avian3d/spatial_query/
pipeline.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
use std::sync::Arc;

use crate::prelude::*;
use bevy::{prelude::*, utils::HashMap};
use parry::{
    bounding_volume::Aabb,
    math::Isometry,
    partitioning::Qbvh,
    query::{
        details::{
            NormalConstraints, RayCompositeShapeToiAndNormalBestFirstVisitor,
            TOICompositeShapeShapeBestFirstVisitor,
        },
        point::PointCompositeShapeProjBestFirstVisitor,
        visitors::{
            BoundingVolumeIntersectionsVisitor, PointIntersectionsVisitor, RayIntersectionsVisitor,
        },
        DefaultQueryDispatcher, QueryDispatcher, ShapeCastOptions,
    },
    shape::{Shape, TypedSimdCompositeShape},
};

/// A resource for the spatial query pipeline.
///
/// The pipeline maintains a quaternary bounding volume hierarchy `Qbvh` of the world's colliders
/// as an acceleration structure for spatial queries.
#[derive(Resource, Clone)]
pub struct SpatialQueryPipeline {
    pub(crate) qbvh: Qbvh<u32>,
    pub(crate) dispatcher: Arc<dyn QueryDispatcher>,
    pub(crate) colliders: HashMap<Entity, (Isometry<Scalar>, Collider, CollisionLayers)>,
    pub(crate) entity_generations: HashMap<u32, u32>,
}

impl Default for SpatialQueryPipeline {
    fn default() -> Self {
        Self {
            qbvh: Qbvh::new(),
            dispatcher: Arc::new(DefaultQueryDispatcher),
            colliders: HashMap::default(),
            entity_generations: HashMap::default(),
        }
    }
}

impl SpatialQueryPipeline {
    /// Creates a new [`SpatialQueryPipeline`].
    pub fn new() -> SpatialQueryPipeline {
        SpatialQueryPipeline::default()
    }

    pub(crate) fn as_composite_shape<'a>(
        &'a self,
        query_filter: &'a SpatialQueryFilter,
    ) -> QueryPipelineAsCompositeShape<'a> {
        QueryPipelineAsCompositeShape {
            pipeline: self,
            colliders: &self.colliders,
            query_filter,
        }
    }

    pub(crate) fn as_composite_shape_with_predicate<'a: 'b, 'b>(
        &'a self,
        query_filter: &'a SpatialQueryFilter,
        predicate: &'a dyn Fn(Entity) -> bool,
    ) -> QueryPipelineAsCompositeShapeWithPredicate<'a, 'b> {
        QueryPipelineAsCompositeShapeWithPredicate {
            pipeline: self,
            colliders: &self.colliders,
            query_filter,
            predicate,
        }
    }

    /// Updates the associated acceleration structures with a new set of entities.
    pub fn update<'a>(
        &mut self,
        colliders: impl Iterator<
            Item = (
                Entity,
                &'a Position,
                &'a Rotation,
                &'a Collider,
                Option<&'a CollisionLayers>,
            ),
        >,
        added_colliders: impl Iterator<Item = Entity>,
    ) {
        let colliders = colliders
            .map(|(entity, position, rotation, collider, layers)| {
                (
                    entity,
                    (
                        make_isometry(position.0, *rotation),
                        collider.clone(),
                        layers.map_or(CollisionLayers::default(), |layers| *layers),
                    ),
                )
            })
            .collect();

        self.update_internal(colliders, added_colliders)
    }

    fn update_internal(
        &mut self,
        colliders: HashMap<Entity, (Isometry<Scalar>, Collider, CollisionLayers)>,
        added: impl Iterator<Item = Entity>,
    ) {
        self.colliders = colliders;

