1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
use crate::color_difference::EuclideanDistance;
use crate::{
    impl_componentwise_vector_space, Alpha, ColorToComponents, ColorToPacked, Gray, LinearRgba,
    Luminance, Mix, StandardColor, Xyza,
};
use bevy_math::{Vec3, Vec4};
use bevy_reflect::prelude::*;
use thiserror::Error;

/// Non-linear standard RGB with alpha.
#[doc = include_str!("../docs/conversion.md")]
/// <div>
#[doc = include_str!("../docs/diagrams/model_graph.svg")]
/// </div>
#[derive(Debug, Clone, Copy, PartialEq, Reflect)]
#[reflect(PartialEq, Default)]
#[cfg_attr(
    feature = "serialize",
    derive(serde::Serialize, serde::Deserialize),
    reflect(Serialize, Deserialize)
)]
pub struct Srgba {
    /// The red channel. [0.0, 1.0]
    pub red: f32,
    /// The green channel. [0.0, 1.0]
    pub green: f32,
    /// The blue channel. [0.0, 1.0]
    pub blue: f32,
    /// The alpha channel. [0.0, 1.0]
    pub alpha: f32,
}

impl StandardColor for Srgba {}

impl_componentwise_vector_space!(Srgba, [red, green, blue, alpha]);

impl Srgba {
    // The standard VGA colors, with alpha set to 1.0.
    // https://en.wikipedia.org/wiki/Web_colors#Basic_colors

    /// <div style="background-color:rgb(0%, 0%, 0%); width: 10px; padding: 10px; border: 1px solid;"></div>
    pub const BLACK: Srgba = Srgba::new(0.0, 0.0, 0.0, 1.0);
    /// <div style="background-color:rgba(0%, 0%, 0%, 0%); width: 10px; padding: 10px; border: 1px solid;"></div>
    #[doc(alias = "transparent")]
    pub const NONE: Srgba = Srgba::new(0.0, 0.0, 0.0, 0.0);
    /// <div style="background-color:rgb(100%, 100%, 100%); width: 10px; padding: 10px; border: 1px solid;"></div>
    pub const WHITE: Srgba = Srgba::new(1.0, 1.0, 1.0, 1.0);

    /// A fully red color with full alpha.
    pub const RED: Self = Self {
        red: 1.0,
        green: 0.0,
        blue: 0.0,
        alpha: 1.0,
    };

    /// A fully green color with full alpha.
    pub const GREEN: Self = Self {
        red: 0.0,
        green: 1.0,
        blue: 0.0,
        alpha: 1.0,
    };

    /// A fully blue color with full alpha.
    pub const BLUE: Self = Self {
        red: 0.0,
        green: 0.0,
        blue: 1.0,
        alpha: 1.0,
    };

    /// Construct a new [`Srgba`] color from components.
    ///
    /// # Arguments
    ///
    /// * `red` - Red channel. [0.0, 1.0]
    /// * `green` - Green channel. [0.0, 1.0]
    /// * `blue` - Blue channel. [0.0, 1.0]
    /// * `alpha` - Alpha channel. [0.0, 1.0]
    pub const fn new(red: f32, green: f32, blue: f32, alpha: f32) -> Self {
        Self {
            red,
            green,
            blue,
            alpha,
        }
    }

    /// Construct a new [`Srgba`] color from (r, g, b) components, with the default alpha (1.0).
    ///
    /// # Arguments
    ///
    /// * `red` - Red channel. [0.0, 1.0]
    /// * `green` - Green channel. [0.0, 1.0]
    /// * `blue` - Blue channel. [0.0, 1.0]
    pub const fn rgb(red: f32, green: f32, blue: f32) -> Self {
        Self {
            red,
            green,
            blue,
            alpha: 1.0,
        }
    }

    /// Return a copy of this color with the red channel set to the given value.
    pub const fn with_red(self, red: f32) -> Self {
        Self { red, ..self }
    }

    /// Return a copy of this color with the green channel set to the given value.
    pub const fn with_green(self, green: f32) -> Self {
        Self { green, ..self }
    }

    /// Return a copy of this color with the blue channel set to the given value.
    pub const fn with_blue(self, blue: f32) -> Self {
        Self { blue, ..self }
    }

