1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
use crate::prelude::*;
use bevy::{
ecs::entity::{EntityMapper, MapEntities},
prelude::*,
};
#[cfg(all(
feature = "default-collider",
any(feature = "parry-f32", feature = "parry-f64")
))]
use parry::query::{
details::RayCompositeShapeToiAndNormalBestFirstVisitor, visitors::RayIntersectionsVisitor,
};
/// A component used for [raycasting](spatial_query#raycasting).
///
/// **Raycasting** is a type of [spatial query](spatial_query) that finds one or more hits
/// between a ray and a set of colliders.
///
/// Each ray is defined by a local `origin` and a `direction`. The [`RayCaster`] will find each hit
/// and add them to the [`RayHits`] component. Each hit has a `time_of_impact` property
/// which refers to how long the ray travelled, i.e. the distance between the `origin` and the point of intersection.
///
/// The [`RayCaster`] is the easiest way to handle simple raycasts. If you want more control and don't want to
/// perform raycasts every frame, consider using the [`SpatialQuery`] system parameter.
///
/// ## Hit count and order
///
/// The results of a raycast are in an arbitrary order by default. You can iterate over them in the order of
/// time of impact with the [`RayHits::iter_sorted`] method.
///
/// You can configure the maximum amount of hits for a ray using `max_hits`. By default this is unbounded,
/// so you will get all hits. When the number or complexity of colliders is large, this can be very
/// expensive computationally. Set the value to whatever works best for your case.
///
/// Note that when there are more hits than `max_hits`, **some hits will be missed**.
/// To guarantee that the closest hit is included, you should set `max_hits` to one or a value that
/// is enough to contain all hits.
///
/// ## Example
///
/// ```
/// # #[cfg(feature = "2d")]
/// # use avian2d::prelude::*;
/// # #[cfg(feature = "3d")]
/// use avian3d::prelude::*;
/// use bevy::prelude::*;
///
/// # #[cfg(all(feature = "3d", feature = "f32"))]
/// fn setup(mut commands: Commands) {
/// // Spawn a ray at the center going right
/// commands.spawn(RayCaster::new(Vec3::ZERO, Dir3::X));
/// // ...spawn colliders and other things
/// }
///
/// # #[cfg(all(feature = "3d", feature = "f32"))]
/// fn print_hits(query: Query<(&RayCaster, &RayHits)>) {
/// for (ray, hits) in &query {
/// // For the faster iterator that isn't sorted, use `.iter()`
/// for hit in hits.iter_sorted() {
/// println!(
/// "Hit entity {:?} at {} with normal {}",
/// hit.entity,
/// ray.origin + *ray.direction * hit.time_of_impact,
/// hit.normal,
/// );
/// }
/// }
/// }
/// ```
#[derive(Component, Clone, Debug, PartialEq, Reflect)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, PartialEq)]
pub struct RayCaster {
/// Controls if the ray caster is enabled.
pub enabled: bool,
/// The local origin of the ray relative to the [`Position`] and [`Rotation`] of the ray entity or its parent.
///
/// To get the global origin, use the `global_origin` method.
pub origin: Vector,
/// The global origin of the ray.
global_origin: Vector,
/// The local direction of the ray relative to the [`Rotation`] of the ray entity or its parent.
///
/// To get the global direction, use the `global_direction` method.
pub direction: Dir,
/// The global direction of the ray.
global_direction: Dir,
/// The maximum distance the ray can travel. By default this is infinite, so the ray will travel
/// until all hits up to `max_hits` have been checked.
pub max_time_of_impact: Scalar,
/// The maximum number of hits allowed.
///
/// When there are more hits than `max_hits`, **some hits will be missed**.
/// To guarantee that the closest hit is included, you should set `max_hits` to one or a value that
/// is enough to contain all hits.
pub max_hits: u32,
/// Controls how the ray behaves when the ray origin is inside of a [collider](Collider).