        // Insert or update generations of added entities
        for added in added {
            let index = added.index();
            if let Some(generation) = self.entity_generations.get_mut(&index) {
                *generation = added.generation();
            } else {
                self.entity_generations.insert(index, added.generation());
            }
        }

        struct DataGenerator<'a>(
            &'a HashMap<Entity, (Isometry<Scalar>, Collider, CollisionLayers)>,
        );

        impl parry::partitioning::QbvhDataGenerator<u32> for DataGenerator<'_> {
            fn size_hint(&self) -> usize {
                self.0.len()
            }

            #[inline(always)]
            fn for_each(&mut self, mut f: impl FnMut(u32, parry::bounding_volume::Aabb)) {
                for (entity, co) in self.0.iter() {
                    // Compute and return AABB
                    let (iso, shape, _) = co;
                    let aabb = shape.shape_scaled().compute_aabb(iso);
                    f(entity.index(), aabb)
                }
            }
        }

        self.qbvh
            .clear_and_rebuild(DataGenerator(&self.colliders), 0.01);
    }

    pub(crate) fn entity_from_index(&self, index: u32) -> Entity {
        entity_from_index_and_gen(index, *self.entity_generations.get(&index).unwrap())
    }

    /// Casts a [ray](spatial_query#raycasting) and computes the closest [hit](RayHitData) with a collider.
    /// If there are no hits, `None` is returned.
    ///
    /// # Arguments
    ///
    /// - `origin`: Where the ray is cast from.
    /// - `direction`: What direction the ray is cast in.
    /// - `max_distance`: The maximum distance the ray can travel.
    /// - `solid`: If true *and* the ray origin is inside of a collider, the hit point will be the ray origin itself.
    ///   Otherwise, the collider will be treated as hollow, and the hit point will be at its boundary.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::cast_ray_predicate`]
    /// - [`SpatialQueryPipeline::ray_hits`]
    /// - [`SpatialQueryPipeline::ray_hits_callback`]
    pub fn cast_ray(
        &self,
        origin: Vector,
        direction: Dir,
        max_distance: Scalar,
        solid: bool,
        filter: &SpatialQueryFilter,
    ) -> Option<RayHitData> {
        self.cast_ray_predicate(origin, direction, max_distance, solid, filter, &|_| true)
    }

    /// Casts a [ray](spatial_query#raycasting) and computes the closest [hit](RayHitData) with a collider.
    /// If there are no hits, `None` is returned.
    ///
    /// # Arguments
    ///
    /// - `origin`: Where the ray is cast from.
    /// - `direction`: What direction the ray is cast in.
    /// - `max_distance`: The maximum distance the ray can travel.
    /// - `solid`: If true *and* the ray origin is inside of a collider, the hit point will be the ray origin itself.
    ///   Otherwise, the collider will be treated as hollow, and the hit point will be at its boundary.
    /// - `predicate`: A function called on each entity hit by the ray. The ray keeps travelling until the predicate returns `false`.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::cast_ray`]
    /// - [`SpatialQueryPipeline::ray_hits`]
    /// - [`SpatialQueryPipeline::ray_hits_callback`]
    pub fn cast_ray_predicate(
        &self,
        origin: Vector,
        direction: Dir,
        max_distance: Scalar,
        solid: bool,
        filter: &SpatialQueryFilter,
        predicate: &dyn Fn(Entity) -> bool,
    ) -> Option<RayHitData> {
        let pipeline_shape = self.as_composite_shape_with_predicate(filter, predicate);
        let ray = parry::query::Ray::new(origin.into(), direction.adjust_precision().into());
        let mut visitor = RayCompositeShapeToiAndNormalBestFirstVisitor::new(
            &pipeline_shape,
            &ray,
            max_distance,
            solid,
        );

        self.qbvh
            .traverse_best_first(&mut visitor)
            .map(|(_, (entity_index, hit))| RayHitData {
                entity: self.entity_from_index(entity_index),
                distance: hit.time_of_impact,
                normal: hit.normal.into(),
            })
    }

