bevy_core_pipeline/dof/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
//! Depth of field, a postprocessing effect that simulates camera focus.
//!
//! By default, Bevy renders all objects in full focus: regardless of depth, all
//! objects are rendered perfectly sharp (up to output resolution). Real lenses,
//! however, can only focus on objects at a specific distance. The distance
//! between the nearest and furthest objects that are in focus is known as
//! [depth of field], and this term is used more generally in computer graphics
//! to refer to the effect that simulates focus of lenses.
//!
//! Attaching [`DepthOfField`] to a camera causes Bevy to simulate the
//! focus of a camera lens. Generally, Bevy's implementation of depth of field
//! is optimized for speed instead of physical accuracy. Nevertheless, the depth
//! of field effect in Bevy is based on physical parameters.
//!
//! [Depth of field]: https://en.wikipedia.org/wiki/Depth_of_field

use bevy_app::{App, Plugin};
use bevy_asset::{load_internal_asset, Handle};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
    component::Component,
    entity::Entity,
    query::{QueryItem, With},
    reflect::ReflectComponent,
    schedule::IntoSystemConfigs as _,
    system::{lifetimeless::Read, Commands, Query, Res, ResMut, Resource},
    world::{FromWorld, World},
};
use bevy_image::BevyDefault as _;
use bevy_math::ops;
use bevy_reflect::{prelude::ReflectDefault, Reflect};
use bevy_render::{
    camera::{PhysicalCameraParameters, Projection},
    extract_component::{ComponentUniforms, DynamicUniformIndex, UniformComponentPlugin},
    render_graph::{
        NodeRunError, RenderGraphApp as _, RenderGraphContext, ViewNode, ViewNodeRunner,
    },
    render_resource::{
        binding_types::{
            sampler, texture_2d, texture_depth_2d, texture_depth_2d_multisampled, uniform_buffer,
        },
        BindGroup, BindGroupEntries, BindGroupLayout, BindGroupLayoutEntries,
        CachedRenderPipelineId, ColorTargetState, ColorWrites, FilterMode, FragmentState, LoadOp,
        Operations, PipelineCache, RenderPassColorAttachment, RenderPassDescriptor,
        RenderPipelineDescriptor, Sampler, SamplerBindingType, SamplerDescriptor, Shader,
        ShaderStages, ShaderType, SpecializedRenderPipeline, SpecializedRenderPipelines, StoreOp,
        TextureDescriptor, TextureDimension, TextureFormat, TextureSampleType, TextureUsages,
    },
    renderer::{RenderContext, RenderDevice},
    sync_component::SyncComponentPlugin,
    sync_world::RenderEntity,
    texture::{CachedTexture, TextureCache},
    view::{
        prepare_view_targets, ExtractedView, Msaa, ViewDepthTexture, ViewTarget, ViewUniform,
        ViewUniformOffset, ViewUniforms,
    },
    Extract, ExtractSchedule, Render, RenderApp, RenderSet,
};
use bevy_utils::{info_once, prelude::default, warn_once};
use smallvec::SmallVec;

use crate::{
    core_3d::{
        graph::{Core3d, Node3d},
        Camera3d, DEPTH_TEXTURE_SAMPLING_SUPPORTED,
    },
    fullscreen_vertex_shader::fullscreen_shader_vertex_state,
};

const DOF_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(2031861180739216043);

/// A plugin that adds support for the depth of field effect to Bevy.
pub struct DepthOfFieldPlugin;

/// A component that enables a [depth of field] postprocessing effect when attached to a [`Camera3d`],
/// simulating the focus of a camera lens.
///
/// [depth of field]: https://en.wikipedia.org/wiki/Depth_of_field
#[derive(Component, Clone, Copy, Reflect)]
#[reflect(Component, Default)]
pub struct DepthOfField {
    /// The appearance of the effect.
    pub mode: DepthOfFieldMode,

    /// The distance in meters to the location in focus.
    pub focal_distance: f32,

    /// The height of the [image sensor format] in meters.
    ///
    /// Focal length is derived from the FOV and this value. The default is
    /// 18.66mm, matching the [Super 35] format, which is popular in cinema.
    ///
    /// [image sensor format]: https://en.wikipedia.org/wiki/Image_sensor_format
    ///
    /// [Super 35]: https://en.wikipedia.org/wiki/Super_35
    pub sensor_height: f32,

