bevy_core_pipeline/dof/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
//! Depth of field, a postprocessing effect that simulates camera focus.
//!
//! By default, Bevy renders all objects in full focus: regardless of depth, all
//! objects are rendered perfectly sharp (up to output resolution). Real lenses,
//! however, can only focus on objects at a specific distance. The distance
//! between the nearest and furthest objects that are in focus is known as
//! [depth of field], and this term is used more generally in computer graphics
//! to refer to the effect that simulates focus of lenses.
//!
//! Attaching [`DepthOfField`] to a camera causes Bevy to simulate the
//! focus of a camera lens. Generally, Bevy's implementation of depth of field
//! is optimized for speed instead of physical accuracy. Nevertheless, the depth
//! of field effect in Bevy is based on physical parameters.
//!
//! [Depth of field]: https://en.wikipedia.org/wiki/Depth_of_field
use bevy_app::{App, Plugin};
use bevy_asset::{load_internal_asset, Handle};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
component::Component,
entity::Entity,
query::{QueryItem, With},
reflect::ReflectComponent,
schedule::IntoSystemConfigs as _,
system::{lifetimeless::Read, Commands, Query, Res, ResMut, Resource},
world::{FromWorld, World},
};
use bevy_image::BevyDefault as _;
use bevy_math::ops;
use bevy_reflect::{prelude::ReflectDefault, Reflect};
use bevy_render::{
camera::{PhysicalCameraParameters, Projection},
extract_component::{ComponentUniforms, DynamicUniformIndex, UniformComponentPlugin},
render_graph::{
NodeRunError, RenderGraphApp as _, RenderGraphContext, ViewNode, ViewNodeRunner,
},
render_resource::{
binding_types::{
sampler, texture_2d, texture_depth_2d, texture_depth_2d_multisampled, uniform_buffer,
},
BindGroup, BindGroupEntries, BindGroupLayout, BindGroupLayoutEntries,
CachedRenderPipelineId, ColorTargetState, ColorWrites, FilterMode, FragmentState, LoadOp,
Operations, PipelineCache, RenderPassColorAttachment, RenderPassDescriptor,
RenderPipelineDescriptor, Sampler, SamplerBindingType, SamplerDescriptor, Shader,
ShaderStages, ShaderType, SpecializedRenderPipeline, SpecializedRenderPipelines, StoreOp,
TextureDescriptor, TextureDimension, TextureFormat, TextureSampleType, TextureUsages,
},
renderer::{RenderContext, RenderDevice},
sync_component::SyncComponentPlugin,
sync_world::RenderEntity,
texture::{CachedTexture, TextureCache},
view::{
prepare_view_targets, ExtractedView, Msaa, ViewDepthTexture, ViewTarget, ViewUniform,
ViewUniformOffset, ViewUniforms,
},
Extract, ExtractSchedule, Render, RenderApp, RenderSet,
};
use bevy_utils::{info_once, prelude::default, warn_once};
use smallvec::SmallVec;
use crate::{
core_3d::{
graph::{Core3d, Node3d},
Camera3d, DEPTH_TEXTURE_SAMPLING_SUPPORTED,
},
fullscreen_vertex_shader::fullscreen_shader_vertex_state,
};
const DOF_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(2031861180739216043);
/// A plugin that adds support for the depth of field effect to Bevy.
pub struct DepthOfFieldPlugin;
/// A component that enables a [depth of field] postprocessing effect when attached to a [`Camera3d`],
/// simulating the focus of a camera lens.
///
/// [depth of field]: https://en.wikipedia.org/wiki/Depth_of_field
#[derive(Component, Clone, Copy, Reflect)]
#[reflect(Component, Default)]
pub struct DepthOfField {
/// The appearance of the effect.
pub mode: DepthOfFieldMode,
/// The distance in meters to the location in focus.
pub focal_distance: f32,
/// The height of the [image sensor format] in meters.