    /// Casts a [ray](spatial_query#raycasting) and computes all [hits](RayHitData) until `max_hits` is reached.
    ///
    /// Note that the order of the results is not guaranteed, and if there are more hits than `max_hits`,
    /// some hits will be missed.
    ///
    /// # Arguments
    ///
    /// - `origin`: Where the ray is cast from.
    /// - `direction`: What direction the ray is cast in.
    /// - `max_distance`: The maximum distance the ray can travel.
    /// - `max_hits`: The maximum number of hits. Additional hits will be missed.
    /// - `solid`: If true *and* the ray origin is inside of a collider, the hit point will be the ray origin itself.
    ///   Otherwise, the collider will be treated as hollow, and the hit point will be at its boundary.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::cast_ray`]
    /// - [`SpatialQueryPipeline::cast_ray_predicate`]
    /// - [`SpatialQueryPipeline::ray_hits_callback`]
    pub fn ray_hits(
        &self,
        origin: Vector,
        direction: Dir,
        max_distance: Scalar,
        max_hits: u32,
        solid: bool,
        filter: &SpatialQueryFilter,
    ) -> Vec<RayHitData> {
        let mut hits = Vec::with_capacity(10);
        self.ray_hits_callback(origin, direction, max_distance, solid, filter, |hit| {
            hits.push(hit);
            (hits.len() as u32) < max_hits
        });
        hits
    }

    /// Casts a [ray](spatial_query#raycasting) and computes all [hits](RayHitData), calling the given `callback`
    /// for each hit. The raycast stops when `callback` returns false or all hits have been found.
    ///
    /// Note that the order of the results is not guaranteed.
    ///
    /// # Arguments
    ///
    /// - `origin`: Where the ray is cast from.
    /// - `direction`: What direction the ray is cast in.
    /// - `max_distance`: The maximum distance the ray can travel.
    /// - `solid`: If true *and* the ray origin is inside of a collider, the hit point will be the ray origin itself.
    ///   Otherwise, the collider will be treated as hollow, and the hit point will be at its boundary.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    /// - `callback`: A callback function called for each hit.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::cast_ray`]
    /// - [`SpatialQueryPipeline::cast_ray_predicate`]
    /// - [`SpatialQueryPipeline::ray_hits`]
    pub fn ray_hits_callback(
        &self,
        origin: Vector,
        direction: Dir,
        max_distance: Scalar,
        solid: bool,
        filter: &SpatialQueryFilter,
        mut callback: impl FnMut(RayHitData) -> bool,
    ) {
        let colliders = &self.colliders;

        let ray = parry::query::Ray::new(origin.into(), direction.adjust_precision().into());

        let mut leaf_callback = &mut |entity_index: &u32| {
            let entity = self.entity_from_index(*entity_index);
            if let Some((iso, shape, layers)) = colliders.get(&entity) {
                if filter.test(entity, *layers) {
                    if let Some(hit) =
                        shape
                            .shape_scaled()
                            .cast_ray_and_get_normal(iso, &ray, max_distance, solid)
                    {
                        let hit = RayHitData {
                            entity,
                            distance: hit.time_of_impact,
                            normal: hit.normal.into(),
                        };

                        return callback(hit);
                    }
                }
            }
            true
        };

        let mut visitor = RayIntersectionsVisitor::new(&ray, max_distance, &mut leaf_callback);
        self.qbvh.traverse_depth_first(&mut visitor);
    }

