avian3d/spatial_query/pipeline.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
use std::sync::Arc;
use crate::prelude::*;
use bevy::{prelude::*, utils::HashMap};
use parry::{
bounding_volume::Aabb,
math::Isometry,
partitioning::Qbvh,
query::{
details::{
NormalConstraints, RayCompositeShapeToiAndNormalBestFirstVisitor,
TOICompositeShapeShapeBestFirstVisitor,
},
point::PointCompositeShapeProjBestFirstVisitor,
visitors::{
BoundingVolumeIntersectionsVisitor, PointIntersectionsVisitor, RayIntersectionsVisitor,
},
DefaultQueryDispatcher, QueryDispatcher, ShapeCastOptions,
},
shape::{Shape, TypedSimdCompositeShape},
};
/// A resource for the spatial query pipeline.
///
/// The pipeline maintains a quaternary bounding volume hierarchy `Qbvh` of the world's colliders
/// as an acceleration structure for spatial queries.
#[derive(Resource, Clone)]
pub struct SpatialQueryPipeline {
pub(crate) qbvh: Qbvh<u32>,
pub(crate) dispatcher: Arc<dyn QueryDispatcher>,
pub(crate) colliders: HashMap<Entity, (Isometry<Scalar>, Collider, CollisionLayers)>,
pub(crate) entity_generations: HashMap<u32, u32>,
}
impl Default for SpatialQueryPipeline {
fn default() -> Self {
Self {
qbvh: Qbvh::new(),
dispatcher: Arc::new(DefaultQueryDispatcher),
colliders: HashMap::default(),
entity_generations: HashMap::default(),
}
}
}
impl SpatialQueryPipeline {
/// Creates a new [`SpatialQueryPipeline`].
pub fn new() -> SpatialQueryPipeline {
SpatialQueryPipeline::default()
}
pub(crate) fn as_composite_shape<'a>(
&'a self,
query_filter: &'a SpatialQueryFilter,
) -> QueryPipelineAsCompositeShape<'a> {
QueryPipelineAsCompositeShape {
pipeline: self,
colliders: &self.colliders,
query_filter,
}
}
pub(crate) fn as_composite_shape_with_predicate<'a: 'b, 'b>(
&'a self,
query_filter: &'a SpatialQueryFilter,
predicate: &'a dyn Fn(Entity) -> bool,
) -> QueryPipelineAsCompositeShapeWithPredicate<'a, 'b> {
QueryPipelineAsCompositeShapeWithPredicate {
pipeline: self,
colliders: &self.colliders,
query_filter,
predicate,
}
}
/// Updates the associated acceleration structures with a new set of entities.
pub fn update<'a>(
&mut self,
colliders: impl Iterator<
Item = (
Entity,
&'a Position,
&'a Rotation,
&'a Collider,
Option<&'a CollisionLayers>,
),
>,
added_colliders: impl Iterator<Item = Entity>,
) {
let colliders = colliders
.map(|(entity, position, rotation, collider, layers)| {
(
entity,
(
make_isometry(position.0, *rotation),
collider.clone(),
layers.map_or(CollisionLayers::default(), |layers| *layers),
),
)
})
.collect();
self.update_internal(colliders, added_colliders)
}
fn update_internal(
&mut self,
colliders: HashMap<Entity, (Isometry<Scalar>, Collider, CollisionLayers)>,
added: impl Iterator<Item = Entity>,
) {
self.colliders = colliders;
// Insert or update generations of added entities
for added in added {
let index = added.index();
if let Some(generation) = self.entity_generations.get_mut(&index) {
*generation = added.generation();
} else {
self.entity_generations.insert(index, added.generation());
}
}
struct DataGenerator<'a>(
&'a HashMap<Entity, (Isometry<Scalar>, Collider, CollisionLayers)>,
);
impl parry::partitioning::QbvhDataGenerator<u32> for DataGenerator<'_> {
fn size_hint(&self) -> usize {
self.0.len()
}
#[inline(always)]
fn for_each(&mut self, mut f: impl FnMut(u32, parry::bounding_volume::Aabb)) {
for (entity, co) in self.0.iter() {
// Compute and return AABB
let (iso, shape, _) = co;
let aabb = shape.shape_scaled().compute_aabb(iso);
f(entity.index(), aabb)
}
}
}
self.qbvh
.clear_and_rebuild(DataGenerator(&self.colliders), 0.01);
}
pub(crate) fn entity_from_index(&self, index: u32) -> Entity {
entity_from_index_and_gen(index, *self.entity_generations.get(&index).unwrap())
}
/// Casts a [ray](spatial_query#raycasting) and computes the closest [hit](RayHitData) with a collider.
