avian3d/spatial_query/
ray_caster.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
use crate::prelude::*;
use bevy::{
    ecs::{
        component::ComponentId,
        entity::{EntityMapper, MapEntities},
        world::DeferredWorld,
    },
    prelude::*,
};
#[cfg(all(
    feature = "default-collider",
    any(feature = "parry-f32", feature = "parry-f64")
))]
use parry::query::{
    details::RayCompositeShapeToiAndNormalBestFirstVisitor, visitors::RayIntersectionsVisitor,
};

/// A component used for [raycasting](spatial_query#raycasting).
///
/// **Raycasting** is a type of [spatial query](spatial_query) that finds one or more hits
/// between a ray and a set of colliders.
///
/// Each ray is defined by a local `origin` and a `direction`. The [`RayCaster`] will find each hit
/// and add them to the [`RayHits`] component. Each hit has a `distance` property which refers to
/// how far the ray travelled, along with a `normal` for the point of intersection.
///
/// The [`RayCaster`] is the easiest way to handle simple raycasts. If you want more control and don't want to
/// perform raycasts every frame, consider using the [`SpatialQuery`] system parameter.
///
/// # Hit Count and Order
///
/// The results of a raycast are in an arbitrary order by default. You can iterate over them in the order of
/// distance with the [`RayHits::iter_sorted`] method.
///
/// You can configure the maximum amount of hits for a ray using `max_hits`. By default this is unbounded,
/// so you will get all hits. When the number or complexity of colliders is large, this can be very
/// expensive computationally. Set the value to whatever works best for your case.
///
/// Note that when there are more hits than `max_hits`, **some hits will be missed**.
/// To guarantee that the closest hit is included, you should set `max_hits` to one or a value that
/// is enough to contain all hits.
///
/// # Example
///
/// ```
/// # #[cfg(feature = "2d")]
/// # use avian2d::prelude::*;
/// # #[cfg(feature = "3d")]
/// use avian3d::prelude::*;
/// use bevy::prelude::*;
///
/// # #[cfg(all(feature = "3d", feature = "f32"))]
/// fn setup(mut commands: Commands) {
///     // Spawn a ray at the center going right
///     commands.spawn(RayCaster::new(Vec3::ZERO, Dir3::X));
///     // ...spawn colliders and other things
/// }
///
/// # #[cfg(all(feature = "3d", feature = "f32"))]
/// fn print_hits(query: Query<(&RayCaster, &RayHits)>) {
///     for (ray, hits) in &query {
///         // For the faster iterator that isn't sorted, use `.iter()`
///         for hit in hits.iter_sorted() {
///             println!(
///                 "Hit entity {} at {} with normal {}",
///                 hit.entity,
///                 ray.origin + *ray.direction * hit.distance,
///                 hit.normal,
///             );
///         }
///     }
/// }
/// ```
#[derive(Component, Clone, Debug, PartialEq, Reflect)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, PartialEq)]
#[component(on_add = on_add_ray_caster)]
#[require(RayHits)]
pub struct RayCaster {
    /// Controls if the ray caster is enabled.
    pub enabled: bool,

    /// The local origin of the ray relative to the [`Position`] and [`Rotation`] of the ray entity or its parent.
    ///
    /// To get the global origin, use the `global_origin` method.
    pub origin: Vector,

    /// The global origin of the ray.
    global_origin: Vector,

    /// The local direction of the ray relative to the [`Rotation`] of the ray entity or its parent.
    ///
    /// To get the global direction, use the `global_direction` method.
    pub direction: Dir,

    /// The global direction of the ray.
    global_direction: Dir,

    /// The maximum number of hits allowed.
    ///
    /// When there are more hits than `max_hits`, **some hits will be missed**.
    /// To guarantee that the closest hit is included, you should set `max_hits` to one or a value that
    /// is enough to contain all hits.
    pub max_hits: u32,

    /// The maximum distance the ray can travel.
    ///
    /// By default this is infinite, so the ray will travel until all hits up to `max_hits` have been checked.
    #[doc(alias = "max_time_of_impact")]
    pub max_distance: Scalar,

    /// Controls how the ray behaves when the ray origin is inside of a [collider](Collider).
    ///
    /// If `true`, shapes will be treated as solid, and the ray cast will return with a distance of `0.0`
    /// if the ray origin is inside of the shape. Otherwise, shapes will be treated as hollow, and the ray
    /// will always return a hit at the shape's boundary.
    pub solid: bool,

    /// If true, the ray caster ignores hits against its own [`Collider`]. This is the default.
    pub ignore_self: bool,

