avian3d/sync/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
//! Responsible for synchronizing physics components with other data, like keeping [`Position`]
//! and [`Rotation`] in sync with `Transform`.
//!
//! See [`SyncPlugin`].
use crate::{prelude::*, prepare::PrepareSet, utils::get_pos_translation};
use ancestor_marker::{AncestorMarker, AncestorMarkerPlugin};
use bevy::{
ecs::{intern::Interned, schedule::ScheduleLabel},
prelude::*,
};
// TODO: Where should this be?
pub mod ancestor_marker;
/// Responsible for synchronizing physics components with other data, like keeping [`Position`]
/// and [`Rotation`] in sync with `Transform`.
///
/// # Syncing Between [`Position`]/[`Rotation`] and [`Transform`]
///
/// By default, each body's `Transform` will be updated when [`Position`] or [`Rotation`]
/// change, and vice versa. This means that you can use any of these components to move
/// or position bodies, and the changes be reflected in the other components.
///
/// You can configure what data is synchronized and how it is synchronized
/// using the [`SyncConfig`] resource.
///
/// # `Transform` Hierarchies
///
/// When synchronizing changes in [`Position`] or [`Rotation`] to `Transform`,
/// the engine treats nested [rigid bodies](RigidBody) as a flat structure. This means that
/// the bodies move independently of the parents, and moving the parent will not affect the child.
///
/// If you would like a child entity to be rigidly attached to its parent, you could use a [`FixedJoint`]
/// or write your own system to handle hierarchies differently.
pub struct SyncPlugin {
schedule: Interned<dyn ScheduleLabel>,
}
impl SyncPlugin {
/// Creates a [`SyncPlugin`] with the schedule that is used for running the [`PhysicsSchedule`].
///
/// The default schedule is `PostUpdate`.
pub fn new(schedule: impl ScheduleLabel) -> Self {
Self {
schedule: schedule.intern(),
}
}
}
impl Default for SyncPlugin {
fn default() -> Self {
Self::new(PostUpdate)
}
}
#[derive(SystemSet, Clone, Copy, Debug, PartialEq, Eq, Hash)]
struct MarkRigidBodyAncestors;
impl Plugin for SyncPlugin {
fn build(&self, app: &mut App) {
app.init_resource::<SyncConfig>()
.register_type::<SyncConfig>();
app.configure_sets(
self.schedule,
(
SyncSet::First,
SyncSet::TransformToPosition,
SyncSet::PositionToTransform,
SyncSet::Update,
SyncSet::Last,
)
.chain()
.in_set(PhysicsSet::Sync),
);
// Mark ancestors of colliders with `AncestorMarker<RigidBody>`.
// This is used to speed up transform propagation by skipping
// trees that have no rigid bodies.
app.add_plugins(
AncestorMarkerPlugin::<RigidBody>::new(self.schedule)
.add_markers_in_set(MarkRigidBodyAncestors),
);
app.configure_sets(
self.schedule,
MarkRigidBodyAncestors.in_set(PrepareSet::First),
);
// Initialize `PreviousGlobalTransform` and apply `Transform` changes that happened
// between the end of the previous physics frame and the start of this physics frame.
app.add_systems(
self.schedule,
(
sync_simple_transforms_physics,
propagate_transforms_physics,
init_previous_global_transform,
transform_to_position,
// Update `PreviousGlobalTransform` for the physics step's `GlobalTransform` change detection
update_previous_global_transforms,
)
.chain()
.after(PhysicsSet::Prepare)
.before(PhysicsSet::StepSimulation)
.run_if(|config: Res<SyncConfig>| config.transform_to_position),
);
// Apply `Transform` changes to `Position` and `Rotation`.
// TODO: Do we need this?
app.add_systems(
self.schedule,
(
sync_simple_transforms_physics,
propagate_transforms_physics,
transform_to_position,
)
.chain()
.in_set(SyncSet::TransformToPosition)
.run_if(|config: Res<SyncConfig>| config.transform_to_position),
);
// Apply `Position` and `Rotation` changes to `Transform`
app.add_systems(
self.schedule,
position_to_transform
.in_set(SyncSet::PositionToTransform)
.run_if(|config: Res<SyncConfig>| config.position_to_transform),
);
// Update `PreviousGlobalTransform` for next frame's `GlobalTransform` change detection
app.add_systems(
self.schedule,
(
sync_simple_transforms_physics,
propagate_transforms_physics,
update_previous_global_transforms,
)
.chain()
.in_set(SyncSet::Update)
.run_if(|config: Res<SyncConfig>| config.transform_to_position),
);
}
}
/// Configures what physics data is synchronized by the [`SyncPlugin`] and [`PreparePlugin`] and how.
