avian3d/spatial_query/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
//! Functionality for performing ray casts, shape casts, and other spatial queries.
//!
//! Spatial queries query the world for geometric information about [`Collider`s](Collider)
//! and various types of intersections. Currently, four types of spatial queries are supported:
//!
//! - [Raycasts](#raycasting)
//! - [Shapecasts](#shapecasting)
//! - [Point projection](#point-projection)
//! - [Intersection tests](#intersection-tests)
//!
//! All spatial queries can be done using the various methods provided by the [`SpatialQuery`] system parameter.
//!
//! Raycasting and shapecasting can also be done with a component-based approach using the [`RayCaster`] and
//! [`ShapeCaster`] components. They enable performing casts every frame in a way that is often more convenient
//! than the normal [`SpatialQuery`] methods. See their documentation for more information.
//!
//! # Raycasting
//!
//! **Raycasting** is a spatial query that finds intersections between colliders and a half-line. This can be used for
//! a variety of things like getting information about the environment for character controllers and AI,
//! and even rendering using ray tracing.
//!
//! For each hit during raycasting, the hit entity, a distance, and a normal will be stored in [`RayHitData`].
//! The distance is the distance from the ray origin to the point of intersection, indicating how far the ray travelled.
//!
//! There are two ways to perform raycasts.
//!
//! 1. For simple raycasts, use the [`RayCaster`] component. It returns the results of the raycast
//! in the [`RayHits`] component every frame. It uses local coordinates, so it will automatically follow the entity
//! it's attached to or its parent.
//! 2. When you need more control or don't want to cast every frame, use the raycasting methods provided by
//! [`SpatialQuery`], like [`cast_ray`](SpatialQuery::cast_ray), [`ray_hits`](SpatialQuery::ray_hits) or
//! [`ray_hits_callback`](SpatialQuery::ray_hits_callback).
//!
//! See the documentation of the components and methods for more information.
//!
//! A simple example using the component-based method looks like this:
//!
//! ```
//! # #[cfg(feature = "2d")]
//! # use avian2d::prelude::*;
//! # #[cfg(feature = "3d")]
//! use avian3d::prelude::*;
//! use bevy::prelude::*;
//!
//! # #[cfg(all(feature = "3d", feature = "f32"))]
//! fn setup(mut commands: Commands) {
//! // Spawn a ray caster at the center with the rays travelling right
//! commands.spawn(RayCaster::new(Vec3::ZERO, Dir3::X));
//! // ...spawn colliders and other things
//! }
//!
//! # #[cfg(all(feature = "3d", feature = "f32"))]
//! fn print_hits(query: Query<(&RayCaster, &RayHits)>) {
//! for (ray, hits) in &query {
//! // For the faster iterator that isn't sorted, use `.iter()`
//! for hit in hits.iter_sorted() {
//! println!(
//! "Hit entity {} at {} with normal {}",
//! hit.entity,
//! ray.origin + *ray.direction * hit.distance,
//! hit.normal,
//! );
//! }
//! }
//! }
//! ```
//!
//! To specify which colliders should be considered in the query, use a [spatial query filter](`SpatialQueryFilter`).
//!
//! # Shapecasting
//!
//! **Shapecasting** or **sweep testing** is a spatial query that finds intersections between colliders and a shape
//! that is travelling along a half-line. It is very similar to [raycasting](#raycasting), but instead of a "point"
//! we have an entire shape travelling along a half-line. One use case is determining how far an object can move
//! before it hits the environment.
//!
//! For each hit during shapecasting, the hit entity, a distance, two world-space points of intersection and two world-space
//! normals will be stored in [`ShapeHitData`]. The distance refers to how far the shape travelled before the initial hit.
//!
//! There are two ways to perform shapecasts.
//!
//! 1. For simple shapecasts, use the [`ShapeCaster`] component. It returns the results of the shapecast
//! in the [`ShapeHits`] component every frame. It uses local coordinates, so it will automatically follow the entity
//! it's attached to or its parent.
//! 2. When you need more control or don't want to cast every frame, use the shapecasting methods provided by
//! [`SpatialQuery`], like [`cast_shape`](SpatialQuery::cast_shape), [`shape_hits`](SpatialQuery::shape_hits) or
//! [`shape_hits_callback`](SpatialQuery::shape_hits_callback).
//!
//! See the documentation of the components and methods for more information.
//!
//! A simple example using the component-based method looks like this:
//!
//! ```
//! # #[cfg(feature = "2d")]
//! # use avian2d::prelude::*;
//! # #[cfg(feature = "3d")]
//! use avian3d::prelude::*;
//! use bevy::prelude::*;
//!