    /// Along with the focal length, controls how much objects not in focus are
    /// blurred.
    pub aperture_f_stops: f32,

    /// The maximum diameter, in pixels, that we allow a circle of confusion to be.
    ///
    /// A circle of confusion essentially describes the size of a blur.
    ///
    /// This value is nonphysical but is useful for avoiding pathologically-slow
    /// behavior.
    pub max_circle_of_confusion_diameter: f32,

    /// Objects are never considered to be farther away than this distance as
    /// far as depth of field is concerned, even if they actually are.
    ///
    /// This is primarily useful for skyboxes and background colors. The Bevy
    /// renderer considers them to be infinitely far away. Without this value,
    /// that would cause the circle of confusion to be infinitely large, capped
    /// only by the `max_circle_of_confusion_diameter`. As that's unsightly,
    /// this value can be used to essentially adjust how "far away" the skybox
    /// or background are.
    pub max_depth: f32,
}

#[deprecated(since = "0.15.0", note = "Renamed to `DepthOfField`")]
pub type DepthOfFieldSettings = DepthOfField;

/// Controls the appearance of the effect.
#[derive(Clone, Copy, Default, PartialEq, Debug, Reflect)]
#[reflect(Default, PartialEq)]
pub enum DepthOfFieldMode {
    /// A more accurate simulation, in which circles of confusion generate
    /// "spots" of light.
    ///
    /// For more information, see [Wikipedia's article on *bokeh*].
    ///
    /// This doesn't work on WebGPU.
    ///
    /// [Wikipedia's article on *bokeh*]: https://en.wikipedia.org/wiki/Bokeh
    Bokeh,

    /// A faster simulation, in which out-of-focus areas are simply blurred.
    ///
    /// This is less accurate to actual lens behavior and is generally less
    /// aesthetically pleasing but requires less video memory bandwidth.
    ///
    /// This is the default.
    ///
    /// This works on native and WebGPU.
    /// If targeting native platforms, consider using [`DepthOfFieldMode::Bokeh`] instead.
    #[default]
    Gaussian,
}

/// Data about the depth of field effect that's uploaded to the GPU.
#[derive(Clone, Copy, Component, ShaderType)]
pub struct DepthOfFieldUniform {
    /// The distance in meters to the location in focus.
    focal_distance: f32,

    /// The focal length. See the comment in `DepthOfFieldParams` in `dof.wgsl`
    /// for more information.
    focal_length: f32,

    /// The premultiplied factor that we scale the circle of confusion by.
    ///
    /// This is calculated as `focal_length² / (sensor_height *
    /// aperture_f_stops)`.
    coc_scale_factor: f32,

    /// The maximum circle of confusion diameter in pixels. See the comment in
    /// [`DepthOfField`] for more information.
    max_circle_of_confusion_diameter: f32,

    /// The depth value that we clamp distant objects to. See the comment in
    /// [`DepthOfField`] for more information.
    max_depth: f32,

    /// Padding.
    pad_a: u32,
    /// Padding.
    pad_b: u32,
    /// Padding.
    pad_c: u32,
}

/// A key that uniquely identifies depth of field pipelines.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct DepthOfFieldPipelineKey {
    /// Whether we're doing Gaussian or bokeh blur.
    pass: DofPass,
    /// Whether we're using HDR.
    hdr: bool,
    /// Whether the render target is multisampled.
    multisample: bool,
}