///
/// If `solid` is true, the point of intersection will be the ray origin itself.\
/// If `solid` is false, the collider will be considered to have no interior, and the point of intersection
/// will be at the collider shape's boundary.
pub solid: bool,
/// If true, the ray caster ignores hits against its own [`Collider`]. This is the default.
pub ignore_self: bool,
/// Rules that determine which colliders are taken into account in the query.
pub query_filter: SpatialQueryFilter,
}
impl Default for RayCaster {
fn default() -> Self {
Self {
enabled: true,
origin: Vector::ZERO,
global_origin: Vector::ZERO,
direction: Dir::X,
global_direction: Dir::X,
max_time_of_impact: Scalar::MAX,
max_hits: u32::MAX,
solid: true,
ignore_self: true,
query_filter: SpatialQueryFilter::default(),
}
}
}
impl From<Ray> for RayCaster {
fn from(ray: Ray) -> Self {
RayCaster::from_ray(ray)
}
}
impl RayCaster {
/// Creates a new [`RayCaster`] with a given origin and direction.
pub fn new(origin: Vector, direction: Dir) -> Self {
Self {
origin,
direction,
..default()
}
}
/// Creates a new [`RayCaster`] from a ray.
pub fn from_ray(ray: Ray) -> Self {
Self {
origin: ray.origin.adjust_precision(),
direction: ray.direction,
..default()
}
}
/// Sets the ray origin.
pub fn with_origin(mut self, origin: Vector) -> Self {
self.origin = origin;
self
}
/// Sets the ray direction.
pub fn with_direction(mut self, direction: Dir) -> Self {
self.direction = direction;
self
}
/// Sets if the ray treats [colliders](Collider) as solid.
///
/// If `solid` is true, the point of intersection will be the ray origin itself.\
/// If `solid` is false, the collider will be considered to have no interior, and the point of intersection
/// will be at the collider shape's boundary.
pub fn with_solidness(mut self, solid: bool) -> Self {
self.solid = solid;
self
}
/// Sets if the ray caster should ignore hits against its own [`Collider`].
/// The default is true.
pub fn with_ignore_self(mut self, ignore: bool) -> Self {
self.ignore_self = ignore;
self
}
/// Sets the maximum time of impact, i.e. the maximum distance that the ray is allowed to travel.
pub fn with_max_time_of_impact(mut self, max_time_of_impact: Scalar) -> Self {
self.max_time_of_impact = max_time_of_impact;
self
}
/// Sets the maximum number of allowed hits.
pub fn with_max_hits(mut self, max_hits: u32) -> Self {
self.max_hits = max_hits;
self
}
/// Sets the ray caster's [query filter](SpatialQueryFilter) that controls which colliders
/// should be included or excluded by raycasts.
pub fn with_query_filter(mut self, query_filter: SpatialQueryFilter) -> Self {
self.query_filter = query_filter;
self
}
/// Enables the [`RayCaster`].
pub fn enable(&mut self) {
self.enabled = true;
}
/// Disables the [`RayCaster`].
pub fn disable(&mut self) {
self.enabled = false;
}
/// Returns the global origin of the ray.
pub fn global_origin(&self) -> Vector {
self.global_origin
}
/// Returns the global direction of the ray.
pub fn global_direction(&self) -> Dir {
self.global_direction
}
/// Sets the global origin of the ray.
pub(crate) fn set_global_origin(&mut self, global_origin: Vector) {
self.global_origin = global_origin;
}
/// Sets the global direction of the ray.
pub(crate) fn set_global_direction(&mut self, global_direction: Dir) {
self.global_direction = global_direction;
}
#[cfg(all(
feature = "default-collider",
any(feature = "parry-f32", feature = "parry-f64")
))]
pub(crate) fn cast(
&self,
caster_entity: Entity,
hits: &mut RayHits,
query_pipeline: &SpatialQueryPipeline,
) {
let mut query_filter = self.query_filter.clone();
if self.ignore_self {
query_filter.excluded_entities.insert(caster_entity);
}
hits.count = 0;
if self.max_hits == 1 {
let pipeline_shape = query_pipeline.as_composite_shape(query_filter);
let ray = parry::query::Ray::new(
self.global_origin().into(),
self.global_direction().adjust_precision().into(),
);
let mut visitor = RayCompositeShapeToiAndNormalBestFirstVisitor::new(
&pipeline_shape,
&ray,
self.max_time_of_impact,
self.solid,
);
if let Some(hit) = query_pipeline.qbvh.traverse_best_first(&mut visitor).map(
|(_, (entity_index, hit))| RayHitData {
entity: query_pipeline.entity_from_index(entity_index),
time_of_impact: hit.time_of_impact,
normal: hit.normal.into(),
},
) {
if (hits.vector.len() as u32) < hits.count + 1 {
hits.vector.push(hit);
} else {
hits.vector[0] = hit;
}
hits.count = 1;
}
} else {
let ray = parry::query::Ray::new(
self.global_origin().into(),
self.global_direction().adjust_precision().into(),
);
let mut leaf_callback = &mut |entity_index: &u32| {
let entity = query_pipeline.entity_from_index(*entity_index);
if let Some((iso, shape, layers)) = query_pipeline.colliders.get(&entity) {
if query_filter.test(entity, *layers) {
if let Some(hit) = shape.shape_scaled().cast_ray_and_get_normal(
iso,
&ray,
self.max_time_of_impact,
self.solid,
) {
if (hits.vector.len() as u32) < hits.count + 1 {
hits.vector.push(RayHitData {
entity,
time_of_impact: hit.time_of_impact,
normal: hit.normal.into(),
});
} else {
hits.vector[hits.count as usize] = RayHitData {
entity,
time_of_impact: hit.time_of_impact,
normal: hit.normal.into(),
};
}
hits.count += 1;
return hits.count < self.max_hits;
}
}
}
true
};
let mut visitor =
RayIntersectionsVisitor::new(&ray, self.max_time_of_impact, &mut leaf_callback);
query_pipeline.qbvh.traverse_depth_first(&mut visitor);
}
}
}
/// Contains the hits of a ray cast by a [`RayCaster`].