/// If there are no hits, `None` is returned.
///
/// # Arguments
///
/// - `origin`: Where the ray is cast from.
/// - `direction`: What direction the ray is cast in.
/// - `max_distance`: The maximum distance the ray can travel.
/// - `solid`: If true *and* the ray origin is inside of a collider, the hit point will be the ray origin itself.
/// Otherwise, the collider will be treated as hollow, and the hit point will be at its boundary.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::cast_ray_predicate`]
/// - [`SpatialQueryPipeline::ray_hits`]
/// - [`SpatialQueryPipeline::ray_hits_callback`]
pub fn cast_ray(
&self,
origin: Vector,
direction: Dir,
max_distance: Scalar,
solid: bool,
filter: &SpatialQueryFilter,
) -> Option<RayHitData> {
self.cast_ray_predicate(origin, direction, max_distance, solid, filter, &|_| true)
}
/// Casts a [ray](spatial_query#raycasting) and computes the closest [hit](RayHitData) with a collider.
/// If there are no hits, `None` is returned.
///
/// # Arguments
///
/// - `origin`: Where the ray is cast from.
/// - `direction`: What direction the ray is cast in.
/// - `max_distance`: The maximum distance the ray can travel.
/// - `solid`: If true *and* the ray origin is inside of a collider, the hit point will be the ray origin itself.
/// Otherwise, the collider will be treated as hollow, and the hit point will be at its boundary.
/// - `predicate`: A function called on each entity hit by the ray. The ray keeps travelling until the predicate returns `false`.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::cast_ray`]
/// - [`SpatialQueryPipeline::ray_hits`]
/// - [`SpatialQueryPipeline::ray_hits_callback`]
pub fn cast_ray_predicate(
&self,
origin: Vector,
direction: Dir,
max_distance: Scalar,
solid: bool,
filter: &SpatialQueryFilter,
predicate: &dyn Fn(Entity) -> bool,
) -> Option<RayHitData> {
let pipeline_shape = self.as_composite_shape_with_predicate(filter, predicate);
let ray = parry::query::Ray::new(origin.into(), direction.adjust_precision().into());
let mut visitor = RayCompositeShapeToiAndNormalBestFirstVisitor::new(
&pipeline_shape,
&ray,
max_distance,
solid,
);
self.qbvh
.traverse_best_first(&mut visitor)
.map(|(_, (entity_index, hit))| RayHitData {
entity: self.entity_from_index(entity_index),
distance: hit.time_of_impact,
normal: hit.normal.into(),
})
}
/// Casts a [ray](spatial_query#raycasting) and computes all [hits](RayHitData) until `max_hits` is reached.
///
/// Note that the order of the results is not guaranteed, and if there are more hits than `max_hits`,
/// some hits will be missed.
///
/// # Arguments
///
/// - `origin`: Where the ray is cast from.
/// - `direction`: What direction the ray is cast in.
/// - `max_distance`: The maximum distance the ray can travel.
/// - `max_hits`: The maximum number of hits. Additional hits will be missed.
/// - `solid`: If true *and* the ray origin is inside of a collider, the hit point will be the ray origin itself.
/// Otherwise, the collider will be treated as hollow, and the hit point will be at its boundary.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::cast_ray`]
/// - [`SpatialQueryPipeline::cast_ray_predicate`]
/// - [`SpatialQueryPipeline::ray_hits_callback`]
pub fn ray_hits(
&self,
origin: Vector,
direction: Dir,
max_distance: Scalar,
max_hits: u32,
solid: bool,
filter: &SpatialQueryFilter,
) -> Vec<RayHitData> {
let mut hits = Vec::with_capacity(10);
self.ray_hits_callback(origin, direction, max_distance, solid, filter, |hit| {
hits.push(hit);
(hits.len() as u32) < max_hits
});
hits
}
/// Casts a [ray](spatial_query#raycasting) and computes all [hits](RayHitData), calling the given `callback`
/// for each hit. The raycast stops when `callback` returns false or all hits have been found.