/// Identifies a specific depth of field render pass.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
enum DofPass {
    /// The first, horizontal, Gaussian blur pass.
    GaussianHorizontal,
    /// The second, vertical, Gaussian blur pass.
    GaussianVertical,
    /// The first bokeh pass: vertical and diagonal.
    BokehPass0,
    /// The second bokeh pass: two diagonals.
    BokehPass1,
}

impl Plugin for DepthOfFieldPlugin {
    fn build(&self, app: &mut App) {
        load_internal_asset!(app, DOF_SHADER_HANDLE, "dof.wgsl", Shader::from_wgsl);

        app.register_type::<DepthOfField>();
        app.register_type::<DepthOfFieldMode>();
        app.add_plugins(UniformComponentPlugin::<DepthOfFieldUniform>::default());

        app.add_plugins(SyncComponentPlugin::<DepthOfField>::default());

        let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
            return;
        };

        render_app
            .init_resource::<SpecializedRenderPipelines<DepthOfFieldPipeline>>()
            .init_resource::<DepthOfFieldGlobalBindGroup>()
            .add_systems(ExtractSchedule, extract_depth_of_field_settings)
            .add_systems(
                Render,
                (
                    configure_depth_of_field_view_targets,
                    prepare_auxiliary_depth_of_field_textures,
                )
                    .after(prepare_view_targets)
                    .in_set(RenderSet::ManageViews),
            )
            .add_systems(
                Render,
                (
                    prepare_depth_of_field_view_bind_group_layouts,
                    prepare_depth_of_field_pipelines,
                )
                    .chain()
                    .in_set(RenderSet::Prepare),
            )
            .add_systems(
                Render,
                prepare_depth_of_field_global_bind_group.in_set(RenderSet::PrepareBindGroups),
            )
            .add_render_graph_node::<ViewNodeRunner<DepthOfFieldNode>>(Core3d, Node3d::DepthOfField)
            .add_render_graph_edges(
                Core3d,
                (Node3d::Bloom, Node3d::DepthOfField, Node3d::Tonemapping),
            );
    }

    fn finish(&self, app: &mut App) {
        let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
            return;
        };

        render_app.init_resource::<DepthOfFieldGlobalBindGroupLayout>();
    }
}

/// The node in the render graph for depth of field.
#[derive(Default)]
pub struct DepthOfFieldNode;

/// The layout for the bind group shared among all invocations of the depth of
/// field shader.
#[derive(Resource, Clone)]
pub struct DepthOfFieldGlobalBindGroupLayout {
    /// The layout.
    layout: BindGroupLayout,
    /// The sampler used to sample from the color buffer or buffers.
    color_texture_sampler: Sampler,
}

/// The bind group shared among all invocations of the depth of field shader,
/// regardless of view.
#[derive(Resource, Default, Deref, DerefMut)]
pub struct DepthOfFieldGlobalBindGroup(Option<BindGroup>);

#[derive(Component)]
pub enum DepthOfFieldPipelines {
    Gaussian {
        horizontal: CachedRenderPipelineId,
        vertical: CachedRenderPipelineId,
    },
    Bokeh {
        pass_0: CachedRenderPipelineId,
        pass_1: CachedRenderPipelineId,
    },
}

struct DepthOfFieldPipelineRenderInfo {
    pass_label: &'static str,
    view_bind_group_label: &'static str,
    pipeline: CachedRenderPipelineId,
    is_dual_input: bool,
    is_dual_output: bool,
}

/// The extra texture used as the second render target for the hexagonal bokeh
/// blur.
///
/// This is the same size and format as the main view target texture. It'll only
/// be present if bokeh is being used.
#[derive(Component, Deref, DerefMut)]
pub struct AuxiliaryDepthOfFieldTexture(CachedTexture);

/// Bind group layouts for depth of field specific to a single view.
#[derive(Component, Clone)]
pub struct ViewDepthOfFieldBindGroupLayouts {
    /// The bind group layout for passes that take only one input.
    single_input: BindGroupLayout,

    /// The bind group layout for the second bokeh pass, which takes two inputs.
    ///
    /// This will only be present if bokeh is in use.
    dual_input: Option<BindGroupLayout>,
}