#[derive(Resource, Reflect, Clone, Debug, PartialEq, Eq)]
#[reflect(Resource)]
pub struct SyncConfig {
/// Updates transforms based on [`Position`] and [`Rotation`] changes. Defaults to true.
///
/// This operation is run in [`SyncSet::PositionToTransform`].
pub position_to_transform: bool,
/// Updates [`Position`] and [`Rotation`] based on transform changes,
/// allowing you to move bodies using [`Transform`]. Defaults to true.
///
/// This operation is run in [`SyncSet::TransformToPosition`].
pub transform_to_position: bool,
/// Updates [`Collider::scale()`] based on transform changes,
/// allowing you to scale colliders using [`Transform`]. Defaults to true.
///
/// This operation is run in [`PrepareSet::Finalize`]
pub transform_to_collider_scale: bool,
}
impl Default for SyncConfig {
fn default() -> Self {
SyncConfig {
position_to_transform: true,
transform_to_position: true,
transform_to_collider_scale: true,
}
}
}
/// System sets for systems running in [`PhysicsSet::Sync`].
#[derive(SystemSet, Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum SyncSet {
/// Runs at the start of [`PhysicsSet::Sync`]. Empty by default.
First,
/// Updates [`Position`] and [`Rotation`] based on transform changes.
TransformToPosition,
/// Updates transforms based on [`Position`] and [`Rotation`] changes.
PositionToTransform,
/// Handles transform propagation and other updates after physics positions have been synced with transforms.
Update,
/// Runs at the end of [`PhysicsSet::Sync`]. Empty by default.
Last,
}
/// The global transform of a body at the end of the previous frame.
/// Used for detecting if the transform was modified before the start of the physics schedule.
#[derive(Component, Reflect, Clone, Copy, Debug, Default, Deref, DerefMut, PartialEq)]
#[reflect(Component)]
pub struct PreviousGlobalTransform(pub GlobalTransform);
#[allow(clippy::type_complexity)]
pub(crate) fn init_previous_global_transform(
mut commands: Commands,
query: Query<(Entity, &GlobalTransform), Or<(Added<Position>, Added<Rotation>)>>,
) {
for (entity, transform) in &query {
commands
.entity(entity)
.try_insert(PreviousGlobalTransform(*transform));
}
}
/// Copies `GlobalTransform` changes to [`Position`] and [`Rotation`].
/// This allows users to use transforms for moving and positioning bodies and colliders.
///
/// To account for hierarchies, transform propagation should be run before this system.
#[allow(clippy::type_complexity)]
pub fn transform_to_position(
mut query: Query<(
&GlobalTransform,
&PreviousGlobalTransform,
&mut Position,
Option<&AccumulatedTranslation>,
&mut Rotation,
Option<&PreviousRotation>,
Option<&ComputedCenterOfMass>,
)>,
) {
for (
global_transform,
previous_transform,
mut position,
accumulated_translation,
mut rotation,
previous_rotation,
center_of_mass,
) in &mut query
{
// Skip entity if the global transform value hasn't changed
if *global_transform == previous_transform.0 {
continue;
}
let transform = global_transform.compute_transform();
let previous_transform = previous_transform.compute_transform();
let pos = position.0
+ accumulated_translation.map_or(Vector::ZERO, |t| {
get_pos_translation(
t,
&previous_rotation.copied().unwrap_or_default(),
&rotation,
¢er_of_mass.copied().unwrap_or_default(),
)
});
#[cfg(feature = "2d")]
{
position.0 = (previous_transform.translation.truncate()
+ (transform.translation - previous_transform.translation).truncate())
.adjust_precision()
+ (pos - previous_transform.translation.truncate().adjust_precision());
}
#[cfg(feature = "3d")]
{
position.0 = (previous_transform.translation
+ (transform.translation - previous_transform.translation))
.adjust_precision()
+ (pos - previous_transform.translation.adjust_precision());
}
#[cfg(feature = "2d")]
{
let rot = Rotation::from(transform.rotation.adjust_precision());
let prev_rot = Rotation::from(previous_transform.rotation.adjust_precision());
*rotation = prev_rot * (prev_rot.inverse() * rot) * (prev_rot.inverse() * *rotation);
}
#[cfg(feature = "3d")]
{
rotation.0 = (previous_transform.rotation
* (previous_transform.rotation.inverse() * transform.rotation)
* (previous_transform.rotation.inverse() * rotation.f32()))
.adjust_precision();
}
}
}
type PosToTransformComponents = (
&'static mut Transform,
&'static Position,
&'static Rotation,
Option<&'static Parent>,
);
type PosToTransformFilter = (With<RigidBody>, Or<(Changed<Position>, Changed<Rotation>)>);
type ParentComponents = (
&'static GlobalTransform,
Option<&'static Position>,
Option<&'static Rotation>,
);
/// Copies [`Position`] and [`Rotation`] changes to `Transform`.