    /// New `Srgba` from a CSS-style hexadecimal string.
    ///
    /// # Examples
    ///
    /// ```
    /// # use bevy_color::Srgba;
    /// let color = Srgba::hex("FF00FF").unwrap(); // fuchsia
    /// let color = Srgba::hex("FF00FF7F").unwrap(); // partially transparent fuchsia
    ///
    /// // A standard hex color notation is also available
    /// assert_eq!(Srgba::hex("#FFFFFF").unwrap(), Srgba::new(1.0, 1.0, 1.0, 1.0));
    /// ```
    pub fn hex<T: AsRef<str>>(hex: T) -> Result<Self, HexColorError> {
        let hex = hex.as_ref();
        let hex = hex.strip_prefix('#').unwrap_or(hex);

        match hex.len() {
            // RGB
            3 => {
                let [l, b] = u16::from_str_radix(hex, 16)?.to_be_bytes();
                let (r, g, b) = (l & 0x0F, (b & 0xF0) >> 4, b & 0x0F);
                Ok(Self::rgb_u8(r << 4 | r, g << 4 | g, b << 4 | b))
            }
            // RGBA
            4 => {
                let [l, b] = u16::from_str_radix(hex, 16)?.to_be_bytes();
                let (r, g, b, a) = ((l & 0xF0) >> 4, l & 0xF, (b & 0xF0) >> 4, b & 0x0F);
                Ok(Self::rgba_u8(
                    r << 4 | r,
                    g << 4 | g,
                    b << 4 | b,
                    a << 4 | a,
                ))
            }
            // RRGGBB
            6 => {
                let [_, r, g, b] = u32::from_str_radix(hex, 16)?.to_be_bytes();
                Ok(Self::rgb_u8(r, g, b))
            }
            // RRGGBBAA
            8 => {
                let [r, g, b, a] = u32::from_str_radix(hex, 16)?.to_be_bytes();
                Ok(Self::rgba_u8(r, g, b, a))
            }
            _ => Err(HexColorError::Length),
        }
    }

    /// Convert this color to CSS-style hexadecimal notation.
    pub fn to_hex(&self) -> String {
        let [r, g, b, a] = self.to_u8_array();
        match a {
            255 => format!("#{:02X}{:02X}{:02X}", r, g, b),
            _ => format!("#{:02X}{:02X}{:02X}{:02X}", r, g, b, a),
        }
    }

    /// New `Srgba` from sRGB colorspace.
    ///
    /// # Arguments
    ///
    /// * `r` - Red channel. [0, 255]
    /// * `g` - Green channel. [0, 255]
    /// * `b` - Blue channel. [0, 255]
    ///
    /// See also [`Srgba::new`], [`Srgba::rgba_u8`], [`Srgba::hex`].
    ///
    pub fn rgb_u8(r: u8, g: u8, b: u8) -> Self {
        Self::from_u8_array_no_alpha([r, g, b])
    }

    // Float operations in const fn are not stable yet
    // see https://github.com/rust-lang/rust/issues/57241
    /// New `Srgba` from sRGB colorspace.
    ///
    /// # Arguments
    ///
    /// * `r` - Red channel. [0, 255]
    /// * `g` - Green channel. [0, 255]
    /// * `b` - Blue channel. [0, 255]
    /// * `a` - Alpha channel. [0, 255]
    ///
    /// See also [`Srgba::new`], [`Srgba::rgb_u8`], [`Srgba::hex`].
    ///
    pub fn rgba_u8(r: u8, g: u8, b: u8, a: u8) -> Self {
        Self::from_u8_array([r, g, b, a])
    }

    /// Converts a non-linear sRGB value to a linear one via [gamma correction](https://en.wikipedia.org/wiki/Gamma_correction).
    pub fn gamma_function(value: f32) -> f32 {
        if value <= 0.0 {
            return value;
        }
        if value <= 0.04045 {
            value / 12.92 // linear falloff in dark values
        } else {
            ((value + 0.055) / 1.055).powf(2.4) // gamma curve in other area
        }
    }

    /// Converts a linear sRGB value to a non-linear one via [gamma correction](https://en.wikipedia.org/wiki/Gamma_correction).
    pub fn gamma_function_inverse(value: f32) -> f32 {
        if value <= 0.0 {
            return value;
        }

        if value <= 0.0031308 {
            value * 12.92 // linear falloff in dark values
        } else {
            (1.055 * value.powf(1.0 / 2.4)) - 0.055 // gamma curve in other area
        }
    }
}

impl Default for Srgba {
    fn default() -> Self {
        Self::WHITE
    }
}

impl Luminance for Srgba {
    #[inline]
    fn luminance(&self) -> f32 {
        let linear: LinearRgba = (*self).into();
        linear.luminance()
    }

    #[inline]
    fn with_luminance(&self, luminance: f32) -> Self {
        let linear: LinearRgba = (*self).into();
        linear
            .with_luminance(Srgba::gamma_function(luminance))
            .into()
    }