///
/// Focal length is derived from the FOV and this value. The default is
/// 18.66mm, matching the [Super 35] format, which is popular in cinema.
///
/// [image sensor format]: https://en.wikipedia.org/wiki/Image_sensor_format
///
/// [Super 35]: https://en.wikipedia.org/wiki/Super_35
pub sensor_height: f32,
/// Along with the focal length, controls how much objects not in focus are
/// blurred.
pub aperture_f_stops: f32,
/// The maximum diameter, in pixels, that we allow a circle of confusion to be.
///
/// A circle of confusion essentially describes the size of a blur.
///
/// This value is nonphysical but is useful for avoiding pathologically-slow
/// behavior.
pub max_circle_of_confusion_diameter: f32,
/// Objects are never considered to be farther away than this distance as
/// far as depth of field is concerned, even if they actually are.
///
/// This is primarily useful for skyboxes and background colors. The Bevy
/// renderer considers them to be infinitely far away. Without this value,
/// that would cause the circle of confusion to be infinitely large, capped
/// only by the `max_circle_of_confusion_diameter`. As that's unsightly,
/// this value can be used to essentially adjust how "far away" the skybox
/// or background are.
pub max_depth: f32,
}
#[deprecated(since = "0.15.0", note = "Renamed to `DepthOfField`")]
pub type DepthOfFieldSettings = DepthOfField;
/// Controls the appearance of the effect.
#[derive(Clone, Copy, Default, PartialEq, Debug, Reflect)]
#[reflect(Default, PartialEq)]
pub enum DepthOfFieldMode {
/// A more accurate simulation, in which circles of confusion generate
/// "spots" of light.
///
/// For more information, see [Wikipedia's article on *bokeh*].
///
/// This doesn't work on WebGPU.
///
/// [Wikipedia's article on *bokeh*]: https://en.wikipedia.org/wiki/Bokeh
Bokeh,
/// A faster simulation, in which out-of-focus areas are simply blurred.
///
/// This is less accurate to actual lens behavior and is generally less
/// aesthetically pleasing but requires less video memory bandwidth.
///
/// This is the default.
///
/// This works on native and WebGPU.
/// If targeting native platforms, consider using [`DepthOfFieldMode::Bokeh`] instead.
#[default]
Gaussian,
}
/// Data about the depth of field effect that's uploaded to the GPU.
#[derive(Clone, Copy, Component, ShaderType)]
pub struct DepthOfFieldUniform {
/// The distance in meters to the location in focus.
focal_distance: f32,
/// The focal length. See the comment in `DepthOfFieldParams` in `dof.wgsl`
/// for more information.
focal_length: f32,
/// The premultiplied factor that we scale the circle of confusion by.
///
/// This is calculated as `focal_length² / (sensor_height *
/// aperture_f_stops)`.
coc_scale_factor: f32,
/// The maximum circle of confusion diameter in pixels. See the comment in
/// [`DepthOfField`] for more information.
max_circle_of_confusion_diameter: f32,
/// The depth value that we clamp distant objects to. See the comment in
/// [`DepthOfField`] for more information.
max_depth: f32,
/// Padding.
pad_a: u32,
/// Padding.
pad_b: u32,
/// Padding.
pad_c: u32,
}
/// A key that uniquely identifies depth of field pipelines.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct DepthOfFieldPipelineKey {
/// Whether we're doing Gaussian or bokeh blur.
pass: DofPass,
/// Whether we're using HDR.
hdr: bool,
/// Whether the render target is multisampled.
multisample: bool,
}
/// Identifies a specific depth of field render pass.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
enum DofPass {
/// The first, horizontal, Gaussian blur pass.
GaussianHorizontal,
/// The second, vertical, Gaussian blur pass.
GaussianVertical,
/// The first bokeh pass: vertical and diagonal.
BokehPass0,
/// The second bokeh pass: two diagonals.