///
/// Note that the order of the results is not guaranteed.
///
/// # Arguments
///
/// - `origin`: Where the ray is cast from.
/// - `direction`: What direction the ray is cast in.
/// - `max_distance`: The maximum distance the ray can travel.
/// - `solid`: If true *and* the ray origin is inside of a collider, the hit point will be the ray origin itself.
/// Otherwise, the collider will be treated as hollow, and the hit point will be at its boundary.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
/// - `callback`: A callback function called for each hit.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::cast_ray`]
/// - [`SpatialQueryPipeline::cast_ray_predicate`]
/// - [`SpatialQueryPipeline::ray_hits`]
pub fn ray_hits_callback(
&self,
origin: Vector,
direction: Dir,
max_distance: Scalar,
solid: bool,
filter: &SpatialQueryFilter,
mut callback: impl FnMut(RayHitData) -> bool,
) {
let colliders = &self.colliders;
let ray = parry::query::Ray::new(origin.into(), direction.adjust_precision().into());
let mut leaf_callback = &mut |entity_index: &u32| {
let entity = self.entity_from_index(*entity_index);
if let Some((iso, shape, layers)) = colliders.get(&entity) {
if filter.test(entity, *layers) {
if let Some(hit) =
shape
.shape_scaled()
.cast_ray_and_get_normal(iso, &ray, max_distance, solid)
{
let hit = RayHitData {
entity,
distance: hit.time_of_impact,
normal: hit.normal.into(),
};
return callback(hit);
}
}
}
true
};
let mut visitor = RayIntersectionsVisitor::new(&ray, max_distance, &mut leaf_callback);
self.qbvh.traverse_depth_first(&mut visitor);
}
/// Casts a [shape](spatial_query#shapecasting) with a given rotation and computes the closest [hit](ShapeHits)
/// with a collider. If there are no hits, `None` is returned.
///
/// For a more ECS-based approach, consider using the [`ShapeCaster`] component instead.
///
/// # Arguments
///
/// - `shape`: The shape being cast represented as a [`Collider`].
/// - `origin`: Where the shape is cast from.
/// - `shape_rotation`: The rotation of the shape being cast.
/// - `direction`: What direction the shape is cast in.
/// - `config`: A [`ShapeCastConfig`] that determines the behavior of the cast.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::cast_shape_predicate`]
/// - [`SpatialQueryPipeline::shape_hits`]
/// - [`SpatialQueryPipeline::shape_hits_callback`]
#[allow(clippy::too_many_arguments)]
pub fn cast_shape(
&self,
shape: &Collider,
origin: Vector,
shape_rotation: RotationValue,
direction: Dir,
config: &ShapeCastConfig,
filter: &SpatialQueryFilter,
) -> Option<ShapeHitData> {
self.cast_shape_predicate(
shape,
origin,
shape_rotation,
direction,
config,
filter,
&|_| true,
)
}
/// Casts a [shape](spatial_query#shapecasting) with a given rotation and computes the closest [hit](ShapeHits)
/// with a collider. If there are no hits, `None` is returned.
///
/// For a more ECS-based approach, consider using the [`ShapeCaster`] component instead.
///
/// # Arguments
///
/// - `shape`: The shape being cast represented as a [`Collider`].
/// - `origin`: Where the shape is cast from.
/// - `shape_rotation`: The rotation of the shape being cast.
/// - `direction`: What direction the shape is cast in.