/// This allows users and the engine to use these components for moving and positioning bodies.
///
/// Nested rigid bodies move independently of each other, so the `Transform`s of child entities are updated
/// based on their own and their parent's [`Position`] and [`Rotation`].
#[cfg(feature = "2d")]
pub fn position_to_transform(
mut query: Query<PosToTransformComponents, PosToTransformFilter>,
parents: Query<ParentComponents, With<Children>>,
) {
for (mut transform, pos, rot, parent) in &mut query {
if let Some(parent) = parent {
if let Ok((parent_transform, parent_pos, parent_rot)) = parents.get(**parent) {
// Compute the global transform of the parent using its Position and Rotation
let parent_transform = parent_transform.compute_transform();
let parent_pos = parent_pos.map_or(parent_transform.translation, |pos| {
pos.f32().extend(parent_transform.translation.z)
});
let parent_rot = parent_rot.map_or(parent_transform.rotation, |rot| {
Quaternion::from(*rot).f32()
});
let parent_scale = parent_transform.scale;
let parent_transform = Transform::from_translation(parent_pos)
.with_rotation(parent_rot)
.with_scale(parent_scale);
// The new local transform of the child body,
// computed from the its global transform and its parents global transform
let new_transform = GlobalTransform::from(
Transform::from_translation(
pos.f32()
.extend(parent_pos.z + transform.translation.z * parent_scale.z),
)
.with_rotation(Quaternion::from(*rot).f32()),
)
.reparented_to(&GlobalTransform::from(parent_transform));
transform.translation = new_transform.translation;
transform.rotation = new_transform.rotation;
}
} else {
transform.translation = pos.f32().extend(transform.translation.z);
transform.rotation = Quaternion::from(*rot).f32();
}
}
}
/// Copies [`Position`] and [`Rotation`] changes to `Transform`.
/// This allows users and the engine to use these components for moving and positioning bodies.
///
/// Nested rigid bodies move independently of each other, so the `Transform`s of child entities are updated
/// based on their own and their parent's [`Position`] and [`Rotation`].
#[cfg(feature = "3d")]
pub fn position_to_transform(
mut query: Query<PosToTransformComponents, PosToTransformFilter>,
parents: Query<ParentComponents, With<Children>>,
) {
for (mut transform, pos, rot, parent) in &mut query {
if let Some(parent) = parent {
if let Ok((parent_transform, parent_pos, parent_rot)) = parents.get(**parent) {
// Compute the global transform of the parent using its Position and Rotation
let parent_transform = parent_transform.compute_transform();
let parent_pos = parent_pos.map_or(parent_transform.translation, |pos| pos.f32());
let parent_rot = parent_rot.map_or(parent_transform.rotation, |rot| rot.f32());
let parent_scale = parent_transform.scale;
let parent_transform = Transform::from_translation(parent_pos)
.with_rotation(parent_rot)
.with_scale(parent_scale);
// The new local transform of the child body,
// computed from the its global transform and its parents global transform
let new_transform = GlobalTransform::from(
Transform::from_translation(pos.f32()).with_rotation(rot.f32()),
)
.reparented_to(&GlobalTransform::from(parent_transform));
transform.translation = new_transform.translation;
transform.rotation = new_transform.rotation;
}
} else {
transform.translation = pos.f32();
transform.rotation = rot.f32();
}
}
}
/// Updates [`PreviousGlobalTransform`] by setting it to `GlobalTransform` at the very end or start of a frame.
pub fn update_previous_global_transforms(
mut bodies: Query<(&GlobalTransform, &mut PreviousGlobalTransform)>,
) {
for (transform, mut previous_transform) in &mut bodies {
previous_transform.0 = *transform;
}
}
// Below are copies of Bevy's transform propagation systems, but optimized to only traverse trees with rigid bodies.
// Propagation is unnecessary for everything else, because the physics engine should only modify the positions
// of rigid bodies and their descendants. Bevy runs its own propagation near the end of the frame.
/// Updates the [`GlobalTransform`] component of physics entities that don't have other physics entities in the hierarchy.