    /// Casts a [shape](spatial_query#shapecasting) with a given rotation and computes the closest [hit](ShapeHits)
    /// with a collider. If there are no hits, `None` is returned.
    ///
    /// For a more ECS-based approach, consider using the [`ShapeCaster`] component instead.
    ///
    /// # Arguments
    ///
    /// - `shape`: The shape being cast represented as a [`Collider`].
    /// - `origin`: Where the shape is cast from.
    /// - `shape_rotation`: The rotation of the shape being cast.
    /// - `direction`: What direction the shape is cast in.
    /// - `config`: A [`ShapeCastConfig`] that determines the behavior of the cast.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::cast_shape_predicate`]
    /// - [`SpatialQueryPipeline::shape_hits`]
    /// - [`SpatialQueryPipeline::shape_hits_callback`]
    #[allow(clippy::too_many_arguments)]
    pub fn cast_shape(
        &self,
        shape: &Collider,
        origin: Vector,
        shape_rotation: RotationValue,
        direction: Dir,
        config: &ShapeCastConfig,
        filter: &SpatialQueryFilter,
    ) -> Option<ShapeHitData> {
        self.cast_shape_predicate(
            shape,
            origin,
            shape_rotation,
            direction,
            config,
            filter,
            &|_| true,
        )
    }

    /// Casts a [shape](spatial_query#shapecasting) with a given rotation and computes the closest [hit](ShapeHits)
    /// with a collider. If there are no hits, `None` is returned.
    ///
    /// For a more ECS-based approach, consider using the [`ShapeCaster`] component instead.
    ///
    /// # Arguments
    ///
    /// - `shape`: The shape being cast represented as a [`Collider`].
    /// - `origin`: Where the shape is cast from.
    /// - `shape_rotation`: The rotation of the shape being cast.
    /// - `direction`: What direction the shape is cast in.
    /// - `config`: A [`ShapeCastConfig`] that determines the behavior of the cast.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    /// - `predicate`: A function called on each entity hit by the shape. The shape keeps travelling until the predicate returns `false`.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::cast_shape`]
    /// - [`SpatialQueryPipeline::shape_hits`]
    /// - [`SpatialQueryPipeline::shape_hits_callback`]
    #[allow(clippy::too_many_arguments)]
    pub fn cast_shape_predicate(
        &self,
        shape: &Collider,
        origin: Vector,
        shape_rotation: RotationValue,
        direction: Dir,
        config: &ShapeCastConfig,
        filter: &SpatialQueryFilter,
        predicate: &dyn Fn(Entity) -> bool,
    ) -> Option<ShapeHitData> {
        let rotation: Rotation;
        #[cfg(feature = "2d")]
        {
            rotation = Rotation::radians(shape_rotation);
        }
        #[cfg(feature = "3d")]
        {
            rotation = Rotation::from(shape_rotation);
        }

        let shape_isometry = make_isometry(origin, rotation);
        let shape_direction = direction.adjust_precision().into();
        let pipeline_shape = self.as_composite_shape_with_predicate(filter, predicate);
        let mut visitor = TOICompositeShapeShapeBestFirstVisitor::new(
            &*self.dispatcher,
            &shape_isometry,
            &shape_direction,
            &pipeline_shape,
            &**shape.shape_scaled(),
            ShapeCastOptions {
                max_time_of_impact: config.max_distance,
                stop_at_penetration: !config.ignore_origin_penetration,
                compute_impact_geometry_on_penetration: config.compute_contact_on_penetration,
                ..default()
            },
        );

        self.qbvh
            .traverse_best_first(&mut visitor)
            .map(|(_, (entity_index, hit))| ShapeHitData {
                entity: self.entity_from_index(entity_index),
                distance: hit.time_of_impact,
                point1: hit.witness1.into(),
                point2: hit.witness2.into(),
                normal1: hit.normal1.into(),
                normal2: hit.normal2.into(),
            })
    }