    /// Rules that determine which colliders are taken into account in the ray cast.
    pub query_filter: SpatialQueryFilter,
}

impl Default for RayCaster {
    fn default() -> Self {
        Self {
            enabled: true,
            origin: Vector::ZERO,
            global_origin: Vector::ZERO,
            direction: Dir::X,
            global_direction: Dir::X,
            max_distance: Scalar::MAX,
            max_hits: u32::MAX,
            solid: true,
            ignore_self: true,
            query_filter: SpatialQueryFilter::default(),
        }
    }
}

impl From<Ray> for RayCaster {
    fn from(ray: Ray) -> Self {
        RayCaster::from_ray(ray)
    }
}

impl RayCaster {
    /// Creates a new [`RayCaster`] with a given origin and direction.
    pub fn new(origin: Vector, direction: Dir) -> Self {
        Self {
            origin,
            direction,
            ..default()
        }
    }

    /// Creates a new [`RayCaster`] from a ray.
    pub fn from_ray(ray: Ray) -> Self {
        Self {
            origin: ray.origin.adjust_precision(),
            direction: ray.direction,
            ..default()
        }
    }

    /// Sets the ray origin.
    pub fn with_origin(mut self, origin: Vector) -> Self {
        self.origin = origin;
        self
    }

    /// Sets the ray direction.
    pub fn with_direction(mut self, direction: Dir) -> Self {
        self.direction = direction;
        self
    }

    /// Controls how the ray behaves when the ray origin is inside of a [collider](Collider).
    ///
    /// If `true`, shapes will be treated as solid, and the ray cast will return with a distance of `0.0`
    /// if the ray origin is inside of the shape. Otherwise, shapes will be treated as hollow, and the ray
    /// will always return a hit at the shape's boundary.
    pub fn with_solidness(mut self, solid: bool) -> Self {
        self.solid = solid;
        self
    }

    /// Sets if the ray caster should ignore hits against its own [`Collider`].
    ///
    /// The default is `true`.
    pub fn with_ignore_self(mut self, ignore: bool) -> Self {
        self.ignore_self = ignore;
        self
    }

    /// Sets the maximum distance the ray can travel.
    pub fn with_max_distance(mut self, max_distance: Scalar) -> Self {
        self.max_distance = max_distance;
        self
    }

    /// Sets the maximum time of impact, i.e. the maximum distance that the ray is allowed to travel.
    #[deprecated(since = "0.2.0", note = "Renamed to `with_max_distance`")]
    pub fn with_max_time_of_impact(self, max_time_of_impact: Scalar) -> Self {
        self.with_max_distance(max_time_of_impact)
    }

    /// Sets the maximum number of allowed hits.
    pub fn with_max_hits(mut self, max_hits: u32) -> Self {
        self.max_hits = max_hits;
        self
    }

    /// Sets the ray caster's [query filter](SpatialQueryFilter) that controls which colliders
    /// should be included or excluded by raycasts.
    pub fn with_query_filter(mut self, query_filter: SpatialQueryFilter) -> Self {
        self.query_filter = query_filter;
        self
    }

    /// Enables the [`RayCaster`].
    pub fn enable(&mut self) {
        self.enabled = true;
    }

    /// Disables the [`RayCaster`].
    pub fn disable(&mut self) {
        self.enabled = false;
    }

    /// Returns the global origin of the ray.
    pub fn global_origin(&self) -> Vector {
        self.global_origin
    }

    /// Returns the global direction of the ray.
    pub fn global_direction(&self) -> Dir {
        self.global_direction
    }

    /// Sets the global origin of the ray.
    pub(crate) fn set_global_origin(&mut self, global_origin: Vector) {
        self.global_origin = global_origin;
    }

    /// Sets the global direction of the ray.
    pub(crate) fn set_global_direction(&mut self, global_direction: Dir) {
        self.global_direction = global_direction;
    }

    #[cfg(all(
        feature = "default-collider",
        any(feature = "parry-f32", feature = "parry-f64")
    ))]
    pub(crate) fn cast(
        &mut self,
        caster_entity: Entity,
        hits: &mut RayHits,
        query_pipeline: &SpatialQueryPipeline,
    ) {
        if self.ignore_self {
            self.query_filter.excluded_entities.insert(caster_entity);
        } else {
            self.query_filter.excluded_entities.remove(&caster_entity);
        }

        hits.count = 0;

        if self.max_hits == 1 {
            let pipeline_shape = query_pipeline.as_composite_shape(&self.query_filter);
            let ray = parry::query::Ray::new(
                self.global_origin().into(),
                self.global_direction().adjust_precision().into(),
            );
            let mut visitor = RayCompositeShapeToiAndNormalBestFirstVisitor::new(
                &pipeline_shape,
                &ray,
                self.max_distance,
                self.solid,
            );

            if let Some(hit) = query_pipeline.qbvh.traverse_best_first(&mut visitor).map(
                |(_, (entity_index, hit))| RayHitData {
                    entity: query_pipeline.entity_from_index(entity_index),
                    distance: hit.time_of_impact,
                    normal: hit.normal.into(),
                },
            ) {
                if (hits.vector.len() as u32) < hits.count + 1 {
                    hits.vector.push(hit);
                } else {
                    hits.vector[0] = hit;
                }
                hits.count = 1;
            }
        } else {
            let ray = parry::query::Ray::new(
                self.global_origin().into(),
                self.global_direction().adjust_precision().into(),
            );

