use crate::{
color_difference::EuclideanDistance, Alpha, ColorToComponents, Gray, Hsla, Hsva, Hue, Hwba,
Laba, Lcha, LinearRgba, Luminance, Mix, Oklaba, Srgba, StandardColor, Xyza,
};
use bevy_math::{Vec3, Vec4};
use bevy_reflect::prelude::*;
#[doc = include_str!("../docs/conversion.md")]
#[doc = include_str!("../docs/diagrams/model_graph.svg")]
#[derive(Debug, Clone, Copy, PartialEq, Reflect)]
#[reflect(PartialEq, Default)]
#[cfg_attr(
feature = "serialize",
derive(serde::Serialize, serde::Deserialize),
reflect(Serialize, Deserialize)
)]
pub struct Oklcha {
pub lightness: f32,
pub chroma: f32,
pub hue: f32,
pub alpha: f32,
}
impl StandardColor for Oklcha {}
impl Oklcha {
pub const fn new(lightness: f32, chroma: f32, hue: f32, alpha: f32) -> Self {
Self {
lightness,
chroma,
hue,
alpha,
}
}
pub const fn lch(lightness: f32, chroma: f32, hue: f32) -> Self {
Self::new(lightness, chroma, hue, 1.0)
}
pub const fn with_lightness(self, lightness: f32) -> Self {
Self { lightness, ..self }
}
pub const fn with_chroma(self, chroma: f32) -> Self {
Self { chroma, ..self }
}
pub fn sequential_dispersed(index: u32) -> Self {
const FRAC_U32MAX_GOLDEN_RATIO: u32 = 2654435769; const RATIO_360: f32 = 360.0 / u32::MAX as f32;
let hue = index.wrapping_mul(FRAC_U32MAX_GOLDEN_RATIO) as f32 * RATIO_360;
Self::lch(0.75, 0.1, hue)
}
}
impl Default for Oklcha {
fn default() -> Self {
Self::new(1., 0., 0., 1.)
}
}
impl Mix for Oklcha {
#[inline]
fn mix(&self, other: &Self, factor: f32) -> Self {
let n_factor = 1.0 - factor;
Self {
lightness: self.lightness * n_factor + other.lightness * factor,
chroma: self.chroma * n_factor + other.chroma * factor,
hue: crate::color_ops::lerp_hue(self.hue, other.hue, factor),
alpha: self.alpha * n_factor + other.alpha * factor,
}
}
}
impl Gray for Oklcha {
const BLACK: Self = Self::new(0., 0., 0., 1.);
const WHITE: Self = Self::new(1.0, 0.000000059604645, 90.0, 1.0);
}
impl Alpha for Oklcha {
#[inline]
fn with_alpha(&self, alpha: f32) -> Self {
Self { alpha, ..*self }
}
#[inline]
fn alpha(&self) -> f32 {
self.alpha
}
#[inline]
fn set_alpha(&mut self, alpha: f32) {
self.alpha = alpha;
}
}
impl Hue for Oklcha {
#[inline]
fn with_hue(&self, hue: f32) -> Self {
Self { hue, ..*self }
}
#[inline]
fn hue(&self) -> f32 {
self.hue
}
#[inline]
fn set_hue(&mut self, hue: f32) {
self.hue = hue;
}
}
impl Luminance for Oklcha {
#[inline]
fn with_luminance(&self, lightness: f32) -> Self {
Self { lightness, ..*self }
}
fn luminance(&self) -> f32 {
self.lightness
}
fn darker(&self, amount: f32) -> Self {
Self::new(
(self.lightness - amount).max(0.),
self.chroma,
self.hue,
self.alpha,
)
}
fn lighter(&self, amount: f32) -> Self {
Self::new(
(self.lightness + amount).min(1.),
self.chroma,
self.hue,
self.alpha,
)
}
}
impl EuclideanDistance for Oklcha {
#[inline]
fn distance_squared(&self, other: &Self) -> f32 {
(self.lightness - other.lightness).powi(2)
+ (self.chroma - other.chroma).powi(2)
+ (self.hue - other.hue).powi(2)
}
}
impl ColorToComponents for Oklcha {
fn to_f32_array(self) -> [f32; 4] {
[self.lightness, self.chroma, self.hue, self.alpha]
}
fn to_f32_array_no_alpha(self) -> [f32; 3] {
[self.lightness, self.chroma, self.hue]
}
fn to_vec4(self) -> Vec4 {
Vec4::new(self.lightness, self.chroma, self.hue, self.alpha)
}
fn to_vec3(self) -> Vec3 {
Vec3::new(self.lightness, self.chroma, self.hue)
}
fn from_f32_array(color: [f32; 4]) -> Self {
Self {
lightness: color[0],
chroma: color[1],
hue: color[2],
alpha: color[3],
}
}
fn from_f32_array_no_alpha(color: [f32; 3]) -> Self {