    /// Casts a [shape](spatial_query#shapecasting) with a given rotation and computes computes all [hits](ShapeHitData)
    /// in the order of distance until `max_hits` is reached.
    ///
    /// # Arguments
    ///
    /// - `shape`: The shape being cast represented as a [`Collider`].
    /// - `origin`: Where the shape is cast from.
    /// - `shape_rotation`: The rotation of the shape being cast.
    /// - `direction`: What direction the shape is cast in.
    /// - `max_hits`: The maximum number of hits. Additional hits will be missed.
    /// - `config`: A [`ShapeCastConfig`] that determines the behavior of the cast.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::cast_shape`]
    /// - [`SpatialQueryPipeline::cast_shape_predicate`]
    /// - [`SpatialQueryPipeline::shape_hits_callback`]
    #[allow(clippy::too_many_arguments)]
    pub fn shape_hits(
        &self,
        shape: &Collider,
        origin: Vector,
        shape_rotation: RotationValue,
        direction: Dir,
        max_hits: u32,
        config: &ShapeCastConfig,
        filter: &SpatialQueryFilter,
    ) -> Vec<ShapeHitData> {
        let mut hits = Vec::with_capacity(10);
        self.shape_hits_callback(
            shape,
            origin,
            shape_rotation,
            direction,
            config,
            filter,
            |hit| {
                hits.push(hit);
                (hits.len() as u32) < max_hits
            },
        );
        hits
    }

    /// Casts a [shape](spatial_query#shapecasting) with a given rotation and computes computes all [hits](ShapeHitData)
    /// in the order of distance, calling the given `callback` for each hit. The shapecast stops when
    /// `callback` returns false or all hits have been found.
    ///
    /// # Arguments
    ///
    /// - `shape`: The shape being cast represented as a [`Collider`].
    /// - `origin`: Where the shape is cast from.
    /// - `shape_rotation`: The rotation of the shape being cast.
    /// - `direction`: What direction the shape is cast in.
    /// - `config`: A [`ShapeCastConfig`] that determines the behavior of the cast.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    /// - `callback`: A callback function called for each hit.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::cast_shape`]
    /// - [`SpatialQueryPipeline::cast_shape_predicate`]
    /// - [`SpatialQueryPipeline::shape_hits`]
    #[allow(clippy::too_many_arguments)]
    pub fn shape_hits_callback(
        &self,
        shape: &Collider,
        origin: Vector,
        shape_rotation: RotationValue,
        direction: Dir,
        config: &ShapeCastConfig,
        filter: &SpatialQueryFilter,
        mut callback: impl FnMut(ShapeHitData) -> bool,
    ) {
        // TODO: This clone is here so that the excluded entities in the original `query_filter` aren't modified.
        //       We could remove this if shapecasting could compute multiple hits without just doing casts in a loop.
        //       See https://github.com/Jondolf/avian/issues/403.
        let mut query_filter = filter.clone();

        let shape_cast_options = ShapeCastOptions {
            max_time_of_impact: config.max_distance,
            target_distance: config.target_distance,
            stop_at_penetration: !config.ignore_origin_penetration,
            compute_impact_geometry_on_penetration: config.compute_contact_on_penetration,
        };

        let rotation: Rotation;
        #[cfg(feature = "2d")]
        {
            rotation = Rotation::radians(shape_rotation);
        }
        #[cfg(feature = "3d")]
        {
            rotation = Rotation::from(shape_rotation);
        }

        let shape_isometry = make_isometry(origin, rotation);
        let shape_direction = direction.adjust_precision().into();

        loop {
            let pipeline_shape = self.as_composite_shape(&query_filter);
            let mut visitor = TOICompositeShapeShapeBestFirstVisitor::new(
                &*self.dispatcher,
                &shape_isometry,
                &shape_direction,
                &pipeline_shape,
                &**shape.shape_scaled(),
                shape_cast_options,
            );

            if let Some(hit) =
                self.qbvh
                    .traverse_best_first(&mut visitor)
                    .map(|(_, (entity_index, hit))| ShapeHitData {
                        entity: self.entity_from_index(entity_index),
                        distance: hit.time_of_impact,
                        point1: hit.witness1.into(),
                        point2: hit.witness2.into(),
                        normal1: hit.normal1.into(),
                        normal2: hit.normal2.into(),
                    })
            {
                query_filter.excluded_entities.insert(hit.entity);

                if !callback(hit) {
                    break;
                }
            } else {
                break;
            }
        }
    }