/// - `config`: A [`ShapeCastConfig`] that determines the behavior of the cast.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
/// - `predicate`: A function called on each entity hit by the shape. The shape keeps travelling until the predicate returns `false`.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::cast_shape`]
/// - [`SpatialQueryPipeline::shape_hits`]
/// - [`SpatialQueryPipeline::shape_hits_callback`]
#[allow(clippy::too_many_arguments)]
pub fn cast_shape_predicate(
&self,
shape: &Collider,
origin: Vector,
shape_rotation: RotationValue,
direction: Dir,
config: &ShapeCastConfig,
filter: &SpatialQueryFilter,
predicate: &dyn Fn(Entity) -> bool,
) -> Option<ShapeHitData> {
let rotation: Rotation;
#[cfg(feature = "2d")]
{
rotation = Rotation::radians(shape_rotation);
}
#[cfg(feature = "3d")]
{
rotation = Rotation::from(shape_rotation);
}
let shape_isometry = make_isometry(origin, rotation);
let shape_direction = direction.adjust_precision().into();
let pipeline_shape = self.as_composite_shape_with_predicate(filter, predicate);
let mut visitor = TOICompositeShapeShapeBestFirstVisitor::new(
&*self.dispatcher,
&shape_isometry,
&shape_direction,
&pipeline_shape,
&**shape.shape_scaled(),
ShapeCastOptions {
max_time_of_impact: config.max_distance,
stop_at_penetration: !config.ignore_origin_penetration,
compute_impact_geometry_on_penetration: config.compute_contact_on_penetration,
..default()
},
);
self.qbvh
.traverse_best_first(&mut visitor)
.map(|(_, (entity_index, hit))| ShapeHitData {
entity: self.entity_from_index(entity_index),
distance: hit.time_of_impact,
point1: hit.witness1.into(),
point2: hit.witness2.into(),
normal1: hit.normal1.into(),
normal2: hit.normal2.into(),
})
}
/// Casts a [shape](spatial_query#shapecasting) with a given rotation and computes computes all [hits](ShapeHitData)
/// in the order of distance until `max_hits` is reached.
///
/// # Arguments
///
/// - `shape`: The shape being cast represented as a [`Collider`].
/// - `origin`: Where the shape is cast from.
/// - `shape_rotation`: The rotation of the shape being cast.
/// - `direction`: What direction the shape is cast in.
/// - `max_hits`: The maximum number of hits. Additional hits will be missed.
/// - `config`: A [`ShapeCastConfig`] that determines the behavior of the cast.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::cast_shape`]
/// - [`SpatialQueryPipeline::cast_shape_predicate`]
/// - [`SpatialQueryPipeline::shape_hits_callback`]
#[allow(clippy::too_many_arguments)]
pub fn shape_hits(
&self,
shape: &Collider,
origin: Vector,
shape_rotation: RotationValue,
direction: Dir,
max_hits: u32,
config: &ShapeCastConfig,
filter: &SpatialQueryFilter,
) -> Vec<ShapeHitData> {
let mut hits = Vec::with_capacity(10);
self.shape_hits_callback(
shape,
origin,
shape_rotation,
direction,
config,
filter,
|hit| {
hits.push(hit);
(hits.len() as u32) < max_hits
},
);
hits
}
/// Casts a [shape](spatial_query#shapecasting) with a given rotation and computes computes all [hits](ShapeHitData)
/// in the order of distance, calling the given `callback` for each hit. The shapecast stops when
/// `callback` returns false or all hits have been found.
///
/// # Arguments
///
/// - `shape`: The shape being cast represented as a [`Collider`].
/// - `origin`: Where the shape is cast from.
/// - `shape_rotation`: The rotation of the shape being cast.
/// - `direction`: What direction the shape is cast in.
/// - `config`: A [`ShapeCastConfig`] that determines the behavior of the cast.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
/// - `callback`: A callback function called for each hit.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::cast_shape`]
/// - [`SpatialQueryPipeline::cast_shape_predicate`]
/// - [`SpatialQueryPipeline::shape_hits`]
#[allow(clippy::too_many_arguments)]
pub fn shape_hits_callback(
&self,
shape: &Collider,
origin: Vector,
shape_rotation: RotationValue,
direction: Dir,
config: &ShapeCastConfig,
filter: &SpatialQueryFilter,
mut callback: impl FnMut(ShapeHitData) -> bool,
) {
// TODO: This clone is here so that the excluded entities in the original `query_filter` aren't modified.
// We could remove this if shapecasting could compute multiple hits without just doing casts in a loop.