/// Information needed to specialize the pipeline corresponding to a pass of the
/// depth of field shader.
pub struct DepthOfFieldPipeline {
    /// The bind group layouts specific to each view.
    view_bind_group_layouts: ViewDepthOfFieldBindGroupLayouts,
    /// The bind group layout shared among all invocations of the depth of field
    /// shader.
    global_bind_group_layout: BindGroupLayout,
}

impl ViewNode for DepthOfFieldNode {
    type ViewQuery = (
        Read<ViewUniformOffset>,
        Read<ViewTarget>,
        Read<ViewDepthTexture>,
        Read<DepthOfFieldPipelines>,
        Read<ViewDepthOfFieldBindGroupLayouts>,
        Read<DynamicUniformIndex<DepthOfFieldUniform>>,
        Option<Read<AuxiliaryDepthOfFieldTexture>>,
    );

    fn run<'w>(
        &self,
        _: &mut RenderGraphContext,
        render_context: &mut RenderContext<'w>,
        (
            view_uniform_offset,
            view_target,
            view_depth_texture,
            view_pipelines,
            view_bind_group_layouts,
            depth_of_field_uniform_index,
            auxiliary_dof_texture,
        ): QueryItem<'w, Self::ViewQuery>,
        world: &'w World,
    ) -> Result<(), NodeRunError> {
        let pipeline_cache = world.resource::<PipelineCache>();
        let view_uniforms = world.resource::<ViewUniforms>();
        let global_bind_group = world.resource::<DepthOfFieldGlobalBindGroup>();

        // We can be in either Gaussian blur or bokeh mode here. Both modes are
        // similar, consisting of two passes each. We factor out the information
        // specific to each pass into
        // [`DepthOfFieldPipelines::pipeline_render_info`].
        for pipeline_render_info in view_pipelines.pipeline_render_info().iter() {
            let (Some(render_pipeline), Some(view_uniforms_binding), Some(global_bind_group)) = (
                pipeline_cache.get_render_pipeline(pipeline_render_info.pipeline),
                view_uniforms.uniforms.binding(),
                &**global_bind_group,
            ) else {
                return Ok(());
            };

            // We use most of the postprocess infrastructure here. However,
            // because the bokeh pass has an additional render target, we have
            // to manage a secondary *auxiliary* texture alongside the textures
            // managed by the postprocessing logic.
            let postprocess = view_target.post_process_write();

            let view_bind_group = if pipeline_render_info.is_dual_input {
                let (Some(auxiliary_dof_texture), Some(dual_input_bind_group_layout)) = (
                    auxiliary_dof_texture,
                    view_bind_group_layouts.dual_input.as_ref(),
                ) else {
                    warn_once!("Should have created the auxiliary depth of field texture by now");
                    continue;
                };
                render_context.render_device().create_bind_group(
                    Some(pipeline_render_info.view_bind_group_label),
                    dual_input_bind_group_layout,
                    &BindGroupEntries::sequential((
                        view_uniforms_binding,
                        view_depth_texture.view(),
                        postprocess.source,
                        &auxiliary_dof_texture.default_view,
                    )),
                )
            } else {
                render_context.render_device().create_bind_group(
                    Some(pipeline_render_info.view_bind_group_label),
                    &view_bind_group_layouts.single_input,
                    &BindGroupEntries::sequential((
                        view_uniforms_binding,
                        view_depth_texture.view(),
                        postprocess.source,
                    )),
                )
            };

            // Push the first input attachment.
            let mut color_attachments: SmallVec<[_; 2]> = SmallVec::new();
            color_attachments.push(Some(RenderPassColorAttachment {
                view: postprocess.destination,
                resolve_target: None,
                ops: Operations {
                    load: LoadOp::Clear(default()),
                    store: StoreOp::Store,
                },
            }));

            // The first pass of the bokeh shader has two color outputs, not
            // one. Handle this case by attaching the auxiliary texture, which
            // should have been created by now in
            // `prepare_auxiliary_depth_of_field_textures``.
            if pipeline_render_info.is_dual_output {
                let Some(auxiliary_dof_texture) = auxiliary_dof_texture else {
                    warn_once!("Should have created the auxiliary depth of field texture by now");
                    continue;
                };
                color_attachments.push(Some(RenderPassColorAttachment {
                    view: &auxiliary_dof_texture.default_view,
                    resolve_target: None,
                    ops: Operations {
                        load: LoadOp::Clear(default()),
                        store: StoreOp::Store,
                    },
                }));
            }

            let render_pass_descriptor = RenderPassDescriptor {
                label: Some(pipeline_render_info.pass_label),
                color_attachments: &color_attachments,
                ..default()
            };

            let mut render_pass = render_context
                .command_encoder()
                .begin_render_pass(&render_pass_descriptor);
            render_pass.set_pipeline(render_pipeline);
            // Set the per-view bind group.
            render_pass.set_bind_group(0, &view_bind_group, &[view_uniform_offset.offset]);
            // Set the global bind group shared among all invocations of the shader.
            render_pass.set_bind_group(
                1,
                global_bind_group,
                &[depth_of_field_uniform_index.index()],
            );
            // Render the full-screen pass.
            render_pass.draw(0..3, 0..1);
        }