BokehPass1,
}
impl Plugin for DepthOfFieldPlugin {
fn build(&self, app: &mut App) {
load_internal_asset!(app, DOF_SHADER_HANDLE, "dof.wgsl", Shader::from_wgsl);
app.register_type::<DepthOfField>();
app.register_type::<DepthOfFieldMode>();
app.add_plugins(UniformComponentPlugin::<DepthOfFieldUniform>::default());
app.add_plugins(SyncComponentPlugin::<DepthOfField>::default());
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app
.init_resource::<SpecializedRenderPipelines<DepthOfFieldPipeline>>()
.init_resource::<DepthOfFieldGlobalBindGroup>()
.add_systems(ExtractSchedule, extract_depth_of_field_settings)
.add_systems(
Render,
(
configure_depth_of_field_view_targets,
prepare_auxiliary_depth_of_field_textures,
)
.after(prepare_view_targets)
.in_set(RenderSet::ManageViews),
)
.add_systems(
Render,
(
prepare_depth_of_field_view_bind_group_layouts,
prepare_depth_of_field_pipelines,
)
.chain()
.in_set(RenderSet::Prepare),
)
.add_systems(
Render,
prepare_depth_of_field_global_bind_group.in_set(RenderSet::PrepareBindGroups),
)
.add_render_graph_node::<ViewNodeRunner<DepthOfFieldNode>>(Core3d, Node3d::DepthOfField)
.add_render_graph_edges(
Core3d,
(Node3d::Bloom, Node3d::DepthOfField, Node3d::Tonemapping),
);
}
fn finish(&self, app: &mut App) {
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app.init_resource::<DepthOfFieldGlobalBindGroupLayout>();
}
}
/// The node in the render graph for depth of field.
#[derive(Default)]
pub struct DepthOfFieldNode;
/// The layout for the bind group shared among all invocations of the depth of
/// field shader.
#[derive(Resource, Clone)]
pub struct DepthOfFieldGlobalBindGroupLayout {
/// The layout.
layout: BindGroupLayout,
/// The sampler used to sample from the color buffer or buffers.
color_texture_sampler: Sampler,
}
/// The bind group shared among all invocations of the depth of field shader,
/// regardless of view.
#[derive(Resource, Default, Deref, DerefMut)]
pub struct DepthOfFieldGlobalBindGroup(Option<BindGroup>);
#[derive(Component)]
pub enum DepthOfFieldPipelines {
Gaussian {
horizontal: CachedRenderPipelineId,
vertical: CachedRenderPipelineId,
},
Bokeh {
pass_0: CachedRenderPipelineId,
pass_1: CachedRenderPipelineId,
},
}
struct DepthOfFieldPipelineRenderInfo {
pass_label: &'static str,
view_bind_group_label: &'static str,
pipeline: CachedRenderPipelineId,
is_dual_input: bool,
is_dual_output: bool,
}
/// The extra texture used as the second render target for the hexagonal bokeh
/// blur.
///
/// This is the same size and format as the main view target texture. It'll only
/// be present if bokeh is being used.
#[derive(Component, Deref, DerefMut)]
pub struct AuxiliaryDepthOfFieldTexture(CachedTexture);
/// Bind group layouts for depth of field specific to a single view.
#[derive(Component, Clone)]
pub struct ViewDepthOfFieldBindGroupLayouts {
/// The bind group layout for passes that take only one input.
single_input: BindGroupLayout,
/// The bind group layout for the second bokeh pass, which takes two inputs.