// See https://github.com/Jondolf/avian/issues/403.
let mut query_filter = filter.clone();
let shape_cast_options = ShapeCastOptions {
max_time_of_impact: config.max_distance,
target_distance: config.target_distance,
stop_at_penetration: !config.ignore_origin_penetration,
compute_impact_geometry_on_penetration: config.compute_contact_on_penetration,
};
let rotation: Rotation;
#[cfg(feature = "2d")]
{
rotation = Rotation::radians(shape_rotation);
}
#[cfg(feature = "3d")]
{
rotation = Rotation::from(shape_rotation);
}
let shape_isometry = make_isometry(origin, rotation);
let shape_direction = direction.adjust_precision().into();
loop {
let pipeline_shape = self.as_composite_shape(&query_filter);
let mut visitor = TOICompositeShapeShapeBestFirstVisitor::new(
&*self.dispatcher,
&shape_isometry,
&shape_direction,
&pipeline_shape,
&**shape.shape_scaled(),
shape_cast_options,
);
if let Some(hit) =
self.qbvh
.traverse_best_first(&mut visitor)
.map(|(_, (entity_index, hit))| ShapeHitData {
entity: self.entity_from_index(entity_index),
distance: hit.time_of_impact,
point1: hit.witness1.into(),
point2: hit.witness2.into(),
normal1: hit.normal1.into(),
normal2: hit.normal2.into(),
})
{
query_filter.excluded_entities.insert(hit.entity);
if !callback(hit) {
break;
}
} else {
break;
}
}
}
/// Finds the [projection](spatial_query#point-projection) of a given point on the closest [collider](Collider).
/// If one isn't found, `None` is returned.
///
/// # Arguments
///
/// - `point`: The point that should be projected.
/// - `solid`: If true and the point is inside of a collider, the projection will be at the point.
/// Otherwise, the collider will be treated as hollow, and the projection will be at the collider's boundary.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::project_point_predicate`]
pub fn project_point(
&self,
point: Vector,
solid: bool,
filter: &SpatialQueryFilter,
) -> Option<PointProjection> {
self.project_point_predicate(point, solid, filter, &|_| true)
}
/// Finds the [projection](spatial_query#point-projection) of a given point on the closest [collider](Collider).
/// If one isn't found, `None` is returned.
///
/// # Arguments
///
/// - `point`: The point that should be projected.
/// - `solid`: If true and the point is inside of a collider, the projection will be at the point.
/// Otherwise, the collider will be treated as hollow, and the projection will be at the collider's boundary.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
/// - `predicate`: A function for filtering which entities are considered in the query. The projection will be on the closest collider that passes the predicate.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::project_point`]
pub fn project_point_predicate(
&self,
point: Vector,
solid: bool,
filter: &SpatialQueryFilter,
predicate: &dyn Fn(Entity) -> bool,
) -> Option<PointProjection> {
let point = point.into();
let pipeline_shape = self.as_composite_shape_with_predicate(filter, predicate);
let mut visitor =
PointCompositeShapeProjBestFirstVisitor::new(&pipeline_shape, &point, solid);
self.qbvh
.traverse_best_first(&mut visitor)
.map(|(_, (projection, entity_index))| PointProjection {
entity: self.entity_from_index(entity_index),
point: projection.point.into(),
is_inside: projection.is_inside,
})
}
/// An [intersection test](spatial_query#intersection-tests) that finds all entities with a [collider](Collider)
/// that contains the given point.
///
/// # Arguments
///
/// - `point`: The point that intersections are tested against.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::point_intersections_callback`]
pub fn point_intersections(&self, point: Vector, filter: &SpatialQueryFilter) -> Vec<Entity> {
let mut intersections = vec![];
self.point_intersections_callback(point, filter, |e| {
intersections.push(e);
true
});
intersections
}
/// An [intersection test](spatial_query#intersection-tests) that finds all entities with a [collider](Collider)
/// that contains the given point, calling the given `callback` for each intersection.
/// The search stops when `callback` returns `false` or all intersections have been found.