#[allow(clippy::type_complexity)]
pub fn sync_simple_transforms_physics(
mut query: ParamSet<(
Query<
(&Transform, &mut GlobalTransform),
(
Or<(Changed<Transform>, Added<GlobalTransform>)>,
Without<Parent>,
Or<(
Without<AncestorMarker<RigidBody>>,
Without<AncestorMarker<ColliderMarker>>,
)>,
Or<(With<RigidBody>, With<ColliderMarker>)>,
),
>,
Query<
(Ref<Transform>, &mut GlobalTransform),
(
Without<Parent>,
Or<(
Without<AncestorMarker<RigidBody>>,
Without<AncestorMarker<ColliderMarker>>,
)>,
Or<(With<RigidBody>, With<ColliderMarker>)>,
),
>,
)>,
mut orphaned: RemovedComponents<Parent>,
) {
// Update changed entities.
query
.p0()
.par_iter_mut()
.for_each(|(transform, mut global_transform)| {
*global_transform = GlobalTransform::from(*transform);
});
// Update orphaned entities.
let mut query = query.p1();
let mut iter = query.iter_many_mut(orphaned.read());
while let Some((transform, mut global_transform)) = iter.fetch_next() {
if !transform.is_changed() && !global_transform.is_added() {
*global_transform = GlobalTransform::from(*transform);
}
}
}
// Below is a diagram of an example hierarchy.
//
// A
// / \
// N A
// / \
// P N
// / \
// N N
//
// P = a physics entity
// A = a physics entity ancestor
// N = not a physics entity ancestor
//
// We can stop propagation, if:
//
// 1. we encounter an N that doesn't have any P as an ancestor.
// 2. we encounter a P with no children.
// TODO: A general `PhysicsMarker` for both rigid bodies and colliders could be nice.
type TransformQueryData = (
Ref<'static, Transform>,
&'static mut GlobalTransform,
Option<&'static Children>,
Has<RigidBody>,
Has<ColliderMarker>,
);
type ParentQueryData = (
Entity,
Ref<'static, Parent>,
Has<RigidBody>,
Has<ColliderMarker>,
);
type PhysicsObjectOrAncestorFilter = Or<(
Or<(With<RigidBody>, With<AncestorMarker<RigidBody>>)>,
Or<(With<ColliderMarker>, With<AncestorMarker<ColliderMarker>>)>,
)>;
/// Update [`GlobalTransform`] component of physics entities based on entity hierarchy and
/// [`Transform`] component.
#[allow(clippy::type_complexity)]
pub fn propagate_transforms_physics(
mut root_query: Query<
(
Entity,
&Children,
Ref<Transform>,
&mut GlobalTransform,
Has<RigidBody>,
Has<ColliderMarker>,
),
(
Without<Parent>,
Or<(
With<AncestorMarker<RigidBody>>,
With<AncestorMarker<ColliderMarker>>,
)>,
),
>,
mut orphaned: RemovedComponents<Parent>,
transform_query: Query<TransformQueryData, With<Parent>>,
// This is used if the entity has no physics entity ancestor.
parent_query_1: Query<ParentQueryData>,
// This is used if the entity is a physics entity with children *or* if any ancestor is a physics entity.
parent_query_2: Query<ParentQueryData, PhysicsObjectOrAncestorFilter>,
mut orphaned_entities: Local<Vec<Entity>>,
) {
orphaned_entities.clear();
orphaned_entities.extend(orphaned.read());
orphaned_entities.sort_unstable();
root_query.par_iter_mut().for_each(
|(entity, children, transform, mut global_transform, is_root_rb, is_root_collider)| {
let changed = transform.is_changed() || global_transform.is_added() || orphaned_entities.binary_search(&entity).is_ok();
if changed {
*global_transform = GlobalTransform::from(*transform);
}
let handle = |(child, actual_parent, is_parent_rb, is_parent_collider): (Entity, Ref<Parent>, bool, bool)| {
assert_eq!(
actual_parent.get(), entity,
"Malformed hierarchy. This probably means that your hierarchy has been improperly maintained, or contains a cycle"
);
// SAFETY:
// - `child` must have consistent parentage, or the above assertion would panic.
// Since `child` is parented to a root entity, the entire hierarchy leading to it is consistent.
// - We may operate as if all descendants are consistent, since `propagate_recursive` will panic before
// continuing to propagate if it encounters an entity with inconsistent parentage.
// - Since each root entity is unique and the hierarchy is consistent and forest-like,
// other root entities' `propagate_recursive` calls will not conflict with this one.
// - Since this is the only place where `transform_query` gets used, there will be no conflicting fetches elsewhere.