///
/// This will only be present if bokeh is in use.
dual_input: Option<BindGroupLayout>,
}
/// Information needed to specialize the pipeline corresponding to a pass of the
/// depth of field shader.
pub struct DepthOfFieldPipeline {
/// The bind group layouts specific to each view.
view_bind_group_layouts: ViewDepthOfFieldBindGroupLayouts,
/// The bind group layout shared among all invocations of the depth of field
/// shader.
global_bind_group_layout: BindGroupLayout,
}
impl ViewNode for DepthOfFieldNode {
type ViewQuery = (
Read<ViewUniformOffset>,
Read<ViewTarget>,
Read<ViewDepthTexture>,
Read<DepthOfFieldPipelines>,
Read<ViewDepthOfFieldBindGroupLayouts>,
Read<DynamicUniformIndex<DepthOfFieldUniform>>,
Option<Read<AuxiliaryDepthOfFieldTexture>>,
);
fn run<'w>(
&self,
_: &mut RenderGraphContext,
render_context: &mut RenderContext<'w>,
(
view_uniform_offset,
view_target,
view_depth_texture,
view_pipelines,
view_bind_group_layouts,
depth_of_field_uniform_index,
auxiliary_dof_texture,
): QueryItem<'w, Self::ViewQuery>,
world: &'w World,
) -> Result<(), NodeRunError> {
let pipeline_cache = world.resource::<PipelineCache>();
let view_uniforms = world.resource::<ViewUniforms>();
let global_bind_group = world.resource::<DepthOfFieldGlobalBindGroup>();
// We can be in either Gaussian blur or bokeh mode here. Both modes are
// similar, consisting of two passes each. We factor out the information
// specific to each pass into
// [`DepthOfFieldPipelines::pipeline_render_info`].
for pipeline_render_info in view_pipelines.pipeline_render_info().iter() {
let (Some(render_pipeline), Some(view_uniforms_binding), Some(global_bind_group)) = (
pipeline_cache.get_render_pipeline(pipeline_render_info.pipeline),
view_uniforms.uniforms.binding(),
&**global_bind_group,
) else {
return Ok(());
};
// We use most of the postprocess infrastructure here. However,
// because the bokeh pass has an additional render target, we have
// to manage a secondary *auxiliary* texture alongside the textures
// managed by the postprocessing logic.
let postprocess = view_target.post_process_write();
let view_bind_group = if pipeline_render_info.is_dual_input {
let (Some(auxiliary_dof_texture), Some(dual_input_bind_group_layout)) = (
auxiliary_dof_texture,
view_bind_group_layouts.dual_input.as_ref(),
) else {
warn_once!("Should have created the auxiliary depth of field texture by now");
continue;
};
render_context.render_device().create_bind_group(
Some(pipeline_render_info.view_bind_group_label),
dual_input_bind_group_layout,
&BindGroupEntries::sequential((
view_uniforms_binding,
view_depth_texture.view(),
postprocess.source,
&auxiliary_dof_texture.default_view,
)),
)
} else {
render_context.render_device().create_bind_group(
Some(pipeline_render_info.view_bind_group_label),
&view_bind_group_layouts.single_input,
&BindGroupEntries::sequential((
view_uniforms_binding,
view_depth_texture.view(),
postprocess.source,
)),
)
};
// Push the first input attachment.
let mut color_attachments: SmallVec<[_; 2]> = SmallVec::new();
color_attachments.push(Some(RenderPassColorAttachment {
view: postprocess.destination,
resolve_target: None,
ops: Operations {
load: LoadOp::Clear(default()),
store: StoreOp::Store,
},
}));
// The first pass of the bokeh shader has two color outputs, not
// one. Handle this case by attaching the auxiliary texture, which
// should have been created by now in
// `prepare_auxiliary_depth_of_field_textures``.
if pipeline_render_info.is_dual_output {
let Some(auxiliary_dof_texture) = auxiliary_dof_texture else {
warn_once!("Should have created the auxiliary depth of field texture by now");
continue;
};
color_attachments.push(Some(RenderPassColorAttachment {
view: &auxiliary_dof_texture.default_view,
resolve_target: None,
ops: Operations {
load: LoadOp::Clear(default()),
store: StoreOp::Store,
},
}));
}
let render_pass_descriptor = RenderPassDescriptor {
label: Some(pipeline_render_info.pass_label),
color_attachments: &color_attachments,
..default()
};
let mut render_pass = render_context
.command_encoder()
.begin_render_pass(&render_pass_descriptor);
render_pass.set_pipeline(render_pipeline);
// Set the per-view bind group.