///
/// # Arguments
///
/// - `point`: The point that intersections are tested against.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
/// - `callback`: A callback function called for each intersection.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::point_intersections`]
pub fn point_intersections_callback(
&self,
point: Vector,
filter: &SpatialQueryFilter,
mut callback: impl FnMut(Entity) -> bool,
) {
let point = point.into();
let mut leaf_callback = &mut |entity_index: &u32| {
let entity = self.entity_from_index(*entity_index);
if let Some((isometry, shape, layers)) = self.colliders.get(&entity) {
if filter.test(entity, *layers)
&& shape.shape_scaled().contains_point(isometry, &point)
{
return callback(entity);
}
}
true
};
let mut visitor = PointIntersectionsVisitor::new(&point, &mut leaf_callback);
self.qbvh.traverse_depth_first(&mut visitor);
}
/// An [intersection test](spatial_query#intersection-tests) that finds all entities with a [`ColliderAabb`]
/// that is intersecting the given `aabb`.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::aabb_intersections_with_aabb_callback`]
pub fn aabb_intersections_with_aabb(&self, aabb: ColliderAabb) -> Vec<Entity> {
let mut intersections = vec![];
self.aabb_intersections_with_aabb_callback(aabb, |e| {
intersections.push(e);
true
});
intersections
}
/// An [intersection test](spatial_query#intersection-tests) that finds all entities with a [`ColliderAabb`]
/// that is intersecting the given `aabb`, calling `callback` for each intersection.
/// The search stops when `callback` returns `false` or all intersections have been found.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::aabb_intersections_with_aabb`]
pub fn aabb_intersections_with_aabb_callback(
&self,
aabb: ColliderAabb,
mut callback: impl FnMut(Entity) -> bool,
) {
let mut leaf_callback = |entity_index: &u32| {
let entity = self.entity_from_index(*entity_index);
callback(entity)
};
let mut visitor = BoundingVolumeIntersectionsVisitor::new(
&Aabb {
mins: aabb.min.into(),
maxs: aabb.max.into(),
},
&mut leaf_callback,
);
self.qbvh.traverse_depth_first(&mut visitor);
}
/// An [intersection test](spatial_query#intersection-tests) that finds all entities with a [`Collider`]
/// that is intersecting the given `shape` with a given position and rotation.
///
/// # Arguments
///
/// - `shape`: The shape that intersections are tested against represented as a [`Collider`].
/// - `shape_position`: The position of the shape.
/// - `shape_rotation`: The rotation of the shape.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::shape_intersections_callback`]
pub fn shape_intersections(
&self,
shape: &Collider,
shape_position: Vector,
shape_rotation: RotationValue,
filter: &SpatialQueryFilter,
) -> Vec<Entity> {
let mut intersections = vec![];
self.shape_intersections_callback(shape, shape_position, shape_rotation, filter, |e| {
intersections.push(e);
true
});
intersections
}
/// An [intersection test](spatial_query#intersection-tests) that finds all entities with a [`Collider`]
/// that is intersecting the given `shape` with a given position and rotation, calling `callback` for each
/// intersection. The search stops when `callback` returns `false` or all intersections have been found.
///
/// # Arguments
///
/// - `shape`: The shape that intersections are tested against represented as a [`Collider`].
/// - `shape_position`: The position of the shape.
/// - `shape_rotation`: The rotation of the shape.
/// - `filter`: A [`SpatialQueryFilter`] that determines which colliders are taken into account in the query.
/// - `callback`: A callback function called for each intersection.