        Ok(())
    }
}

impl Default for DepthOfField {
    fn default() -> Self {
        let physical_camera_default = PhysicalCameraParameters::default();
        Self {
            focal_distance: 10.0,
            aperture_f_stops: physical_camera_default.aperture_f_stops,
            sensor_height: physical_camera_default.sensor_height,
            max_circle_of_confusion_diameter: 64.0,
            max_depth: f32::INFINITY,
            mode: DepthOfFieldMode::Bokeh,
        }
    }
}

impl DepthOfField {
    /// Initializes [`DepthOfField`] from a set of
    /// [`PhysicalCameraParameters`].
    ///
    /// By passing the same [`PhysicalCameraParameters`] object to this function
    /// and to [`bevy_render::camera::Exposure::from_physical_camera`], matching
    /// results for both the exposure and depth of field effects can be
    /// obtained.
    ///
    /// All fields of the returned [`DepthOfField`] other than
    /// `focal_length` and `aperture_f_stops` are set to their default values.
    pub fn from_physical_camera(camera: &PhysicalCameraParameters) -> DepthOfField {
        DepthOfField {
            sensor_height: camera.sensor_height,
            aperture_f_stops: camera.aperture_f_stops,
            ..default()
        }
    }
}

impl FromWorld for DepthOfFieldGlobalBindGroupLayout {
    fn from_world(world: &mut World) -> Self {
        let render_device = world.resource::<RenderDevice>();

        // Create the bind group layout that will be shared among all instances
        // of the depth of field shader.
        let layout = render_device.create_bind_group_layout(
            Some("depth of field global bind group layout"),
            &BindGroupLayoutEntries::sequential(
                ShaderStages::FRAGMENT,
                (
                    // `dof_params`
                    uniform_buffer::<DepthOfFieldUniform>(true),
                    // `color_texture_sampler`
                    sampler(SamplerBindingType::Filtering),
                ),
            ),
        );

        // Create the color texture sampler.
        let sampler = render_device.create_sampler(&SamplerDescriptor {
            label: Some("depth of field sampler"),
            mag_filter: FilterMode::Linear,
            min_filter: FilterMode::Linear,
            ..default()
        });

        DepthOfFieldGlobalBindGroupLayout {
            color_texture_sampler: sampler,
            layout,
        }
    }
}

/// Creates the bind group layouts for the depth of field effect that are
/// specific to each view.
pub fn prepare_depth_of_field_view_bind_group_layouts(
    mut commands: Commands,
    view_targets: Query<(Entity, &DepthOfField, &Msaa)>,
    render_device: Res<RenderDevice>,
) {
    for (view, depth_of_field, msaa) in view_targets.iter() {
        // Create the bind group layout for the passes that take one input.
        let single_input = render_device.create_bind_group_layout(
            Some("depth of field bind group layout (single input)"),
            &BindGroupLayoutEntries::sequential(
                ShaderStages::FRAGMENT,
                (
                    uniform_buffer::<ViewUniform>(true),
                    if *msaa != Msaa::Off {
                        texture_depth_2d_multisampled()
                    } else {
                        texture_depth_2d()
                    },
                    texture_2d(TextureSampleType::Float { filterable: true }),
                ),
            ),
        );