    /// Finds the [projection](spatial_query#point-projection) of a given point on the closest [collider](Collider).
    /// If one isn't found, `None` is returned.
    ///
    /// # Arguments
    ///
    /// - `point`: The point that should be projected.
    /// - `solid`: If true and the point is inside of a collider, the projection will be at the point.
    ///   Otherwise, the collider will be treated as hollow, and the projection will be at the collider's boundary.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::project_point_predicate`]
    pub fn project_point(
        &self,
        point: Vector,
        solid: bool,
        filter: &SpatialQueryFilter,
    ) -> Option<PointProjection> {
        self.project_point_predicate(point, solid, filter, &|_| true)
    }

    /// Finds the [projection](spatial_query#point-projection) of a given point on the closest [collider](Collider).
    /// If one isn't found, `None` is returned.
    ///
    /// # Arguments
    ///
    /// - `point`: The point that should be projected.
    /// - `solid`: If true and the point is inside of a collider, the projection will be at the point.
    ///     Otherwise, the collider will be treated as hollow, and the projection will be at the collider's boundary.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    /// - `predicate`: A function for filtering which entities are considered in the query. The projection will be on the closest collider that passes the predicate.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::project_point`]
    pub fn project_point_predicate(
        &self,
        point: Vector,
        solid: bool,
        filter: &SpatialQueryFilter,
        predicate: &dyn Fn(Entity) -> bool,
    ) -> Option<PointProjection> {
        let point = point.into();
        let pipeline_shape = self.as_composite_shape_with_predicate(filter, predicate);
        let mut visitor =
            PointCompositeShapeProjBestFirstVisitor::new(&pipeline_shape, &point, solid);

        self.qbvh
            .traverse_best_first(&mut visitor)
            .map(|(_, (projection, entity_index))| PointProjection {
                entity: self.entity_from_index(entity_index),
                point: projection.point.into(),
                is_inside: projection.is_inside,
            })
    }

    /// An [intersection test](spatial_query#intersection-tests) that finds all entities with a [collider](Collider)
    /// that contains the given point.
    ///
    /// # Arguments
    ///
    /// - `point`: The point that intersections are tested against.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::point_intersections_callback`]
    pub fn point_intersections(&self, point: Vector, filter: &SpatialQueryFilter) -> Vec<Entity> {
        let mut intersections = vec![];
        self.point_intersections_callback(point, filter, |e| {
            intersections.push(e);
            true
        });
        intersections
    }

    /// An [intersection test](spatial_query#intersection-tests) that finds all entities with a [collider](Collider)
    /// that contains the given point, calling the given `callback` for each intersection.
    /// The search stops when `callback` returns `false` or all intersections have been found.
    ///
    /// # Arguments
    ///
    /// - `point`: The point that intersections are tested against.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    /// - `callback`: A callback function called for each intersection.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::point_intersections`]
    pub fn point_intersections_callback(
        &self,
        point: Vector,
        filter: &SpatialQueryFilter,
        mut callback: impl FnMut(Entity) -> bool,
    ) {
        let point = point.into();

        let mut leaf_callback = &mut |entity_index: &u32| {
            let entity = self.entity_from_index(*entity_index);
            if let Some((isometry, shape, layers)) = self.colliders.get(&entity) {
                if filter.test(entity, *layers)
                    && shape.shape_scaled().contains_point(isometry, &point)
                {
                    return callback(entity);
                }
            }
            true
        };

        let mut visitor = PointIntersectionsVisitor::new(&point, &mut leaf_callback);
        self.qbvh.traverse_depth_first(&mut visitor);
    }

    /// An [intersection test](spatial_query#intersection-tests) that finds all entities with a [`ColliderAabb`]
    /// that is intersecting the given `aabb`.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::aabb_intersections_with_aabb_callback`]
    pub fn aabb_intersections_with_aabb(&self, aabb: ColliderAabb) -> Vec<Entity> {
        let mut intersections = vec![];
        self.aabb_intersections_with_aabb_callback(aabb, |e| {
            intersections.push(e);
            true
        });
        intersections
    }