///
/// # Related Methods
///
/// - [`SpatialQueryPipeline::shape_intersections`]
pub fn shape_intersections_callback(
&self,
shape: &Collider,
shape_position: Vector,
shape_rotation: RotationValue,
filter: &SpatialQueryFilter,
mut callback: impl FnMut(Entity) -> bool,
) {
let colliders = &self.colliders;
let rotation: Rotation;
#[cfg(feature = "2d")]
{
rotation = Rotation::radians(shape_rotation);
}
#[cfg(feature = "3d")]
{
rotation = Rotation::from(shape_rotation);
}
let shape_isometry = make_isometry(shape_position, rotation);
let inverse_shape_isometry = shape_isometry.inverse();
let dispatcher = &*self.dispatcher;
let mut leaf_callback = &mut |entity_index: &u32| {
let entity = self.entity_from_index(*entity_index);
if let Some((collider_isometry, collider, layers)) = colliders.get(&entity) {
if filter.test(entity, *layers) {
let isometry = inverse_shape_isometry * collider_isometry;
if dispatcher.intersection_test(
&isometry,
&**shape.shape_scaled(),
&**collider.shape_scaled(),
) == Ok(true)
{
return callback(entity);
}
}
}
true
};
let shape_aabb = shape.shape_scaled().compute_aabb(&shape_isometry);
let mut visitor = BoundingVolumeIntersectionsVisitor::new(&shape_aabb, &mut leaf_callback);
self.qbvh.traverse_depth_first(&mut visitor);
}
}
pub(crate) struct QueryPipelineAsCompositeShape<'a> {
colliders: &'a HashMap<Entity, (Isometry<Scalar>, Collider, CollisionLayers)>,
pipeline: &'a SpatialQueryPipeline,
query_filter: &'a SpatialQueryFilter,
}
impl TypedSimdCompositeShape for QueryPipelineAsCompositeShape<'_> {
type PartShape = dyn Shape;
type PartNormalConstraints = dyn NormalConstraints;
type PartId = u32;
fn map_typed_part_at(
&self,
shape_id: Self::PartId,
mut f: impl FnMut(
Option<&Isometry<Scalar>>,
&Self::PartShape,
Option<&Self::PartNormalConstraints>,
),
) {
if let Some((entity, (iso, shape, layers))) =
self.colliders.get_key_value(&entity_from_index_and_gen(
shape_id,
*self.pipeline.entity_generations.get(&shape_id).unwrap(),
))
{
if self.query_filter.test(*entity, *layers) {
f(Some(iso), &**shape.shape_scaled(), None);
}
}
}
fn map_untyped_part_at(
&self,
shape_id: Self::PartId,
f: impl FnMut(Option<&Isometry<Scalar>>, &dyn Shape, Option<&dyn NormalConstraints>),
) {
self.map_typed_part_at(shape_id, f);
}
fn typed_qbvh(&self) -> &Qbvh<Self::PartId> {
&self.pipeline.qbvh
}
}
pub(crate) struct QueryPipelineAsCompositeShapeWithPredicate<'a, 'b> {
colliders: &'a HashMap<Entity, (Isometry<Scalar>, Collider, CollisionLayers)>,
pipeline: &'a SpatialQueryPipeline,
query_filter: &'a SpatialQueryFilter,
predicate: &'b dyn Fn(Entity) -> bool,
}
impl TypedSimdCompositeShape for QueryPipelineAsCompositeShapeWithPredicate<'_, '_> {
type PartShape = dyn Shape;
type PartNormalConstraints = dyn NormalConstraints;
type PartId = u32;
fn map_typed_part_at(
&self,
shape_id: Self::PartId,
mut f: impl FnMut(
Option<&Isometry<Scalar>>,
&Self::PartShape,
Option<&Self::PartNormalConstraints>,
),
) {
if let Some((entity, (iso, shape, layers))) =
self.colliders.get_key_value(&entity_from_index_and_gen(
shape_id,
*self.pipeline.entity_generations.get(&shape_id).unwrap(),
))
{
if self.query_filter.test(*entity, *layers) && (self.predicate)(*entity) {
f(Some(iso), &**shape.shape_scaled(), None);
}
}
}
fn map_untyped_part_at(
&self,
shape_id: Self::PartId,
f: impl FnMut(Option<&Isometry<Scalar>>, &dyn Shape, Option<&dyn NormalConstraints>),
) {
self.map_typed_part_at(shape_id, f);
}
fn typed_qbvh(&self) -> &Qbvh<Self::PartId> {
&self.pipeline.qbvh
}
}
fn entity_from_index_and_gen(index: u32, generation: u32) -> bevy::prelude::Entity {
bevy::prelude::Entity::from_bits((generation as u64) << 32 | index as u64)
}
/// The result of a [point projection](spatial_query#point-projection) on a [collider](Collider).
#[derive(Clone, Debug, PartialEq, Reflect)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, PartialEq)]
pub struct PointProjection {
/// The entity of the collider that the point was projected onto.
pub entity: Entity,
/// The point where the point was projected.
pub point: Vector,
/// True if the point was inside of the collider.
pub is_inside: bool,
}