        // If needed, create the bind group layout for the second bokeh pass,
        // which takes two inputs. We only need to do this if bokeh is in use.
        let dual_input = match depth_of_field.mode {
            DepthOfFieldMode::Gaussian => None,
            DepthOfFieldMode::Bokeh => Some(render_device.create_bind_group_layout(
                Some("depth of field bind group layout (dual input)"),
                &BindGroupLayoutEntries::sequential(
                    ShaderStages::FRAGMENT,
                    (
                        uniform_buffer::<ViewUniform>(true),
                        if *msaa != Msaa::Off {
                            texture_depth_2d_multisampled()
                        } else {
                            texture_depth_2d()
                        },
                        texture_2d(TextureSampleType::Float { filterable: true }),
                        texture_2d(TextureSampleType::Float { filterable: true }),
                    ),
                ),
            )),
        };

        commands
            .entity(view)
            .insert(ViewDepthOfFieldBindGroupLayouts {
                single_input,
                dual_input,
            });
    }
}

/// Configures depth textures so that the depth of field shader can read from
/// them.
///
/// By default, the depth buffers that Bevy creates aren't able to be bound as
/// textures. The depth of field shader, however, needs to read from them. So we
/// need to set the appropriate flag to tell Bevy to make samplable depth
/// buffers.
pub fn configure_depth_of_field_view_targets(
    mut view_targets: Query<&mut Camera3d, With<DepthOfField>>,
) {
    for mut camera_3d in view_targets.iter_mut() {
        let mut depth_texture_usages = TextureUsages::from(camera_3d.depth_texture_usages);
        depth_texture_usages |= TextureUsages::TEXTURE_BINDING;
        camera_3d.depth_texture_usages = depth_texture_usages.into();
    }
}

/// Creates depth of field bind group 1, which is shared among all instances of
/// the depth of field shader.
pub fn prepare_depth_of_field_global_bind_group(
    global_bind_group_layout: Res<DepthOfFieldGlobalBindGroupLayout>,
    mut dof_bind_group: ResMut<DepthOfFieldGlobalBindGroup>,
    depth_of_field_uniforms: Res<ComponentUniforms<DepthOfFieldUniform>>,
    render_device: Res<RenderDevice>,
) {
    let Some(depth_of_field_uniforms) = depth_of_field_uniforms.binding() else {
        return;
    };

    **dof_bind_group = Some(render_device.create_bind_group(
        Some("depth of field global bind group"),
        &global_bind_group_layout.layout,
        &BindGroupEntries::sequential((
            depth_of_field_uniforms,                         // `dof_params`
            &global_bind_group_layout.color_texture_sampler, // `color_texture_sampler`
        )),
    ));
}

/// Creates the second render target texture that the first pass of the bokeh
/// effect needs.
pub fn prepare_auxiliary_depth_of_field_textures(
    mut commands: Commands,
    render_device: Res<RenderDevice>,
    mut texture_cache: ResMut<TextureCache>,
    mut view_targets: Query<(Entity, &ViewTarget, &DepthOfField)>,
) {
    for (entity, view_target, depth_of_field) in view_targets.iter_mut() {
        // An auxiliary texture is only needed for bokeh.
        if depth_of_field.mode != DepthOfFieldMode::Bokeh {
            continue;
        }

        // The texture matches the main view target texture.
        let texture_descriptor = TextureDescriptor {
            label: Some("depth of field auxiliary texture"),
            size: view_target.main_texture().size(),
            mip_level_count: 1,
            sample_count: view_target.main_texture().sample_count(),
            dimension: TextureDimension::D2,
            format: view_target.main_texture_format(),
            usage: TextureUsages::RENDER_ATTACHMENT | TextureUsages::TEXTURE_BINDING,
            view_formats: &[],
        };

        let texture = texture_cache.get(&render_device, texture_descriptor);

        commands
            .entity(entity)
            .insert(AuxiliaryDepthOfFieldTexture(texture));
    }
}

/// Specializes the depth of field pipelines specific to a view.
pub fn prepare_depth_of_field_pipelines(
    mut commands: Commands,
    pipeline_cache: Res<PipelineCache>,
    mut pipelines: ResMut<SpecializedRenderPipelines<DepthOfFieldPipeline>>,
    global_bind_group_layout: Res<DepthOfFieldGlobalBindGroupLayout>,
    view_targets: Query<(
        Entity,
        &ExtractedView,
        &DepthOfField,
        &ViewDepthOfFieldBindGroupLayouts,
        &Msaa,
    )>,
) {
    for (entity, view, depth_of_field, view_bind_group_layouts, msaa) in view_targets.iter() {
        let dof_pipeline = DepthOfFieldPipeline {
            view_bind_group_layouts: view_bind_group_layouts.clone(),
            global_bind_group_layout: global_bind_group_layout.layout.clone(),
        };