    /// An [intersection test](spatial_query#intersection-tests) that finds all entities with a [`ColliderAabb`]
    /// that is intersecting the given `aabb`, calling `callback` for each intersection.
    /// The search stops when `callback` returns `false` or all intersections have been found.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::aabb_intersections_with_aabb`]
    pub fn aabb_intersections_with_aabb_callback(
        &self,
        aabb: ColliderAabb,
        mut callback: impl FnMut(Entity) -> bool,
    ) {
        let mut leaf_callback = |entity_index: &u32| {
            let entity = self.entity_from_index(*entity_index);
            callback(entity)
        };

        let mut visitor = BoundingVolumeIntersectionsVisitor::new(
            &Aabb {
                mins: aabb.min.into(),
                maxs: aabb.max.into(),
            },
            &mut leaf_callback,
        );
        self.qbvh.traverse_depth_first(&mut visitor);
    }

    /// An [intersection test](spatial_query#intersection-tests) that finds all entities with a [`Collider`]
    /// that is intersecting the given `shape` with a given position and rotation.
    ///
    /// # Arguments
    ///
    /// - `shape`: The shape that intersections are tested against represented as a [`Collider`].
    /// - `shape_position`: The position of the shape.
    /// - `shape_rotation`: The rotation of the shape.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::shape_intersections_callback`]
    pub fn shape_intersections(
        &self,
        shape: &Collider,
        shape_position: Vector,
        shape_rotation: RotationValue,
        filter: &SpatialQueryFilter,
    ) -> Vec<Entity> {
        let mut intersections = vec![];
        self.shape_intersections_callback(shape, shape_position, shape_rotation, filter, |e| {
            intersections.push(e);
            true
        });
        intersections
    }

    /// An [intersection test](spatial_query#intersection-tests) that finds all entities with a [`Collider`]
    /// that is intersecting the given `shape` with a given position and rotation, calling `callback` for each
    /// intersection. The search stops when `callback` returns `false` or all intersections have been found.
    ///
    /// # Arguments
    ///
    /// - `shape`: The shape that intersections are tested against represented as a [`Collider`].
    /// - `shape_position`: The position of the shape.
    /// - `shape_rotation`: The rotation of the shape.
    /// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
    /// - `callback`: A callback function called for each intersection.
    ///
    /// # Related Methods
    ///
    /// - [`SpatialQueryPipeline::shape_intersections`]
    pub fn shape_intersections_callback(
        &self,
        shape: &Collider,
        shape_position: Vector,
        shape_rotation: RotationValue,
        filter: &SpatialQueryFilter,
        mut callback: impl FnMut(Entity) -> bool,
    ) {
        let colliders = &self.colliders;
        let rotation: Rotation;
        #[cfg(feature = "2d")]
        {
            rotation = Rotation::radians(shape_rotation);
        }
        #[cfg(feature = "3d")]
        {
            rotation = Rotation::from(shape_rotation);
        }

        let shape_isometry = make_isometry(shape_position, rotation);
        let inverse_shape_isometry = shape_isometry.inverse();

        let dispatcher = &*self.dispatcher;

        let mut leaf_callback = &mut |entity_index: &u32| {
            let entity = self.entity_from_index(*entity_index);

            if let Some((collider_isometry, collider, layers)) = colliders.get(&entity) {
                if filter.test(entity, *layers) {
                    let isometry = inverse_shape_isometry * collider_isometry;

                    if dispatcher.intersection_test(
                        &isometry,
                        &**shape.shape_scaled(),
                        &**collider.shape_scaled(),
                    ) == Ok(true)
                    {
                        return callback(entity);
                    }
                }
            }
            true
        };

        let shape_aabb = shape.shape_scaled().compute_aabb(&shape_isometry);
        let mut visitor = BoundingVolumeIntersectionsVisitor::new(&shape_aabb, &mut leaf_callback);
        self.qbvh.traverse_depth_first(&mut visitor);
    }
}

