1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![forbid(unsafe_code)]
#![doc(
    html_logo_url = "https://bevyengine.org/assets/icon.png",
    html_favicon_url = "https://bevyengine.org/assets/icon.png"
)]

//! Representations of colors in various color spaces.
//!
//! This crate provides a number of color representations, including:
//!
//! - [`Srgba`] (standard RGBA, with gamma correction)
//! - [`LinearRgba`] (linear RGBA, without gamma correction)
//! - [`Hsla`] (hue, saturation, lightness, alpha)
//! - [`Hsva`] (hue, saturation, value, alpha)
//! - [`Hwba`] (hue, whiteness, blackness, alpha)
//! - [`Laba`] (lightness, a-axis, b-axis, alpha)
//! - [`Lcha`] (lightness, chroma, hue, alpha)
//! - [`Oklaba`] (lightness, a-axis, b-axis, alpha)
//! - [`Oklcha`] (lightness, chroma, hue, alpha)
//! - [`Xyza`] (x-axis, y-axis, z-axis, alpha)
//!
//! Each of these color spaces is represented as a distinct Rust type.
//!
//! # Color Space Usage
//!
//! Rendering engines typically use linear RGBA colors, which allow for physically accurate
//! lighting calculations. However, linear RGBA colors are not perceptually uniform, because
//! both human eyes and computer monitors have non-linear responses to light. "Standard" RGBA
//! represents an industry-wide compromise designed to encode colors in a way that looks good to
//! humans in as few bits as possible, but it is not suitable for lighting calculations.
//!
//! Most image file formats and scene graph formats use standard RGBA, because graphic design
//! tools are intended to be used by humans. However, 3D lighting calculations operate in linear
//! RGBA, so it is important to convert standard colors to linear before sending them to the GPU.
//! Most Bevy APIs will handle this conversion automatically, but if you are writing a custom
//! shader, you will need to do this conversion yourself.
//!
//! HSL and LCH are "cylindrical" color spaces, which means they represent colors as a combination
//! of hue, saturation, and lightness (or chroma). These color spaces are useful for working
//! with colors in an artistic way - for example, when creating gradients or color palettes.
//! A gradient in HSL space from red to violet will produce a rainbow. The LCH color space is
//! more perceptually accurate than HSL, but is less intuitive to work with.
//!
//! HSV and HWB are very closely related to HSL in their derivation, having identical definitions for
//! hue. Where HSL uses saturation and lightness, HSV uses a slightly modified definition of saturation,
//! and an analog of lightness in the form of value. In contrast, HWB instead uses whiteness and blackness
//! parameters, which can be used to lighten and darken a particular hue respectively.
//!
//! Oklab and Oklch are perceptually uniform color spaces that are designed to be used for tasks such
//! as image processing. They are not as widely used as the other color spaces, but are useful
//! for tasks such as color correction and image analysis, where it is important to be able
//! to do things like change color saturation without causing hue shifts.
//!
//! XYZ is a foundational space commonly used in the definition of other more modern color
//! spaces. The space is more formally known as CIE 1931, where the `x` and `z` axes represent
//! a form of chromaticity, while `y` defines an illuminance level.
//!
//! See also the [Wikipedia article on color spaces](https://en.wikipedia.org/wiki/Color_space).
//!
#![doc = include_str!("../docs/conversion.md")]
//! <div>
#![doc = include_str!("../docs/diagrams/model_graph.svg")]
//! </div>
//!
//! # Other Utilities
//!
//! The crate also provides a number of color operations, such as blending, color difference,
//! and color range operations.
//!
//! In addition, there is a [`Color`] enum that can represent any of the color
//! types in this crate. This is useful when you need to store a color in a data structure
//! that can't be generic over the color type.
//!
//! Color types that are either physically or perceptually linear also implement `Add<Self>`, `Sub<Self>`, `Mul<f32>` and `Div<f32>`
//! allowing you to use them with splines.
//!
//! Please note that most often adding or subtracting colors is not what you may want.
//! Please have a look at other operations like blending, lightening or mixing colors using e.g. [`Mix`] or [`Luminance`] instead.
//!
//! # Example
//!
//! ```
//! use bevy_color::{Srgba, Hsla};
//!
//! let srgba = Srgba::new(0.5, 0.2, 0.8, 1.0);
//! let hsla: Hsla = srgba.into();
//!
//! println!("Srgba: {:?}", srgba);
//! println!("Hsla: {:?}", hsla);
//! ```

mod color;
pub mod color_difference;
mod color_ops;
mod color_range;
mod hsla;
mod hsva;
mod hwba;
mod laba;
mod lcha;
mod linear_rgba;
mod oklaba;
mod oklcha;
pub mod palettes;
mod srgba;
#[cfg(test)]
mod test_colors;
#[cfg(test)]
mod testing;
mod xyza;