    #[inline]
    fn darker(&self, amount: f32) -> Self {
        let linear: LinearRgba = (*self).into();
        linear.darker(amount).into()
    }

    #[inline]
    fn lighter(&self, amount: f32) -> Self {
        let linear: LinearRgba = (*self).into();
        linear.lighter(amount).into()
    }
}

impl Mix for Srgba {
    #[inline]
    fn mix(&self, other: &Self, factor: f32) -> Self {
        let n_factor = 1.0 - factor;
        Self {
            red: self.red * n_factor + other.red * factor,
            green: self.green * n_factor + other.green * factor,
            blue: self.blue * n_factor + other.blue * factor,
            alpha: self.alpha * n_factor + other.alpha * factor,
        }
    }
}

impl Alpha for Srgba {
    #[inline]
    fn with_alpha(&self, alpha: f32) -> Self {
        Self { alpha, ..*self }
    }

    #[inline]
    fn alpha(&self) -> f32 {
        self.alpha
    }

    #[inline]
    fn set_alpha(&mut self, alpha: f32) {
        self.alpha = alpha;
    }
}

impl EuclideanDistance for Srgba {
    #[inline]
    fn distance_squared(&self, other: &Self) -> f32 {
        let dr = self.red - other.red;
        let dg = self.green - other.green;
        let db = self.blue - other.blue;
        dr * dr + dg * dg + db * db
    }
}

impl Gray for Srgba {
    const BLACK: Self = Self::BLACK;
    const WHITE: Self = Self::WHITE;
}

impl ColorToComponents for Srgba {
    fn to_f32_array(self) -> [f32; 4] {
        [self.red, self.green, self.blue, self.alpha]
    }

    fn to_f32_array_no_alpha(self) -> [f32; 3] {
        [self.red, self.green, self.blue]
    }

    fn to_vec4(self) -> Vec4 {
        Vec4::new(self.red, self.green, self.blue, self.alpha)
    }

    fn to_vec3(self) -> Vec3 {
        Vec3::new(self.red, self.green, self.blue)
    }

    fn from_f32_array(color: [f32; 4]) -> Self {
        Self {
            red: color[0],
            green: color[1],
            blue: color[2],
            alpha: color[3],
        }
    }

    fn from_f32_array_no_alpha(color: [f32; 3]) -> Self {
        Self {
            red: color[0],
            green: color[1],
            blue: color[2],
            alpha: 1.0,
        }
    }

    fn from_vec4(color: Vec4) -> Self {
        Self {
            red: color[0],
            green: color[1],
            blue: color[2],
            alpha: color[3],
        }
    }

    fn from_vec3(color: Vec3) -> Self {
        Self {
            red: color[0],
            green: color[1],
            blue: color[2],
            alpha: 1.0,
        }
    }
}

impl ColorToPacked for Srgba {
    fn to_u8_array(self) -> [u8; 4] {
        [self.red, self.green, self.blue, self.alpha]
            .map(|v| (v.clamp(0.0, 1.0) * 255.0).round() as u8)
    }

    fn to_u8_array_no_alpha(self) -> [u8; 3] {
        [self.red, self.green, self.blue].map(|v| (v.clamp(0.0, 1.0) * 255.0).round() as u8)
    }

    fn from_u8_array(color: [u8; 4]) -> Self {
        Self::from_f32_array(color.map(|u| u as f32 / 255.0))
    }

    fn from_u8_array_no_alpha(color: [u8; 3]) -> Self {
        Self::from_f32_array_no_alpha(color.map(|u| u as f32 / 255.0))
    }
}

impl From<LinearRgba> for Srgba {
    #[inline]
    fn from(value: LinearRgba) -> Self {
        Self {
            red: Srgba::gamma_function_inverse(value.red),
            green: Srgba::gamma_function_inverse(value.green),
            blue: Srgba::gamma_function_inverse(value.blue),
            alpha: value.alpha,
        }
    }
}

impl From<Srgba> for LinearRgba {
    #[inline]
    fn from(value: Srgba) -> Self {
        Self {
            red: Srgba::gamma_function(value.red),
            green: Srgba::gamma_function(value.green),
            blue: Srgba::gamma_function(value.blue),
            alpha: value.alpha,
        }
    }
}

// Derived Conversions

impl From<Xyza> for Srgba {
    fn from(value: Xyza) -> Self {
        LinearRgba::from(value).into()
    }
}

impl From<Srgba> for Xyza {
    fn from(value: Srgba) -> Self {
        LinearRgba::from(value).into()
    }
}