///
/// The maximum number of hits depends on the value of `max_hits` in [`RayCaster`].
///
/// ## Order
///
/// By default, the order of the hits is not guaranteed.
///
/// You can iterate the hits in the order of time of impact with `iter_sorted`.
/// Note that this will create and sort a new vector instead of the original one.
///
/// **Note**: When there are more hits than `max_hits`, **some hits
/// will be missed**. If you want to guarantee that the closest hit is included, set `max_hits` to one.
///
/// ## Example
///
/// ```
/// # #[cfg(feature = "2d")]
/// # use avian2d::prelude::*;
/// # #[cfg(feature = "3d")]
/// use avian3d::prelude::*;
/// use bevy::prelude::*;
///
/// fn print_hits(query: Query<&RayHits, With<RayCaster>>) {
/// for hits in &query {
/// // For the faster iterator that isn't sorted, use `.iter()`
/// for hit in hits.iter_sorted() {
/// println!(
/// "Hit entity {:?} with time of impact {}",
/// hit.entity,
/// hit.time_of_impact,
/// );
/// }
/// }
/// }
/// ```
#[derive(Debug, Component, Clone, Default, Reflect, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, Component, Default, PartialEq)]
pub struct RayHits {
pub(crate) vector: Vec<RayHitData>,
/// The number of hits.
pub(crate) count: u32,
}
impl RayHits {
/// Returns a slice over the ray hits.
pub fn as_slice(&self) -> &[RayHitData] {
&self.vector[0..self.count as usize]
}
/// Returns the number of hits.
#[doc(alias = "count")]
pub fn len(&self) -> usize {
self.count as usize
}
/// Returns true if the number of hits is 0.
pub fn is_empty(&self) -> bool {
self.count == 0
}
/// Clears the hits.
pub fn clear(&mut self) {
self.vector.clear();
self.count = 0;
}
/// Returns an iterator over the hits in arbitrary order.
///
/// If you want to get them sorted by time of impact, use `iter_sorted`.
pub fn iter(&self) -> std::slice::Iter<RayHitData> {
self.as_slice().iter()
}
/// Returns an iterator over the hits, sorted in ascending order according to the time of impact.
///
/// Note that this creates and sorts a new vector. If you don't need the hits in order, use `iter`.
pub fn iter_sorted(&self) -> std::vec::IntoIter<RayHitData> {
let mut vector = self.as_slice().to_vec();
vector.sort_by(|a, b| a.time_of_impact.partial_cmp(&b.time_of_impact).unwrap());
vector.into_iter()
}
}
impl MapEntities for RayHits {
fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) {
for hit in &mut self.vector {
hit.map_entities(entity_mapper);
}
}
}
/// Data related to a hit during a [raycast](spatial_query#raycasting).
#[derive(Clone, Copy, Debug, PartialEq, Reflect)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "serialize", reflect(Serialize, Deserialize))]
#[reflect(Debug, PartialEq)]
pub struct RayHitData {
/// The entity of the collider that was hit by the ray.
pub entity: Entity,
/// How long the ray travelled, i.e. the distance between the ray origin and the point of intersection.
pub time_of_impact: Scalar,
/// The normal at the point of intersection.
pub normal: Vector,
}
impl MapEntities for RayHitData {
fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) {
self.entity = entity_mapper.map_entity(self.entity);
}
}