#[allow(unsafe_code)]
unsafe {
propagate_transforms_physics_recursive(
&global_transform,
&transform_query,
&parent_query_1,
&parent_query_2,
child,
changed || actual_parent.is_changed(),
is_parent_rb || is_parent_collider,
);
}
};
if is_root_rb || is_root_collider {
parent_query_1.iter_many(children).for_each(handle);
} else {
parent_query_2.iter_many(children).for_each(handle);
}
},
);
}
/// Recursively propagates the transforms for `entity` and all of its descendants.
///
/// # Panics
///
/// If `entity`'s descendants have a malformed hierarchy, this function will panic occur before propagating
/// the transforms of any malformed entities and their descendants.
///
/// # Safety
///
/// - While this function is running, `transform_query` must not have any fetches for `entity`,
/// nor any of its descendants.
/// - The caller must ensure that the hierarchy leading to `entity`
/// is well-formed and must remain as a tree or a forest. Each entity must have at most one parent.
#[allow(clippy::type_complexity)]
unsafe fn propagate_transforms_physics_recursive(
parent: &GlobalTransform,
transform_query: &Query<TransformQueryData, With<Parent>>,
// This is used if the entity has no physics entity ancestor.
parent_query_1: &Query<ParentQueryData>,
// This is used if the entity is a physics entity with children *or* if any ancestor is a physics entity.
parent_query_2: &Query<ParentQueryData, PhysicsObjectOrAncestorFilter>,
entity: Entity,
mut changed: bool,
mut any_ancestor_is_physics_entity: bool,
) {
let (global_matrix, children) = {
let Ok((transform, mut global_transform, children, is_rb, is_collider)) =
// SAFETY: This call cannot create aliased mutable references.
// - The top level iteration parallelizes on the roots of the hierarchy.
// - The caller ensures that each child has one and only one unique parent throughout the entire
// hierarchy.
//
// For example, consider the following malformed hierarchy:
//
// A
// / \
// B C
// \ /
// D
//
// D has two parents, B and C. If the propagation passes through C, but the Parent component on D points to B,
// the above check will panic as the origin parent does match the recorded parent.
//
// Also consider the following case, where A and B are roots:
//
// A B
// \ /
// C D
// \ /
// E
//
// Even if these A and B start two separate tasks running in parallel, one of them will panic before attempting
// to mutably access E.
(unsafe { transform_query.get_unchecked(entity) }) else {
return;
};
if any_ancestor_is_physics_entity || is_rb || is_collider {
any_ancestor_is_physics_entity = true;
changed |= transform.is_changed() || global_transform.is_added();
if changed {
*global_transform = parent.mul_transform(*transform);
}
}
(*global_transform, children)
};
let Some(children) = children else { return };
// If the entity has a physics entity ancestor, propagate down regardless of the child type.
// Otherwise, only propagate to entities that are physics entities or physics entity ancestors.
if any_ancestor_is_physics_entity {
for (child, actual_parent, is_parent_rb, is_parent_collider) in
parent_query_1.iter_many(children)
{
assert_eq!(
actual_parent.get(), entity,
"Malformed hierarchy. This probably means that your hierarchy has been improperly maintained, or contains a cycle"
);
// SAFETY: The caller guarantees that `transform_query` will not be fetched
// for any descendants of `entity`, so it is safe to call `propagate_transforms_physics_recursive` for each child.
//
// The above assertion ensures that each child has one and only one unique parent throughout the
// entire hierarchy.
unsafe {
propagate_transforms_physics_recursive(
&global_matrix,
transform_query,
parent_query_1,
parent_query_2,
child,
changed || actual_parent.is_changed(),
any_ancestor_is_physics_entity || is_parent_rb || is_parent_collider,
);
}
}
} else {
for (child, actual_parent, is_parent_rb, is_parent_collider) in
parent_query_2.iter_many(children)
{
assert_eq!(
actual_parent.get(), entity,
"Malformed hierarchy. This probably means that your hierarchy has been improperly maintained, or contains a cycle"
);
// SAFETY: The caller guarantees that `transform_query` will not be fetched
// for any descendants of `entity`, so it is safe to call `propagate_transforms_physics_recursive` for each child.
//
// The above assertion ensures that each child has one and only one unique parent throughout the
// entire hierarchy.
unsafe {
propagate_transforms_physics_recursive(
&global_matrix,
transform_query,
parent_query_1,
parent_query_2,
child,
changed || actual_parent.is_changed(),
any_ancestor_is_physics_entity || is_parent_rb || is_parent_collider,
);
}
}
}
}