bevy_core_pipeline/auto_exposure/
compensation_curve.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
use bevy_asset::prelude::*;
use bevy_ecs::system::{lifetimeless::SRes, SystemParamItem};
use bevy_math::{cubic_splines::CubicGenerator, FloatExt, Vec2};
use bevy_reflect::prelude::*;
use bevy_render::{
    render_asset::{RenderAsset, RenderAssetUsages},
    render_resource::{
        Extent3d, ShaderType, TextureDescriptor, TextureDimension, TextureFormat, TextureUsages,
        TextureView, UniformBuffer,
    },
    renderer::{RenderDevice, RenderQueue},
};
use derive_more::derive::{Display, Error};

const LUT_SIZE: usize = 256;

/// An auto exposure compensation curve.
/// This curve is used to map the average log luminance of a scene to an
/// exposure compensation value, to allow for fine control over the final exposure.
#[derive(Asset, Reflect, Debug, Clone)]
#[reflect(Default)]
pub struct AutoExposureCompensationCurve {
    /// The minimum log luminance value in the curve. (the x-axis)
    min_log_lum: f32,
    /// The maximum log luminance value in the curve. (the x-axis)
    max_log_lum: f32,
    /// The minimum exposure compensation value in the curve. (the y-axis)
    min_compensation: f32,
    /// The maximum exposure compensation value in the curve. (the y-axis)
    max_compensation: f32,
    /// The lookup table for the curve. Uploaded to the GPU as a 1D texture.
    /// Each value in the LUT is a `u8` representing a normalized exposure compensation value:
    /// * `0` maps to `min_compensation`
    /// * `255` maps to `max_compensation`
    ///
    /// The position in the LUT corresponds to the normalized log luminance value.
    /// * `0` maps to `min_log_lum`
    /// * `LUT_SIZE - 1` maps to `max_log_lum`
    lut: [u8; LUT_SIZE],
}

/// Various errors that can occur when constructing an [`AutoExposureCompensationCurve`].
#[derive(Error, Display, Debug)]
pub enum AutoExposureCompensationCurveError {
    /// The curve couldn't be built in the first place.
    #[display("curve could not be constructed from the given data")]
    InvalidCurve,
    /// A discontinuity was found in the curve.
    #[display("discontinuity found between curve segments")]
    DiscontinuityFound,
    /// The curve is not monotonically increasing on the x-axis.
    #[display("curve is not monotonically increasing on the x-axis")]
    NotMonotonic,
}

impl Default for AutoExposureCompensationCurve {
    fn default() -> Self {
        Self {
            min_log_lum: 0.0,
            max_log_lum: 0.0,
            min_compensation: 0.0,
            max_compensation: 0.0,
            lut: [0; LUT_SIZE],
        }
    }
}

impl AutoExposureCompensationCurve {
    const SAMPLES_PER_SEGMENT: usize = 64;

    /// Build an [`AutoExposureCompensationCurve`] from a [`CubicGenerator<Vec2>`], where:
    /// - x represents the average log luminance of the scene in EV-100;
    /// - y represents the exposure compensation value in F-stops.
    ///
    /// # Errors
    ///
    /// If the curve is not monotonically increasing on the x-axis,
    /// returns [`AutoExposureCompensationCurveError::NotMonotonic`].
    ///
    /// If a discontinuity is found between curve segments,
    /// returns [`AutoExposureCompensationCurveError::DiscontinuityFound`].
    ///
    /// # Example
    ///
    /// ```
    /// # use bevy_asset::prelude::*;
    /// # use bevy_math::vec2;
    /// # use bevy_math::cubic_splines::*;
    /// # use bevy_core_pipeline::auto_exposure::AutoExposureCompensationCurve;
    /// # let mut compensation_curves = Assets::<AutoExposureCompensationCurve>::default();
    /// let curve: Handle<AutoExposureCompensationCurve> = compensation_curves.add(
    ///     AutoExposureCompensationCurve::from_curve(LinearSpline::new([
    ///         vec2(-4.0, -2.0),
    ///         vec2(0.0, 0.0),
    ///         vec2(2.0, 0.0),
    ///         vec2(4.0, 2.0),
    ///     ]))
    ///     .unwrap()
    /// );
    /// ```
    pub fn from_curve<T>(curve: T) -> Result<Self, AutoExposureCompensationCurveError>
    where
        T: CubicGenerator<Vec2>,
    {
        let Ok(curve) = curve.to_curve() else {
            return Err(AutoExposureCompensationCurveError::InvalidCurve);
        };