render_pass.set_bind_group(0, &view_bind_group, &[view_uniform_offset.offset]);
// Set the global bind group shared among all invocations of the shader.
render_pass.set_bind_group(
1,
global_bind_group,
&[depth_of_field_uniform_index.index()],
);
// Render the full-screen pass.
render_pass.draw(0..3, 0..1);
}
Ok(())
}
}
impl Default for DepthOfField {
fn default() -> Self {
let physical_camera_default = PhysicalCameraParameters::default();
Self {
focal_distance: 10.0,
aperture_f_stops: physical_camera_default.aperture_f_stops,
sensor_height: physical_camera_default.sensor_height,
max_circle_of_confusion_diameter: 64.0,
max_depth: f32::INFINITY,
mode: DepthOfFieldMode::Bokeh,
}
}
}
impl DepthOfField {
/// Initializes [`DepthOfField`] from a set of
/// [`PhysicalCameraParameters`].
///
/// By passing the same [`PhysicalCameraParameters`] object to this function
/// and to [`bevy_render::camera::Exposure::from_physical_camera`], matching
/// results for both the exposure and depth of field effects can be
/// obtained.
///
/// All fields of the returned [`DepthOfField`] other than
/// `focal_length` and `aperture_f_stops` are set to their default values.
pub fn from_physical_camera(camera: &PhysicalCameraParameters) -> DepthOfField {
DepthOfField {
sensor_height: camera.sensor_height,
aperture_f_stops: camera.aperture_f_stops,
..default()
}
}
}
impl FromWorld for DepthOfFieldGlobalBindGroupLayout {
fn from_world(world: &mut World) -> Self {
let render_device = world.resource::<RenderDevice>();
// Create the bind group layout that will be shared among all instances
// of the depth of field shader.
let layout = render_device.create_bind_group_layout(
Some("depth of field global bind group layout"),
&BindGroupLayoutEntries::sequential(
ShaderStages::FRAGMENT,
(
// `dof_params`
uniform_buffer::<DepthOfFieldUniform>(true),
// `color_texture_sampler`
sampler(SamplerBindingType::Filtering),
),
),
);
// Create the color texture sampler.
let sampler = render_device.create_sampler(&SamplerDescriptor {
label: Some("depth of field sampler"),
mag_filter: FilterMode::Linear,
min_filter: FilterMode::Linear,
..default()
});
DepthOfFieldGlobalBindGroupLayout {
color_texture_sampler: sampler,
layout,
}
}
}
/// Creates the bind group layouts for the depth of field effect that are
/// specific to each view.
pub fn prepare_depth_of_field_view_bind_group_layouts(
mut commands: Commands,
view_targets: Query<(Entity, &DepthOfField, &Msaa)>,
render_device: Res<RenderDevice>,
) {
for (view, depth_of_field, msaa) in view_targets.iter() {
// Create the bind group layout for the passes that take one input.
let single_input = render_device.create_bind_group_layout(
Some("depth of field bind group layout (single input)"),
&BindGroupLayoutEntries::sequential(
ShaderStages::FRAGMENT,
(
uniform_buffer::<ViewUniform>(true),
if *msaa != Msaa::Off {
texture_depth_2d_multisampled()
} else {
texture_depth_2d()
},
texture_2d(TextureSampleType::Float { filterable: true }),
),
),
);
// If needed, create the bind group layout for the second bokeh pass,
// which takes two inputs. We only need to do this if bokeh is in use.