        // We'll need these two flags to create the `DepthOfFieldPipelineKey`s.
        let (hdr, multisample) = (view.hdr, *msaa != Msaa::Off);

        // Go ahead and specialize the pipelines.
        match depth_of_field.mode {
            DepthOfFieldMode::Gaussian => {
                commands
                    .entity(entity)
                    .insert(DepthOfFieldPipelines::Gaussian {
                        horizontal: pipelines.specialize(
                            &pipeline_cache,
                            &dof_pipeline,
                            DepthOfFieldPipelineKey {
                                hdr,
                                multisample,
                                pass: DofPass::GaussianHorizontal,
                            },
                        ),
                        vertical: pipelines.specialize(
                            &pipeline_cache,
                            &dof_pipeline,
                            DepthOfFieldPipelineKey {
                                hdr,
                                multisample,
                                pass: DofPass::GaussianVertical,
                            },
                        ),
                    });
            }

            DepthOfFieldMode::Bokeh => {
                commands
                    .entity(entity)
                    .insert(DepthOfFieldPipelines::Bokeh {
                        pass_0: pipelines.specialize(
                            &pipeline_cache,
                            &dof_pipeline,
                            DepthOfFieldPipelineKey {
                                hdr,
                                multisample,
                                pass: DofPass::BokehPass0,
                            },
                        ),
                        pass_1: pipelines.specialize(
                            &pipeline_cache,
                            &dof_pipeline,
                            DepthOfFieldPipelineKey {
                                hdr,
                                multisample,
                                pass: DofPass::BokehPass1,
                            },
                        ),
                    });
            }
        }
    }
}

impl SpecializedRenderPipeline for DepthOfFieldPipeline {
    type Key = DepthOfFieldPipelineKey;

    fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
        // Build up our pipeline layout.
        let (mut layout, mut shader_defs) = (vec![], vec![]);
        let mut targets = vec![Some(ColorTargetState {
            format: if key.hdr {
                ViewTarget::TEXTURE_FORMAT_HDR
            } else {
                TextureFormat::bevy_default()
            },
            blend: None,
            write_mask: ColorWrites::ALL,
        })];

        // Select bind group 0, the view-specific bind group.
        match key.pass {
            DofPass::GaussianHorizontal | DofPass::GaussianVertical => {
                // Gaussian blurs take only a single input and output.
                layout.push(self.view_bind_group_layouts.single_input.clone());
            }
            DofPass::BokehPass0 => {
                // The first bokeh pass takes one input and produces two outputs.
                layout.push(self.view_bind_group_layouts.single_input.clone());
                targets.push(targets[0].clone());
            }
            DofPass::BokehPass1 => {
                // The second bokeh pass takes the two outputs from the first
                // bokeh pass and produces a single output.
                let dual_input_bind_group_layout = self
                    .view_bind_group_layouts
                    .dual_input
                    .as_ref()
                    .expect("Dual-input depth of field bind group should have been created by now")
                    .clone();
                layout.push(dual_input_bind_group_layout);
                shader_defs.push("DUAL_INPUT".into());
            }
        }

        // Add bind group 1, the global bind group.
        layout.push(self.global_bind_group_layout.clone());

        if key.multisample {
            shader_defs.push("MULTISAMPLED".into());
        }

        RenderPipelineDescriptor {
            label: Some("depth of field pipeline".into()),
            layout,
            push_constant_ranges: vec![],
            vertex: fullscreen_shader_vertex_state(),
            primitive: default(),
            depth_stencil: None,
            multisample: default(),
            fragment: Some(FragmentState {
                shader: DOF_SHADER_HANDLE,
                shader_defs,
                entry_point: match key.pass {
                    DofPass::GaussianHorizontal => "gaussian_horizontal".into(),
                    DofPass::GaussianVertical => "gaussian_vertical".into(),
                    DofPass::BokehPass0 => "bokeh_pass_0".into(),
                    DofPass::BokehPass1 => "bokeh_pass_1".into(),
                },
                targets,
            }),
            zero_initialize_workgroup_memory: false,
        }
    }
}

