bevy_ecs/
component.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
//! Types for declaring and storing [`Component`]s.

use crate::{
    archetype::ArchetypeFlags,
    bundle::BundleInfo,
    change_detection::{MaybeLocation, MAX_CHANGE_AGE},
    entity::{ComponentCloneCtx, Entity, EntityMapper, SourceComponent},
    query::DebugCheckedUnwrap,
    relationship::RelationshipHookMode,
    resource::Resource,
    storage::{SparseSetIndex, SparseSets, Table, TableRow},
    system::{Local, SystemParam},
    world::{DeferredWorld, FromWorld, World},
};
use alloc::boxed::Box;
use alloc::{borrow::Cow, format, vec::Vec};
pub use bevy_ecs_macros::Component;
use bevy_platform::sync::Arc;
use bevy_platform::{
    collections::{HashMap, HashSet},
    sync::PoisonError,
};
use bevy_ptr::{OwningPtr, UnsafeCellDeref};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
use bevy_utils::TypeIdMap;
use core::{
    alloc::Layout,
    any::{Any, TypeId},
    cell::UnsafeCell,
    fmt::Debug,
    marker::PhantomData,
    mem::needs_drop,
    ops::{Deref, DerefMut},
};
use disqualified::ShortName;
use smallvec::SmallVec;
use thiserror::Error;

/// A data type that can be used to store data for an [entity].
///
/// `Component` is a [derivable trait]: this means that a data type can implement it by applying a `#[derive(Component)]` attribute to it.
/// However, components must always satisfy the `Send + Sync + 'static` trait bounds.
///
/// [entity]: crate::entity
/// [derivable trait]: https://doc.rust-lang.org/book/appendix-03-derivable-traits.html
///
/// # Examples
///
/// Components can take many forms: they are usually structs, but can also be of every other kind of data type, like enums or zero sized types.
/// The following examples show how components are laid out in code.
///
/// ```
/// # use bevy_ecs::component::Component;
/// # struct Color;
/// #
/// // A component can contain data...
/// #[derive(Component)]
/// struct LicensePlate(String);
///
/// // ... but it can also be a zero-sized marker.
/// #[derive(Component)]
/// struct Car;
///
/// // Components can also be structs with named fields...
/// #[derive(Component)]
/// struct VehiclePerformance {
///     acceleration: f32,
///     top_speed: f32,
///     handling: f32,
/// }
///
/// // ... or enums.
/// #[derive(Component)]
/// enum WheelCount {
///     Two,
///     Three,
///     Four,
/// }
/// ```
///
/// # Component and data access
///
/// Components can be marked as immutable by adding the `#[component(immutable)]`
/// attribute when using the derive macro.
/// See the documentation for [`ComponentMutability`] for more details around this
/// feature.
///
/// See the [`entity`] module level documentation to learn how to add or remove components from an entity.
///
/// See the documentation for [`Query`] to learn how to access component data from a system.
///
/// [`entity`]: crate::entity#usage
/// [`Query`]: crate::system::Query
/// [`ComponentMutability`]: crate::component::ComponentMutability
///
/// # Choosing a storage type
///
/// Components can be stored in the world using different strategies with their own performance implications.
/// By default, components are added to the [`Table`] storage, which is optimized for query iteration.
///
/// Alternatively, components can be added to the [`SparseSet`] storage, which is optimized for component insertion and removal.
/// This is achieved by adding an additional `#[component(storage = "SparseSet")]` attribute to the derive one:
///
/// ```
/// # use bevy_ecs::component::Component;
/// #
/// #[derive(Component)]
/// #[component(storage = "SparseSet")]
/// struct ComponentA;
/// ```
///
/// [`Table`]: crate::storage::Table
/// [`SparseSet`]: crate::storage::SparseSet
///
/// # Required Components
///
/// Components can specify Required Components. If some [`Component`] `A` requires [`Component`] `B`,  then when `A` is inserted,
/// `B` will _also_ be initialized and inserted (if it was not manually specified).