/// Commonly used color types and traits.
pub mod prelude {
    pub use crate::color::*;
    pub use crate::color_ops::*;
    pub use crate::hsla::*;
    pub use crate::hsva::*;
    pub use crate::hwba::*;
    pub use crate::laba::*;
    pub use crate::lcha::*;
    pub use crate::linear_rgba::*;
    pub use crate::oklaba::*;
    pub use crate::oklcha::*;
    pub use crate::srgba::*;
    pub use crate::xyza::*;
}

pub use color::*;
pub use color_ops::*;
pub use color_range::*;
pub use hsla::*;
pub use hsva::*;
pub use hwba::*;
pub use laba::*;
pub use lcha::*;
pub use linear_rgba::*;
pub use oklaba::*;
pub use oklcha::*;
pub use srgba::*;
pub use xyza::*;

/// Describes the traits that a color should implement for consistency.
#[allow(dead_code)] // This is an internal marker trait used to ensure that our color types impl the required traits
pub(crate) trait StandardColor
where
    Self: core::fmt::Debug,
    Self: Clone + Copy,
    Self: PartialEq,
    Self: bevy_reflect::Reflect,
    Self: Default,
    Self: From<Color> + Into<Color>,
    Self: From<Srgba> + Into<Srgba>,
    Self: From<LinearRgba> + Into<LinearRgba>,
    Self: From<Hsla> + Into<Hsla>,
    Self: From<Hsva> + Into<Hsva>,
    Self: From<Hwba> + Into<Hwba>,
    Self: From<Laba> + Into<Laba>,
    Self: From<Lcha> + Into<Lcha>,
    Self: From<Oklaba> + Into<Oklaba>,
    Self: From<Oklcha> + Into<Oklcha>,
    Self: From<Xyza> + Into<Xyza>,
    Self: Alpha,
{
}

macro_rules! impl_componentwise_vector_space {
    ($ty: ident, [$($element: ident),+]) => {
        impl std::ops::Add<Self> for $ty {
            type Output = Self;

            fn add(self, rhs: Self) -> Self::Output {
                Self::Output {
                    $($element: self.$element + rhs.$element,)+
                }
            }
        }

        impl std::ops::AddAssign<Self> for $ty {
            fn add_assign(&mut self, rhs: Self) {
                *self = *self + rhs;
            }
        }

        impl std::ops::Neg for $ty {
            type Output = Self;

            fn neg(self) -> Self::Output {
                Self::Output {
                    $($element: -self.$element,)+
                }
            }
        }

        impl std::ops::Sub<Self> for $ty {
            type Output = Self;

            fn sub(self, rhs: Self) -> Self::Output {
                Self::Output {
                    $($element: self.$element - rhs.$element,)+
                }
            }
        }

        impl std::ops::SubAssign<Self> for $ty {
            fn sub_assign(&mut self, rhs: Self) {
                *self = *self - rhs;
            }
        }

        impl std::ops::Mul<f32> for $ty {
            type Output = Self;

            fn mul(self, rhs: f32) -> Self::Output {
                Self::Output {
                    $($element: self.$element * rhs,)+
                }
            }
        }

        impl std::ops::Mul<$ty> for f32 {
            type Output = $ty;

            fn mul(self, rhs: $ty) -> Self::Output {
                Self::Output {
                    $($element: self * rhs.$element,)+
                }
            }
        }

        impl std::ops::MulAssign<f32> for $ty {
            fn mul_assign(&mut self, rhs: f32) {
                *self = *self * rhs;
            }
        }

        impl std::ops::Div<f32> for $ty {
            type Output = Self;

            fn div(self, rhs: f32) -> Self::Output {
                Self::Output {
                    $($element: self.$element / rhs,)+
                }
            }
        }

        impl std::ops::DivAssign<f32> for $ty {
            fn div_assign(&mut self, rhs: f32) {
                *self = *self / rhs;
            }
        }

        impl bevy_math::VectorSpace for $ty {
            const ZERO: Self = Self {
                $($element: 0.0,)+
            };
        }
    };
}

pub(crate) use impl_componentwise_vector_space;