//! # #[cfg(all(feature = "3d", feature = "f32"))]
//! fn setup(mut commands: Commands) {
//! // Spawn a shape caster with a sphere shape at the center travelling right
//! commands.spawn(ShapeCaster::new(
//! Collider::sphere(0.5), // Shape
//! Vec3::ZERO, // Origin
//! Quat::default(), // Shape rotation
//! Dir3::X // Direction
//! ));
//! // ...spawn colliders and other things
//! }
//!
//! fn print_hits(query: Query<(&ShapeCaster, &ShapeHits)>) {
//! for (shape_caster, hits) in &query {
//! for hit in hits.iter() {
//! println!("Hit entity {}", hit.entity);
//! }
//! }
//! }
//! ```
//!
//! To specify which colliders should be considered in the query, use a [spatial query filter](`SpatialQueryFilter`).
//!
//! # Point projection
//!
//! **Point projection** is a spatial query that projects a point on the closest collider. It returns the collider's
//! entity, the projected point, and whether the point is inside of the collider.
//!
//! Point projection can be done with the [`project_point`](SpatialQuery::project_point) method of the [`SpatialQuery`]
//! system parameter. See its documentation for more information.
//!
//! To specify which colliders should be considered in the query, use a [spatial query filter](`SpatialQueryFilter`).
//!
//! # Intersection tests
//!
//! **Intersection tests** are spatial queries that return the entities of colliders that are intersecting a given
//! shape or area.
//!
//! There are three types of intersection tests. They are all methods of the [`SpatialQuery`] system parameter,
//! and they all have callback variants that call a given callback on each intersection.
//!
//! - [`point_intersections`](SpatialQuery::point_intersections): Finds all entities with a collider that contains
//! the given point.
//! - [`aabb_intersections_with_aabb`](SpatialQuery::aabb_intersections_with_aabb):
//! Finds all entities with a [`ColliderAabb`] that is intersecting the given [`ColliderAabb`].
//! - [`shape_intersections`](SpatialQuery::shape_intersections): Finds all entities with a [collider](Collider)
//! that is intersecting the given shape.
//!
//! See the documentation of the components and methods for more information.
//!
//! To specify which colliders should be considered in the query, use a [spatial query filter](`SpatialQueryFilter`).
#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
mod pipeline;
mod query_filter;
mod ray_caster;
#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
mod shape_caster;
#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
mod system_param;
#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
pub use pipeline::*;
pub use query_filter::*;
pub use ray_caster::*;
#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
pub use shape_caster::*;
#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
pub use system_param::*;
use crate::prelude::*;
use bevy::prelude::*;
/// Initializes the [`SpatialQueryPipeline`] resource and handles component-based [spatial queries](spatial_query)
/// like [raycasting](spatial_query#raycasting) and [shapecasting](spatial_query#shapecasting) with
/// [`RayCaster`] and [`ShapeCaster`].
pub struct SpatialQueryPlugin;
impl Plugin for SpatialQueryPlugin {
fn build(&self, app: &mut App) {
#[cfg(all(
feature = "default-collider",
any(feature = "parry-f32", feature = "parry-f64")
))]
app.init_resource::<SpatialQueryPipeline>();
let physics_schedule = app
.get_schedule_mut(PhysicsSchedule)
.expect("add PhysicsSchedule first");
physics_schedule.add_systems(
(
update_ray_caster_positions,
#[cfg(all(
feature = "default-collider",
any(feature = "parry-f32", feature = "parry-f64")
))]
(
update_shape_caster_positions,
|mut spatial_query: SpatialQuery| spatial_query.update_pipeline(),
raycast,
shapecast,
)
.chain(),
)
.chain()
.in_set(PhysicsStepSet::SpatialQuery),
);
}
}
type RayCasterPositionQueryComponents = (
&'static mut RayCaster,
Option<&'static Position>,
Option<&'static Rotation>,
Option<&'static Parent>,
Option<&'static GlobalTransform>,
);
#[allow(clippy::type_complexity)]
fn update_ray_caster_positions(
mut rays: Query<RayCasterPositionQueryComponents>,
parents: Query<
(
Option<&Position>,
Option<&Rotation>,
Option<&GlobalTransform>,
),
With<Children>,
>,
) {
for (mut ray, position, rotation, parent, transform) in &mut rays {
let origin = ray.origin;
let direction = ray.direction;
let global_position = position.copied().or(transform.map(Position::from));
let global_rotation = rotation.copied().or(transform.map(Rotation::from));