        let min_log_lum = curve.position(0.0).x;
        let max_log_lum = curve.position(curve.segments().len() as f32).x;
        let log_lum_range = max_log_lum - min_log_lum;

        let mut lut = [0.0; LUT_SIZE];

        let mut previous = curve.position(0.0);
        let mut min_compensation = previous.y;
        let mut max_compensation = previous.y;

        for segment in curve {
            if segment.position(0.0) != previous {
                return Err(AutoExposureCompensationCurveError::DiscontinuityFound);
            }

            for i in 1..Self::SAMPLES_PER_SEGMENT {
                let current = segment.position(i as f32 / (Self::SAMPLES_PER_SEGMENT - 1) as f32);

                if current.x < previous.x {
                    return Err(AutoExposureCompensationCurveError::NotMonotonic);
                }

                // Find the range of LUT entries that this line segment covers.
                let (lut_begin, lut_end) = (
                    ((previous.x - min_log_lum) / log_lum_range) * (LUT_SIZE - 1) as f32,
                    ((current.x - min_log_lum) / log_lum_range) * (LUT_SIZE - 1) as f32,
                );
                let lut_inv_range = 1.0 / (lut_end - lut_begin);

                // Iterate over all LUT entries whose pixel centers fall within the current segment.
                #[allow(clippy::needless_range_loop)]
                for i in lut_begin.ceil() as usize..=lut_end.floor() as usize {
                    let t = (i as f32 - lut_begin) * lut_inv_range;
                    lut[i] = previous.y.lerp(current.y, t);
                    min_compensation = min_compensation.min(lut[i]);
                    max_compensation = max_compensation.max(lut[i]);
                }

                previous = current;
            }
        }

        let compensation_range = max_compensation - min_compensation;

        Ok(Self {
            min_log_lum,
            max_log_lum,
            min_compensation,
            max_compensation,
            lut: if compensation_range > 0.0 {
                let scale = 255.0 / compensation_range;
                lut.map(|f: f32| ((f - min_compensation) * scale) as u8)
            } else {
                [0; LUT_SIZE]
            },
        })
    }
}

/// The GPU-representation of an [`AutoExposureCompensationCurve`].
/// Consists of a [`TextureView`] with the curve's data,
/// and a [`UniformBuffer`] with the curve's extents.
pub struct GpuAutoExposureCompensationCurve {
    pub(super) texture_view: TextureView,
    pub(super) extents: UniformBuffer<AutoExposureCompensationCurveUniform>,
}

#[derive(ShaderType, Clone, Copy)]
pub(super) struct AutoExposureCompensationCurveUniform {
    min_log_lum: f32,
    inv_log_lum_range: f32,
    min_compensation: f32,
    compensation_range: f32,
}

impl RenderAsset for GpuAutoExposureCompensationCurve {
    type SourceAsset = AutoExposureCompensationCurve;
    type Param = (SRes<RenderDevice>, SRes<RenderQueue>);

    fn asset_usage(_: &Self::SourceAsset) -> RenderAssetUsages {
        RenderAssetUsages::RENDER_WORLD
    }

    fn prepare_asset(
        source: Self::SourceAsset,
        (render_device, render_queue): &mut SystemParamItem<Self::Param>,
    ) -> Result<Self, bevy_render::render_asset::PrepareAssetError<Self::SourceAsset>> {
        let texture = render_device.create_texture_with_data(
            render_queue,
            &TextureDescriptor {
                label: None,
                size: Extent3d {
                    width: LUT_SIZE as u32,
                    height: 1,
                    depth_or_array_layers: 1,
                },
                mip_level_count: 1,
                sample_count: 1,
                dimension: TextureDimension::D1,
                format: TextureFormat::R8Unorm,
                usage: TextureUsages::COPY_DST | TextureUsages::TEXTURE_BINDING,
                view_formats: &[TextureFormat::R8Unorm],
            },
            Default::default(),
            &source.lut,
        );

        let texture_view = texture.create_view(&Default::default());

        let mut extents = UniformBuffer::from(AutoExposureCompensationCurveUniform {
            min_log_lum: source.min_log_lum,
            inv_log_lum_range: 1.0 / (source.max_log_lum - source.min_log_lum),
            min_compensation: source.min_compensation,
            compensation_range: source.max_compensation - source.min_compensation,
        });

        extents.write_buffer(render_device, render_queue);

        Ok(GpuAutoExposureCompensationCurve {
            texture_view,
            extents,
        })
    }
}