pub(crate) struct QueryPipelineAsCompositeShape<'a> {
    colliders: &'a HashMap<Entity, (Isometry<Scalar>, Collider, CollisionLayers)>,
    pipeline: &'a SpatialQueryPipeline,
    query_filter: &'a SpatialQueryFilter,
}

impl TypedSimdCompositeShape for QueryPipelineAsCompositeShape<'_> {
    type PartShape = dyn Shape;
    type PartNormalConstraints = dyn NormalConstraints;
    type PartId = u32;

    fn map_typed_part_at(
        &self,
        shape_id: Self::PartId,
        mut f: impl FnMut(
            Option<&Isometry<Scalar>>,
            &Self::PartShape,
            Option<&Self::PartNormalConstraints>,
        ),
    ) {
        if let Some((entity, (iso, shape, layers))) =
            self.colliders.get_key_value(&entity_from_index_and_gen(
                shape_id,
                *self.pipeline.entity_generations.get(&shape_id).unwrap(),
            ))
        {
            if self.query_filter.test(*entity, *layers) {
                f(Some(iso), &**shape.shape_scaled(), None);
            }
        }
    }

    fn map_untyped_part_at(
        &self,
        shape_id: Self::PartId,
        f: impl FnMut(Option<&Isometry<Scalar>>, &dyn Shape, Option<&dyn NormalConstraints>),
    ) {
        self.map_typed_part_at(shape_id, f);
    }

    fn typed_qbvh(&self) -> &Qbvh<Self::PartId> {
        &self.pipeline.qbvh
    }
}

pub(crate) struct QueryPipelineAsCompositeShapeWithPredicate<'a, 'b> {
    colliders: &'a HashMap<Entity, (Isometry<Scalar>, Collider, CollisionLayers)>,
    pipeline: &'a SpatialQueryPipeline,
    query_filter: &'a SpatialQueryFilter,
    predicate: &'b dyn Fn(Entity) -> bool,
}

impl TypedSimdCompositeShape for QueryPipelineAsCompositeShapeWithPredicate<'_, '_> {
    type PartShape = dyn Shape;
    type PartNormalConstraints = dyn NormalConstraints;
    type PartId = u32;

    fn map_typed_part_at(
        &self,
        shape_id: Self::PartId,
        mut f: impl FnMut(
            Option<&Isometry<Scalar>>,
            &Self::PartShape,
            Option<&Self::PartNormalConstraints>,
        ),
    ) {
        if let Some((entity, (iso, shape, layers))) =
            self.colliders.get_key_value(&entity_from_index_and_gen(
                shape_id,
                *self.pipeline.entity_generations.get(&shape_id).unwrap(),
            ))
        {
            if self.query_filter.test(*entity, *layers) && (self.predicate)(*entity) {
                f(Some(iso), &**shape.shape_scaled(), None);
            }
        }
    }

    fn map_untyped_part_at(
        &self,
        shape_id: Self::PartId,
        f: impl FnMut(Option<&Isometry<Scalar>>, &dyn Shape, Option<&dyn NormalConstraints>),
    ) {
        self.map_typed_part_at(shape_id, f);
    }

    fn typed_qbvh(&self) -> &Qbvh<Self::PartId> {
        &self.pipeline.qbvh
    }
}

fn entity_from_index_and_gen(index: u32, generation: u32) -> bevy::prelude::Entity {
    bevy::prelude::Entity::from_bits((generation as u64) << 32 | index as u64)
}

/// The result of a [point projection](spatial_query#point-projection) on a [collider](Collider).
#[derive(Clone, Debug, PartialEq, Reflect)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, PartialEq)]
pub struct PointProjection {
    /// The entity of the collider that the point was projected onto.
    pub entity: Entity,
    /// The point where the point was projected.
    pub point: Vector,
    /// True if the point was inside of the collider.
    pub is_inside: bool,
}