let dual_input = match depth_of_field.mode {
DepthOfFieldMode::Gaussian => None,
DepthOfFieldMode::Bokeh => Some(render_device.create_bind_group_layout(
Some("depth of field bind group layout (dual input)"),
&BindGroupLayoutEntries::sequential(
ShaderStages::FRAGMENT,
(
uniform_buffer::<ViewUniform>(true),
if *msaa != Msaa::Off {
texture_depth_2d_multisampled()
} else {
texture_depth_2d()
},
texture_2d(TextureSampleType::Float { filterable: true }),
texture_2d(TextureSampleType::Float { filterable: true }),
),
),
)),
};
commands
.entity(view)
.insert(ViewDepthOfFieldBindGroupLayouts {
single_input,
dual_input,
});
}
}
/// Configures depth textures so that the depth of field shader can read from
/// them.
///
/// By default, the depth buffers that Bevy creates aren't able to be bound as
/// textures. The depth of field shader, however, needs to read from them. So we
/// need to set the appropriate flag to tell Bevy to make samplable depth
/// buffers.
pub fn configure_depth_of_field_view_targets(
mut view_targets: Query<&mut Camera3d, With<DepthOfField>>,
) {
for mut camera_3d in view_targets.iter_mut() {
let mut depth_texture_usages = TextureUsages::from(camera_3d.depth_texture_usages);
depth_texture_usages |= TextureUsages::TEXTURE_BINDING;
camera_3d.depth_texture_usages = depth_texture_usages.into();
}
}
/// Creates depth of field bind group 1, which is shared among all instances of
/// the depth of field shader.
pub fn prepare_depth_of_field_global_bind_group(
global_bind_group_layout: Res<DepthOfFieldGlobalBindGroupLayout>,
mut dof_bind_group: ResMut<DepthOfFieldGlobalBindGroup>,
depth_of_field_uniforms: Res<ComponentUniforms<DepthOfFieldUniform>>,
render_device: Res<RenderDevice>,
) {
let Some(depth_of_field_uniforms) = depth_of_field_uniforms.binding() else {
return;
};
**dof_bind_group = Some(render_device.create_bind_group(
Some("depth of field global bind group"),
&global_bind_group_layout.layout,
&BindGroupEntries::sequential((
depth_of_field_uniforms, // `dof_params`
&global_bind_group_layout.color_texture_sampler, // `color_texture_sampler`
)),
));
}
/// Creates the second render target texture that the first pass of the bokeh
/// effect needs.
pub fn prepare_auxiliary_depth_of_field_textures(
mut commands: Commands,
render_device: Res<RenderDevice>,
mut texture_cache: ResMut<TextureCache>,
mut view_targets: Query<(Entity, &ViewTarget, &DepthOfField)>,
) {
for (entity, view_target, depth_of_field) in view_targets.iter_mut() {
// An auxiliary texture is only needed for bokeh.
if depth_of_field.mode != DepthOfFieldMode::Bokeh {
continue;
}
// The texture matches the main view target texture.
let texture_descriptor = TextureDescriptor {
label: Some("depth of field auxiliary texture"),
size: view_target.main_texture().size(),
mip_level_count: 1,
sample_count: view_target.main_texture().sample_count(),
dimension: TextureDimension::D2,
format: view_target.main_texture_format(),
usage: TextureUsages::RENDER_ATTACHMENT | TextureUsages::TEXTURE_BINDING,
view_formats: &[],
};
let texture = texture_cache.get(&render_device, texture_descriptor);
commands
.entity(entity)
.insert(AuxiliaryDepthOfFieldTexture(texture));
}
}
/// Specializes the depth of field pipelines specific to a view.