/// Error returned if a hex string could not be parsed as a color.
#[derive(Debug, Error, PartialEq, Eq)]
pub enum HexColorError {
    /// Parsing error.
    #[error("Invalid hex string")]
    Parse(#[from] std::num::ParseIntError),
    /// Invalid length.
    #[error("Unexpected length of hex string")]
    Length,
    /// Invalid character.
    #[error("Invalid hex char")]
    Char(char),
}

#[cfg(test)]
mod tests {
    use crate::testing::assert_approx_eq;

    use super::*;

    #[test]
    fn test_to_from_linear() {
        let srgba = Srgba::new(0.0, 0.5, 1.0, 1.0);
        let linear_rgba: LinearRgba = srgba.into();
        assert_eq!(linear_rgba.red, 0.0);
        assert_approx_eq!(linear_rgba.green, 0.2140, 0.0001);
        assert_approx_eq!(linear_rgba.blue, 1.0, 0.0001);
        assert_eq!(linear_rgba.alpha, 1.0);
        let srgba2: Srgba = linear_rgba.into();
        assert_eq!(srgba2.red, 0.0);
        assert_approx_eq!(srgba2.green, 0.5, 0.0001);
        assert_approx_eq!(srgba2.blue, 1.0, 0.0001);
        assert_eq!(srgba2.alpha, 1.0);
    }

    #[test]
    fn euclidean_distance() {
        // White to black
        let a = Srgba::new(0.0, 0.0, 0.0, 1.0);
        let b = Srgba::new(1.0, 1.0, 1.0, 1.0);
        assert_eq!(a.distance_squared(&b), 3.0);

        // Alpha shouldn't matter
        let a = Srgba::new(0.0, 0.0, 0.0, 1.0);
        let b = Srgba::new(1.0, 1.0, 1.0, 0.0);
        assert_eq!(a.distance_squared(&b), 3.0);

        // Red to green
        let a = Srgba::new(0.0, 0.0, 0.0, 1.0);
        let b = Srgba::new(1.0, 0.0, 0.0, 1.0);
        assert_eq!(a.distance_squared(&b), 1.0);
    }

    #[test]
    fn darker_lighter() {
        // Darker and lighter should be commutative.
        let color = Srgba::new(0.4, 0.5, 0.6, 1.0);
        let darker1 = color.darker(0.1);
        let darker2 = darker1.darker(0.1);
        let twice_as_dark = color.darker(0.2);
        assert!(darker2.distance_squared(&twice_as_dark) < 0.0001);

        let lighter1 = color.lighter(0.1);
        let lighter2 = lighter1.lighter(0.1);
        let twice_as_light = color.lighter(0.2);
        assert!(lighter2.distance_squared(&twice_as_light) < 0.0001);
    }

    #[test]
    fn hex_color() {
        assert_eq!(Srgba::hex("FFF"), Ok(Srgba::WHITE));
        assert_eq!(Srgba::hex("FFFF"), Ok(Srgba::WHITE));
        assert_eq!(Srgba::hex("FFFFFF"), Ok(Srgba::WHITE));
        assert_eq!(Srgba::hex("FFFFFFFF"), Ok(Srgba::WHITE));
        assert_eq!(Srgba::hex("000"), Ok(Srgba::BLACK));
        assert_eq!(Srgba::hex("000F"), Ok(Srgba::BLACK));
        assert_eq!(Srgba::hex("000000"), Ok(Srgba::BLACK));
        assert_eq!(Srgba::hex("000000FF"), Ok(Srgba::BLACK));
        assert_eq!(Srgba::hex("03a9f4"), Ok(Srgba::rgb_u8(3, 169, 244)));
        assert_eq!(Srgba::hex("yy"), Err(HexColorError::Length));
        assert_eq!(Srgba::hex("#f2a"), Ok(Srgba::rgb_u8(255, 34, 170)));
        assert_eq!(Srgba::hex("#e23030"), Ok(Srgba::rgb_u8(226, 48, 48)));
        assert_eq!(Srgba::hex("#ff"), Err(HexColorError::Length));
        assert_eq!(Srgba::hex("11223344"), Ok(Srgba::rgba_u8(17, 34, 51, 68)));
        assert_eq!(Srgba::hex("1234"), Ok(Srgba::rgba_u8(17, 34, 51, 68)));
        assert_eq!(Srgba::hex("12345678"), Ok(Srgba::rgba_u8(18, 52, 86, 120)));
        assert_eq!(Srgba::hex("4321"), Ok(Srgba::rgba_u8(68, 51, 34, 17)));

        assert!(matches!(Srgba::hex("yyy"), Err(HexColorError::Parse(_))));
        assert!(matches!(Srgba::hex("##fff"), Err(HexColorError::Parse(_))));
    }
}