Self {
lightness: color[0],
chroma: color[1],
hue: color[2],
alpha: 1.0,
}
}
fn from_vec4(color: Vec4) -> Self {
Self {
lightness: color[0],
chroma: color[1],
hue: color[2],
alpha: color[3],
}
}
fn from_vec3(color: Vec3) -> Self {
Self {
lightness: color[0],
chroma: color[1],
hue: color[2],
alpha: 1.0,
}
}
}
impl From<Oklaba> for Oklcha {
fn from(
Oklaba {
lightness,
a,
b,
alpha,
}: Oklaba,
) -> Self {
let chroma = a.hypot(b);
let hue = b.atan2(a).to_degrees();
let hue = if hue < 0.0 { hue + 360.0 } else { hue };
Oklcha::new(lightness, chroma, hue, alpha)
}
}
impl From<Oklcha> for Oklaba {
fn from(
Oklcha {
lightness,
chroma,
hue,
alpha,
}: Oklcha,
) -> Self {
let l = lightness;
let a = chroma * hue.to_radians().cos();
let b = chroma * hue.to_radians().sin();
Oklaba::new(l, a, b, alpha)
}
}
impl From<Hsla> for Oklcha {
fn from(value: Hsla) -> Self {
Oklaba::from(value).into()
}
}
impl From<Oklcha> for Hsla {
fn from(value: Oklcha) -> Self {
Oklaba::from(value).into()
}
}
impl From<Hsva> for Oklcha {
fn from(value: Hsva) -> Self {
Oklaba::from(value).into()
}
}
impl From<Oklcha> for Hsva {
fn from(value: Oklcha) -> Self {
Oklaba::from(value).into()
}
}
impl From<Hwba> for Oklcha {
fn from(value: Hwba) -> Self {
Oklaba::from(value).into()
}
}
impl From<Oklcha> for Hwba {
fn from(value: Oklcha) -> Self {
Oklaba::from(value).into()
}
}
impl From<Laba> for Oklcha {
fn from(value: Laba) -> Self {
Oklaba::from(value).into()
}
}
impl From<Oklcha> for Laba {
fn from(value: Oklcha) -> Self {
Oklaba::from(value).into()
}
}
impl From<Lcha> for Oklcha {
fn from(value: Lcha) -> Self {
Oklaba::from(value).into()
}
}
impl From<Oklcha> for Lcha {
fn from(value: Oklcha) -> Self {
Oklaba::from(value).into()
}
}
impl From<LinearRgba> for Oklcha {
fn from(value: LinearRgba) -> Self {
Oklaba::from(value).into()
}
}
impl From<Oklcha> for LinearRgba {
fn from(value: Oklcha) -> Self {
Oklaba::from(value).into()
}
}
impl From<Srgba> for Oklcha {
fn from(value: Srgba) -> Self {
Oklaba::from(value).into()
}
}
impl From<Oklcha> for Srgba {
fn from(value: Oklcha) -> Self {
Oklaba::from(value).into()
}
}
impl From<Xyza> for Oklcha {
fn from(value: Xyza) -> Self {
Oklaba::from(value).into()
}
}
impl From<Oklcha> for Xyza {
fn from(value: Oklcha) -> Self {
Oklaba::from(value).into()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{test_colors::TEST_COLORS, testing::assert_approx_eq};
#[test]
fn test_to_from_srgba() {
let oklcha = Oklcha::new(0.5, 0.5, 180.0, 1.0);
let srgba: Srgba = oklcha.into();
let oklcha2: Oklcha = srgba.into();
assert_approx_eq!(oklcha.lightness, oklcha2.lightness, 0.001);
assert_approx_eq!(oklcha.chroma, oklcha2.chroma, 0.001);
assert_approx_eq!(oklcha.hue, oklcha2.hue, 0.001);
assert_approx_eq!(oklcha.alpha, oklcha2.alpha, 0.001);
}
#[test]
fn test_to_from_srgba_2() {
for color in TEST_COLORS.iter() {
let rgb2: Srgba = (color.oklch).into();
let oklch: Oklcha = (color.rgb).into();
assert!(
color.rgb.distance(&rgb2) < 0.0001,
"{}: {:?} != {:?}",
color.name,
color.rgb,
rgb2
);
assert!(
color.oklch.distance(&oklch) < 0.0001,
"{}: {:?} != {:?}",
color.name,
color.oklch,
oklch
);
}
}
#[test]
fn test_to_from_linear() {
let oklcha = Oklcha::new(0.5, 0.5, 0.5, 1.0);
let linear: LinearRgba = oklcha.into();
let oklcha2: Oklcha = linear.into();
assert_approx_eq!(oklcha.lightness, oklcha2.lightness, 0.001);
assert_approx_eq!(oklcha.chroma, oklcha2.chroma, 0.001);
assert_approx_eq!(oklcha.hue, oklcha2.hue, 0.001);
assert_approx_eq!(oklcha.alpha, oklcha2.alpha, 0.001);
}
}