pub fn prepare_depth_of_field_pipelines(
mut commands: Commands,
pipeline_cache: Res<PipelineCache>,
mut pipelines: ResMut<SpecializedRenderPipelines<DepthOfFieldPipeline>>,
global_bind_group_layout: Res<DepthOfFieldGlobalBindGroupLayout>,
view_targets: Query<(
Entity,
&ExtractedView,
&DepthOfField,
&ViewDepthOfFieldBindGroupLayouts,
&Msaa,
)>,
) {
for (entity, view, depth_of_field, view_bind_group_layouts, msaa) in view_targets.iter() {
let dof_pipeline = DepthOfFieldPipeline {
view_bind_group_layouts: view_bind_group_layouts.clone(),
global_bind_group_layout: global_bind_group_layout.layout.clone(),
};
// We'll need these two flags to create the `DepthOfFieldPipelineKey`s.
let (hdr, multisample) = (view.hdr, *msaa != Msaa::Off);
// Go ahead and specialize the pipelines.
match depth_of_field.mode {
DepthOfFieldMode::Gaussian => {
commands
.entity(entity)
.insert(DepthOfFieldPipelines::Gaussian {
horizontal: pipelines.specialize(
&pipeline_cache,
&dof_pipeline,
DepthOfFieldPipelineKey {
hdr,
multisample,
pass: DofPass::GaussianHorizontal,
},
),
vertical: pipelines.specialize(
&pipeline_cache,
&dof_pipeline,
DepthOfFieldPipelineKey {
hdr,
multisample,
pass: DofPass::GaussianVertical,
},
),
});
}
DepthOfFieldMode::Bokeh => {
commands
.entity(entity)
.insert(DepthOfFieldPipelines::Bokeh {
pass_0: pipelines.specialize(
&pipeline_cache,
&dof_pipeline,
DepthOfFieldPipelineKey {
hdr,
multisample,
pass: DofPass::BokehPass0,
},
),
pass_1: pipelines.specialize(
&pipeline_cache,
&dof_pipeline,
DepthOfFieldPipelineKey {
hdr,
multisample,
pass: DofPass::BokehPass1,
},
),
});
}
}
}
}
impl SpecializedRenderPipeline for DepthOfFieldPipeline {
type Key = DepthOfFieldPipelineKey;
fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
// Build up our pipeline layout.
let (mut layout, mut shader_defs) = (vec![], vec![]);
let mut targets = vec![Some(ColorTargetState {
format: if key.hdr {
ViewTarget::TEXTURE_FORMAT_HDR
} else {
TextureFormat::bevy_default()
},
blend: None,
write_mask: ColorWrites::ALL,
})];
// Select bind group 0, the view-specific bind group.
match key.pass {
DofPass::GaussianHorizontal | DofPass::GaussianVertical => {
// Gaussian blurs take only a single input and output.
layout.push(self.view_bind_group_layouts.single_input.clone());
}
DofPass::BokehPass0 => {
// The first bokeh pass takes one input and produces two outputs.
layout.push(self.view_bind_group_layouts.single_input.clone());
targets.push(targets[0].clone());
}
DofPass::BokehPass1 => {
// The second bokeh pass takes the two outputs from the first
// bokeh pass and produces a single output.
let dual_input_bind_group_layout = self
.view_bind_group_layouts
.dual_input
.as_ref()
.expect("Dual-input depth of field bind group should have been created by now")
.clone();
layout.push(dual_input_bind_group_layout);
shader_defs.push("DUAL_INPUT".into());
}
}
// Add bind group 1, the global bind group.
layout.push(self.global_bind_group_layout.clone());
if key.multisample {
shader_defs.push("MULTISAMPLED".into());
}
RenderPipelineDescriptor {
label: Some("depth of field pipeline".into()),
layout,
push_constant_ranges: vec![],
vertex: fullscreen_shader_vertex_state(),
primitive: default(),
depth_stencil: None,
multisample: default(),
fragment: Some(FragmentState {
shader: DOF_SHADER_HANDLE,
shader_defs,
entry_point: match key.pass {
DofPass::GaussianHorizontal => "gaussian_horizontal".into(),
DofPass::GaussianVertical => "gaussian_vertical".into(),
DofPass::BokehPass0 => "bokeh_pass_0".into(),
DofPass::BokehPass1 => "bokeh_pass_1".into(),
},
targets,
}),
zero_initialize_workgroup_memory: false,
}
}
}
/// Extracts all [`DepthOfField`] components into the render world.