/// Extracts all [`DepthOfField`] components into the render world.
fn extract_depth_of_field_settings(
    mut commands: Commands,
    mut query: Extract<Query<(RenderEntity, &DepthOfField, &Projection)>>,
) {
    if !DEPTH_TEXTURE_SAMPLING_SUPPORTED {
        info_once!(
            "Disabling depth of field on this platform because depth textures aren't supported correctly"
        );
        return;
    }

    for (entity, depth_of_field, projection) in query.iter_mut() {
        let mut entity_commands = commands
            .get_entity(entity)
            .expect("Depth of field entity wasn't synced.");

        // Depth of field is nonsensical without a perspective projection.
        let Projection::Perspective(ref perspective_projection) = *projection else {
            // TODO: needs better strategy for cleaning up
            entity_commands.remove::<(
                DepthOfField,
                DepthOfFieldUniform,
                // components added in prepare systems (because `DepthOfFieldNode` does not query extracted components)
                DepthOfFieldPipelines,
                AuxiliaryDepthOfFieldTexture,
                ViewDepthOfFieldBindGroupLayouts,
            )>();
            continue;
        };

        let focal_length =
            calculate_focal_length(depth_of_field.sensor_height, perspective_projection.fov);

        // Convert `DepthOfField` to `DepthOfFieldUniform`.
        entity_commands.insert((
            *depth_of_field,
            DepthOfFieldUniform {
                focal_distance: depth_of_field.focal_distance,
                focal_length,
                coc_scale_factor: focal_length * focal_length
                    / (depth_of_field.sensor_height * depth_of_field.aperture_f_stops),
                max_circle_of_confusion_diameter: depth_of_field.max_circle_of_confusion_diameter,
                max_depth: depth_of_field.max_depth,
                pad_a: 0,
                pad_b: 0,
                pad_c: 0,
            },
        ));
    }
}

/// Given the sensor height and the FOV, returns the focal length.
///
/// See <https://photo.stackexchange.com/a/97218>.
pub fn calculate_focal_length(sensor_height: f32, fov: f32) -> f32 {
    0.5 * sensor_height / ops::tan(0.5 * fov)
}

impl DepthOfFieldPipelines {
    /// Populates the information that the `DepthOfFieldNode` needs for the two
    /// depth of field render passes.
    fn pipeline_render_info(&self) -> [DepthOfFieldPipelineRenderInfo; 2] {
        match *self {
            DepthOfFieldPipelines::Gaussian {
                horizontal: horizontal_pipeline,
                vertical: vertical_pipeline,
            } => [
                DepthOfFieldPipelineRenderInfo {
                    pass_label: "depth of field pass (horizontal Gaussian)",
                    view_bind_group_label: "depth of field view bind group (horizontal Gaussian)",
                    pipeline: horizontal_pipeline,
                    is_dual_input: false,
                    is_dual_output: false,
                },
                DepthOfFieldPipelineRenderInfo {
                    pass_label: "depth of field pass (vertical Gaussian)",
                    view_bind_group_label: "depth of field view bind group (vertical Gaussian)",
                    pipeline: vertical_pipeline,
                    is_dual_input: false,
                    is_dual_output: false,
                },
            ],

            DepthOfFieldPipelines::Bokeh {
                pass_0: pass_0_pipeline,
                pass_1: pass_1_pipeline,
            } => [
                DepthOfFieldPipelineRenderInfo {
                    pass_label: "depth of field pass (bokeh pass 0)",
                    view_bind_group_label: "depth of field view bind group (bokeh pass 0)",
                    pipeline: pass_0_pipeline,
                    is_dual_input: false,
                    is_dual_output: true,
                },
                DepthOfFieldPipelineRenderInfo {
                    pass_label: "depth of field pass (bokeh pass 1)",
                    view_bind_group_label: "depth of field view bind group (bokeh pass 1)",
                    pipeline: pass_1_pipeline,
                    is_dual_input: true,
                    is_dual_output: false,
                },
            ],
        }
    }
}