
pub struct PostProcessCollisions;

/// High-level system sets for the main phases of the physics engine.
/// You can use these to schedule your own systems before or after physics is run without
/// having to worry about implementation details.
///
/// 1. `Prepare`: Responsible for initializing [rigid bodies](RigidBody) and [colliders](Collider) and
///    updating several components.
/// 2. `StepSimulation`: Responsible for advancing the simulation by running the steps in [`PhysicsStepSet`].
/// 3. `Sync`: Responsible for synchronizing physics components with other data, like keeping [`Position`]
///    and [`Rotation`] in sync with `Transform`.
///
/// ## See also
///
/// - [`PhysicsSchedule`]: Responsible for advancing the simulation in [`PhysicsSet::StepSimulation`].
/// - [`PhysicsStepSet`]: System sets for the steps of the actual physics simulation loop, like
///   the broad phase and the substepping loop.
/// - [`SubstepSchedule`]: Responsible for running the substepping loop in [`PhysicsStepSet::Solver`].
/// - [`PostProcessCollisions`]: Responsible for running the post-process collisions group in
///   [`NarrowPhaseSet::PostProcess`](collision::narrow_phase::NarrowPhaseSet::PostProcess).
///   Empty by default.
#[derive(SystemSet, Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum PhysicsSet {
    /// Responsible for initializing [rigid bodies](RigidBody) and [colliders](Collider) and
    /// updating several components.
    ///
    /// See [`PreparePlugin`].
    Prepare,
    /// Responsible for advancing the simulation by running the steps in [`PhysicsStepSet`].
    /// Systems in this set are run in the [`PhysicsSchedule`].
    StepSimulation,
    /// Responsible for synchronizing physics components with other data, like keeping [`Position`]
    /// and [`Rotation`] in sync with `Transform`.
    ///
    /// See [`SyncPlugin`].
    Sync,
}

/// System sets for the main steps in the physics simulation loop. These are typically run in the [`PhysicsSchedule`].
///
/// 1. First (empty by default)
/// 2. Broad phase
/// 3. Narrow phase
/// 4. Solver
/// 5. Report contacts (send collision events)
/// 6. Sleeping
/// 7. Spatial queries
/// 8. Last (empty by default)
#[derive(SystemSet, Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum PhysicsStepSet {
    /// Runs at the start of the [`PhysicsSchedule`]. Empty by default.
    First,
    /// Responsible for collecting pairs of potentially colliding entities into [`BroadCollisionPairs`] using
    /// [AABB](ColliderAabb) intersection tests.
    ///
    /// See [`BroadPhasePlugin`].
    BroadPhase,
    /// Responsible for computing contacts between entities and sending collision events.
    ///
    /// See [`NarrowPhasePlugin`].
    NarrowPhase,
    /// Responsible for running the solver and its substepping loop.
    ///
    /// See [`SolverPlugin`] and [`SubstepSchedule`].
    Solver,
    /// Responsible for sending collision events and updating [`CollidingEntities`].
    ///
    /// See [`ContactReportingPlugin`].
    ReportContacts,
    /// Responsible for controlling when bodies should be deactivated and marked as [`Sleeping`].
    ///
    /// See [`SleepingPlugin`].
    Sleeping,
    /// Responsible for spatial queries like [raycasting](`RayCaster`) and shapecasting.
    ///
    /// See [`SpatialQueryPlugin`].
    SpatialQuery,
    /// Runs at the end of the [`PhysicsSchedule`]. Empty by default.
    Last,
}

/// The number of substeps used in the simulation.
///
/// A higher number of substeps reduces the value of [`Time`],
/// which results in a more accurate simulation, but also reduces performance. The default
/// substep count is currently 6.
///
/// If you use a very high substep count and encounter stability issues, consider enabling the `f64`
/// feature as shown in the [getting started guide](crate#getting-started) to avoid floating point
/// precision problems.
///
/// ## Example
///
/// You can change the number of substeps by inserting the [`SubstepCount`] resource:
///
/// ```no_run
#[cfg_attr(feature = "2d", doc = "use avian2d::prelude::*;")]
#[cfg_attr(feature = "3d", doc = "use avian3d::prelude::*;")]
/// use bevy::prelude::*;
///
/// fn main() {
///     App::new()
///         .add_plugins((DefaultPlugins, PhysicsPlugins::default()))
///         .insert_resource(SubstepCount(12))
///         .run();
/// }
/// ```
#[derive(Debug, Reflect, Resource, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Resource, PartialEq)]
pub struct SubstepCount(pub u32);

impl Default for SubstepCount {
    fn default() -> Self {
        Self(6)
    }
}