fn extract_depth_of_field_settings(
mut commands: Commands,
mut query: Extract<Query<(RenderEntity, &DepthOfField, &Projection)>>,
) {
if !DEPTH_TEXTURE_SAMPLING_SUPPORTED {
info_once!(
"Disabling depth of field on this platform because depth textures aren't supported correctly"
);
return;
}
for (entity, depth_of_field, projection) in query.iter_mut() {
let mut entity_commands = commands
.get_entity(entity)
.expect("Depth of field entity wasn't synced.");
// Depth of field is nonsensical without a perspective projection.
let Projection::Perspective(ref perspective_projection) = *projection else {
// TODO: needs better strategy for cleaning up
entity_commands.remove::<(
DepthOfField,
DepthOfFieldUniform,
// components added in prepare systems (because `DepthOfFieldNode` does not query extracted components)
DepthOfFieldPipelines,
AuxiliaryDepthOfFieldTexture,
ViewDepthOfFieldBindGroupLayouts,
)>();
continue;
};
let focal_length =
calculate_focal_length(depth_of_field.sensor_height, perspective_projection.fov);
// Convert `DepthOfField` to `DepthOfFieldUniform`.
entity_commands.insert((
*depth_of_field,
DepthOfFieldUniform {
focal_distance: depth_of_field.focal_distance,
focal_length,
coc_scale_factor: focal_length * focal_length
/ (depth_of_field.sensor_height * depth_of_field.aperture_f_stops),
max_circle_of_confusion_diameter: depth_of_field.max_circle_of_confusion_diameter,
max_depth: depth_of_field.max_depth,
pad_a: 0,
pad_b: 0,
pad_c: 0,
},
));
}
}
/// Given the sensor height and the FOV, returns the focal length.
///
/// See <https://photo.stackexchange.com/a/97218>.
pub fn calculate_focal_length(sensor_height: f32, fov: f32) -> f32 {
0.5 * sensor_height / ops::tan(0.5 * fov)
}
impl DepthOfFieldPipelines {
/// Populates the information that the `DepthOfFieldNode` needs for the two
/// depth of field render passes.
fn pipeline_render_info(&self) -> [DepthOfFieldPipelineRenderInfo; 2] {
match *self {
DepthOfFieldPipelines::Gaussian {
horizontal: horizontal_pipeline,
vertical: vertical_pipeline,
} => [
DepthOfFieldPipelineRenderInfo {
pass_label: "depth of field pass (horizontal Gaussian)",
view_bind_group_label: "depth of field view bind group (horizontal Gaussian)",
pipeline: horizontal_pipeline,
is_dual_input: false,
is_dual_output: false,
},
DepthOfFieldPipelineRenderInfo {
pass_label: "depth of field pass (vertical Gaussian)",
view_bind_group_label: "depth of field view bind group (vertical Gaussian)",
pipeline: vertical_pipeline,
is_dual_input: false,
is_dual_output: false,
},
],
DepthOfFieldPipelines::Bokeh {
pass_0: pass_0_pipeline,
pass_1: pass_1_pipeline,
} => [
DepthOfFieldPipelineRenderInfo {
pass_label: "depth of field pass (bokeh pass 0)",
view_bind_group_label: "depth of field view bind group (bokeh pass 0)",
pipeline: pass_0_pipeline,
is_dual_input: false,
is_dual_output: true,
},
DepthOfFieldPipelineRenderInfo {
pass_label: "depth of field pass (bokeh pass 1)",
view_bind_group_label: "depth of field view bind group (bokeh pass 1)",
pipeline: pass_1_pipeline,
is_dual_input: true,
is_dual_output: false,
},
],
}
}
}