if let Some(global_position) = global_position {
ray.set_global_origin(global_position.0 + rotation.map_or(origin, |rot| rot * origin));
} else if parent.is_none() {
ray.set_global_origin(origin);
}
if let Some(global_rotation) = global_rotation {
let global_direction = global_rotation * ray.direction;
ray.set_global_direction(global_direction);
} else if parent.is_none() {
ray.set_global_direction(direction);
}
if let Some(Ok((parent_position, parent_rotation, parent_transform))) =
parent.map(|p| parents.get(p.get()))
{
let parent_position = parent_position
.copied()
.or(parent_transform.map(Position::from));
let parent_rotation = parent_rotation
.copied()
.or(parent_transform.map(Rotation::from));
// Apply parent transformations
if global_position.is_none() {
if let Some(position) = parent_position {
let rotation = global_rotation.unwrap_or(parent_rotation.unwrap_or_default());
ray.set_global_origin(position.0 + rotation * origin);
}
}
if global_rotation.is_none() {
if let Some(rotation) = parent_rotation {
let global_direction = rotation * ray.direction;
ray.set_global_direction(global_direction);
}
}
}
}
}
#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
type ShapeCasterPositionQueryComponents = (
&'static mut ShapeCaster,
Option<&'static Position>,
Option<&'static Rotation>,
Option<&'static Parent>,
Option<&'static GlobalTransform>,
);
#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
#[allow(clippy::type_complexity)]
fn update_shape_caster_positions(
mut shape_casters: Query<ShapeCasterPositionQueryComponents>,
parents: Query<
(
Option<&Position>,
Option<&Rotation>,
Option<&GlobalTransform>,
),
With<Children>,
>,
) {
for (mut shape_caster, position, rotation, parent, transform) in &mut shape_casters {
let origin = shape_caster.origin;
let shape_rotation = shape_caster.shape_rotation;
let direction = shape_caster.direction;
let global_position = position.copied().or(transform.map(Position::from));
let global_rotation = rotation.copied().or(transform.map(Rotation::from));
if let Some(global_position) = global_position {
shape_caster
.set_global_origin(global_position.0 + rotation.map_or(origin, |rot| rot * origin));
} else if parent.is_none() {
shape_caster.set_global_origin(origin);
}
if let Some(global_rotation) = global_rotation {
let global_direction = global_rotation * shape_caster.direction;
shape_caster.set_global_direction(global_direction);
#[cfg(feature = "2d")]
{
shape_caster
.set_global_shape_rotation(shape_rotation + global_rotation.as_radians());
}
#[cfg(feature = "3d")]
{
shape_caster.set_global_shape_rotation(shape_rotation * global_rotation.0);
}
} else if parent.is_none() {
shape_caster.set_global_direction(direction);
#[cfg(feature = "2d")]
{
shape_caster.set_global_shape_rotation(shape_rotation);
}
#[cfg(feature = "3d")]
{
shape_caster.set_global_shape_rotation(shape_rotation);
}
}
if let Some(Ok((parent_position, parent_rotation, parent_transform))) =
parent.map(|p| parents.get(p.get()))
{
let parent_position = parent_position
.copied()
.or(parent_transform.map(Position::from));
let parent_rotation = parent_rotation
.copied()
.or(parent_transform.map(Rotation::from));
// Apply parent transformations
if global_position.is_none() {
if let Some(position) = parent_position {
let rotation = global_rotation.unwrap_or(parent_rotation.unwrap_or_default());
shape_caster.set_global_origin(position.0 + rotation * origin);
}
}
if global_rotation.is_none() {
if let Some(rotation) = parent_rotation {
let global_direction = rotation * shape_caster.direction;
shape_caster.set_global_direction(global_direction);
#[cfg(feature = "2d")]
{
shape_caster
.set_global_shape_rotation(shape_rotation + rotation.as_radians());
}
#[cfg(feature = "3d")]
{
shape_caster.set_global_shape_rotation(shape_rotation * rotation.0);
}
}
}
}
}
}
#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
fn raycast(mut rays: Query<(Entity, &mut RayCaster, &mut RayHits)>, spatial_query: SpatialQuery) {
for (entity, mut ray, mut hits) in &mut rays {
if ray.enabled {
ray.cast(entity, &mut hits, &spatial_query.query_pipeline);
} else if !hits.is_empty() {
hits.clear();
}
}
}
#[cfg(any(feature = "parry-f32", feature = "parry-f64"))]
fn shapecast(
mut shape_casters: Query<(Entity, &ShapeCaster, &mut ShapeHits)>,
spatial_query: SpatialQuery,
) {
for (entity, shape_caster, mut hits) in &mut shape_casters {
if shape_caster.enabled {
shape_caster.cast(entity, &mut hits, &spatial_query.query_pipeline);
} else if !hits.is_empty() {
hits.clear();
}
}
}