/// Runs the [`PhysicsSchedule`].
fn run_physics_schedule(world: &mut World, mut is_first_run: Local<IsFirstRun>) {
    let _ = world.try_schedule_scope(PhysicsSchedule, |world, schedule| {
        let real_delta = world.resource::<Time<Real>>().delta();
        let old_delta = world.resource::<Time<Physics>>().delta();
        let is_paused = world.resource::<Time<Physics>>().is_paused();
        let old_clock = world.resource::<Time>().as_generic();
        let physics_clock = world.resource_mut::<Time<Physics>>();

        // Get the scaled timestep delta time based on the timestep mode.
        let timestep = match physics_clock.timestep_mode() {
            TimestepMode::Fixed { delta, .. } => delta.mul_f64(physics_clock.relative_speed_f64()),
            TimestepMode::FixedOnce { delta } => delta.mul_f64(physics_clock.relative_speed_f64()),
            TimestepMode::Variable { max_delta } => {
                let scaled_delta = real_delta.mul_f64(physics_clock.relative_speed_f64());
                scaled_delta.min(max_delta)
            }
        };

        // How many steps should be run during this frame.
        // For `TimestepMode::Fixed`, this is computed using the accumulated overstep.
        let mut queued_steps = 1;

        if !is_first_run.0 {
            if let TimestepMode::Fixed {
                delta,
                overstep,
                max_delta_overstep,
            } = world.resource_mut::<Time<Physics>>().timestep_mode_mut()
            {
                // If paused, add the `Physics` delta time, otherwise add real time.
                if is_paused {
                    *overstep += old_delta;
                } else {
                    *overstep += real_delta.min(*max_delta_overstep);
                }

                // Consume as many steps as possible with the fixed `delta`.
                queued_steps = (overstep.as_secs_f64() / delta.as_secs_f64()) as usize;
                *overstep -= delta.mul_f64(queued_steps as f64);
            }
        }

        // Advance physics clock by timestep if not paused.
        if !is_paused {
            world.resource_mut::<Time<Physics>>().advance_by(timestep);
        }

        if world.resource::<Time<Physics>>().delta() >= timestep {
            // Set generic `Time` resource to `Time<Physics>`.
            *world.resource_mut::<Time>() = world.resource::<Time<Physics>>().as_generic();

            // Advance simulation by the number of queued steps.
            for _ in 0..queued_steps {
                trace!("running PhysicsSchedule");
                schedule.run(world);
            }
        }

        // If physics is paused, reset delta time to stop simulation
        // unless users manually advance `Time<Physics>`.
        if is_paused {
            world
                .resource_mut::<Time<Physics>>()
                .advance_by(Duration::ZERO);
        }

        // Set generic `Time` resource back to the clock that was active before physics.
        *world.resource_mut::<Time>() = old_clock;
    });

    is_first_run.0 = false;
}

/// Runs the [`SubstepSchedule`].
fn run_substep_schedule(world: &mut World) {
    let delta = world.resource::<Time<Physics>>().delta();
    let SubstepCount(substeps) = *world.resource::<SubstepCount>();
    let sub_delta = delta.div_f64(substeps as f64);

    let mut sub_delta_time = world.resource_mut::<Time<Substeps>>();
    sub_delta_time.advance_by(sub_delta);

    let _ = world.try_schedule_scope(SubstepSchedule, |world, schedule| {
        for i in 0..substeps {
            trace!("running SubstepSchedule: {i}");
            *world.resource_mut::<Time>() = world.resource::<Time<Substeps>>().as_generic();
            schedule.run(world);
        }
    });

    // Set generic `Time` resource back to `Time<Physics>`.
    // Later, it's set back to the default clock after the `PhysicsSchedule`.
    *world.resource_mut::<Time>() = world.resource::<Time<Physics>>().as_generic();
}