            let mut leaf_callback = &mut |entity_index: &u32| {
                let entity = query_pipeline.entity_from_index(*entity_index);
                if let Some((iso, shape, layers)) = query_pipeline.colliders.get(&entity) {
                    if self.query_filter.test(entity, *layers) {
                        if let Some(hit) = shape.shape_scaled().cast_ray_and_get_normal(
                            iso,
                            &ray,
                            self.max_distance,
                            self.solid,
                        ) {
                            if (hits.vector.len() as u32) < hits.count + 1 {
                                hits.vector.push(RayHitData {
                                    entity,
                                    distance: hit.time_of_impact,
                                    normal: hit.normal.into(),
                                });
                            } else {
                                hits.vector[hits.count as usize] = RayHitData {
                                    entity,
                                    distance: hit.time_of_impact,
                                    normal: hit.normal.into(),
                                };
                            }

                            hits.count += 1;

                            return hits.count < self.max_hits;
                        }
                    }
                }
                true
            };

            let mut visitor =
                RayIntersectionsVisitor::new(&ray, self.max_distance, &mut leaf_callback);
            query_pipeline.qbvh.traverse_depth_first(&mut visitor);
        }
    }
}

fn on_add_ray_caster(mut world: DeferredWorld, entity: Entity, _component_id: ComponentId) {
    let ray_caster = world.get::<RayCaster>(entity).unwrap();
    let max_hits = if ray_caster.max_hits == u32::MAX {
        10
    } else {
        ray_caster.max_hits as usize
    };

    // Initialize capacity for hits
    world.get_mut::<RayHits>(entity).unwrap().vector = Vec::with_capacity(max_hits);
}

/// Contains the hits of a ray cast by a [`RayCaster`].
///
/// The maximum number of hits depends on the value of `max_hits` in [`RayCaster`].
///
/// # Order
///
/// By default, the order of the hits is not guaranteed.
///
/// You can iterate the hits in the order of distance with `iter_sorted`.
/// Note that this will create and sort a new vector instead of the original one.
///
/// **Note**: When there are more hits than `max_hits`, **some hits
/// will be missed**. If you want to guarantee that the closest hit is included, set `max_hits` to one.
///
/// # Example
///
/// ```
/// # #[cfg(feature = "2d")]
/// # use avian2d::prelude::*;
/// # #[cfg(feature = "3d")]
/// use avian3d::prelude::*;
/// use bevy::prelude::*;
///
/// fn print_hits(query: Query<&RayHits, With<RayCaster>>) {
///     for hits in &query {
///         // For the faster iterator that isn't sorted, use `.iter()`
///         for hit in hits.iter_sorted() {
///             println!("Hit entity {} with distance {}", hit.entity, hit.distance);
///         }
///     }
/// }
/// ```
#[derive(Debug, Component, Clone, Default, Reflect, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct RayHits {
    pub(crate) vector: Vec<RayHitData>,
    /// The number of hits.
    pub(crate) count: u32,
}

impl RayHits {
    /// Returns a slice over the ray hits.
    pub fn as_slice(&self) -> &[RayHitData] {
        &self.vector[0..self.count as usize]
    }

    /// Returns the number of hits.
    #[doc(alias = "count")]
    pub fn len(&self) -> usize {
        self.count as usize
    }

    /// Returns true if the number of hits is 0.
    pub fn is_empty(&self) -> bool {
        self.count == 0
    }

    /// Clears the hits.
    pub fn clear(&mut self) {
        self.vector.clear();
        self.count = 0;
    }

    /// Returns an iterator over the hits in arbitrary order.
    ///
    /// If you want to get them sorted by distance, use `iter_sorted`.
    pub fn iter(&self) -> std::slice::Iter<RayHitData> {
        self.as_slice().iter()
    }

    /// Returns an iterator over the hits, sorted in ascending order according to the distance.
    ///
    /// Note that this creates and sorts a new vector. If you don't need the hits in order, use `iter`.
    pub fn iter_sorted(&self) -> std::vec::IntoIter<RayHitData> {
        let mut vector = self.as_slice().to_vec();
        vector.sort_by(|a, b| a.distance.partial_cmp(&b.distance).unwrap());
        vector.into_iter()
    }
}

impl MapEntities for RayHits {
    fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) {
        for hit in &mut self.vector {
            hit.map_entities(entity_mapper);
        }
    }
}

/// Data related to a hit during a [raycast](spatial_query#raycasting).
#[derive(Clone, Copy, Debug, PartialEq, Reflect)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, PartialEq)]
pub struct RayHitData {
    /// The entity of the collider that was hit by the ray.
    pub entity: Entity,

    /// How far the ray travelled. This is the distance between the ray origin and the point of intersection.
    pub distance: Scalar,

    /// The normal at the point of intersection, expressed in world space.
    pub normal: Vector,
}

impl MapEntities for RayHitData {
    fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) {
        self.entity = entity_mapper.map_entity(self.entity);
    }
}