///
/// The [`Default`] constructor will be used to initialize the component, by default:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// #[require(B)]
/// struct A;
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// struct B(usize);
///
/// # let mut world = World::default();
/// // This will implicitly also insert B with the Default constructor
/// let id = world.spawn(A).id();
/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
///
/// // This will _not_ implicitly insert B, because it was already provided
/// world.spawn((A, B(11)));
/// ```
///
/// Components can have more than one required component:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// #[require(B, C)]
/// struct A;
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// #[require(C)]
/// struct B(usize);
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// struct C(u32);
///
/// # let mut world = World::default();
/// // This will implicitly also insert B and C with their Default constructors
/// let id = world.spawn(A).id();
/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
/// assert_eq!(&C(0), world.entity(id).get::<C>().unwrap());
/// ```
///
/// You can define inline component values that take the following forms:
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// #[require(
///     B(1), // tuple structs
///     C { // named-field structs
///         x: 1,
///         ..Default::default()
///     },
///     D::One, // enum variants
///     E::ONE, // associated consts
///     F::new(1) // constructors
/// )]
/// struct A;
///
/// #[derive(Component, PartialEq, Eq, Debug)]
/// struct B(u8);
///
/// #[derive(Component, PartialEq, Eq, Debug, Default)]
/// struct C {
///     x: u8,
///     y: u8,
/// }
///
/// #[derive(Component, PartialEq, Eq, Debug)]
/// enum D {
///    Zero,
///    One,
/// }
///
/// #[derive(Component, PartialEq, Eq, Debug)]
/// struct E(u8);
///
/// impl E {
///     pub const ONE: Self = Self(1);
/// }
///
/// #[derive(Component, PartialEq, Eq, Debug)]
/// struct F(u8);
///
/// impl F {
///     fn new(value: u8) -> Self {
///         Self(value)
///     }
/// }
///
/// # let mut world = World::default();
/// let id = world.spawn(A).id();
/// assert_eq!(&B(1), world.entity(id).get::<B>().unwrap());
/// assert_eq!(&C { x: 1, y: 0 }, world.entity(id).get::<C>().unwrap());
/// assert_eq!(&D::One, world.entity(id).get::<D>().unwrap());
/// assert_eq!(&E(1), world.entity(id).get::<E>().unwrap());
/// assert_eq!(&F(1), world.entity(id).get::<F>().unwrap());
/// ````
///
///
/// You can also define arbitrary expressions by using `=`
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// #[require(C = init_c())]
/// struct A;
///
/// #[derive(Component, PartialEq, Eq, Debug)]
/// #[require(C = C(20))]
/// struct B;
///
/// #[derive(Component, PartialEq, Eq, Debug)]
/// struct C(usize);
///
/// fn init_c() -> C {
///     C(10)
/// }
///
/// # let mut world = World::default();
/// // This will implicitly also insert C with the init_c() constructor
/// let id = world.spawn(A).id();
/// assert_eq!(&C(10), world.entity(id).get::<C>().unwrap());
///
/// // This will implicitly also insert C with the `|| C(20)` constructor closure
/// let id = world.spawn(B).id();
/// assert_eq!(&C(20), world.entity(id).get::<C>().unwrap());
/// ```
///
/// Required components are _recursive_. This means, if a Required Component has required components,
/// those components will _also_ be inserted if they are missing:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// #[require(B)]
/// struct A;
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// #[require(C)]
/// struct B(usize);
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// struct C(u32);
///
/// # let mut world = World::default();
/// // This will implicitly also insert B and C with their Default constructors
/// let id = world.spawn(A).id();
/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
/// assert_eq!(&C(0), world.entity(id).get::<C>().unwrap());
/// ```
///
/// Note that cycles in the "component require tree" will result in stack overflows when attempting to
/// insert a component.
///
/// This "multiple inheritance" pattern does mean that it is possible to have duplicate requires for a given type
/// at different levels of the inheritance tree:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// struct X(usize);
///
/// #[derive(Component, Default)]
/// #[require(X(1))]
/// struct Y;
///
/// #[derive(Component)]
/// #[require(
///     Y,
///     X(2),
/// )]
/// struct Z;
///
/// # let mut world = World::default();
/// // In this case, the x2 constructor is used for X
/// let id = world.spawn(Z).id();
/// assert_eq!(2, world.entity(id).get::<X>().unwrap().0);
/// ```
///
/// In general, this shouldn't happen often, but when it does the algorithm for choosing the constructor from the tree is simple and predictable:
/// 1. A constructor from a direct `#[require()]`, if one exists, is selected with priority.
/// 2. Otherwise, perform a Depth First Search on the tree of requirements and select the first one found.
///
/// From a user perspective, just think about this as the following:
/// 1. Specifying a required component constructor for Foo directly on a spawned component Bar will result in that constructor being used (and overriding existing constructors lower in the inheritance tree). This is the classic "inheritance override" behavior people expect.
/// 2. For cases where "multiple inheritance" results in constructor clashes, Components should be listed in "importance order". List a component earlier in the requirement list to initialize its inheritance tree earlier.
///
/// ## Registering required components at runtime
///
/// In most cases, required components should be registered using the `require` attribute as shown above.
/// However, in some cases, it may be useful to register required components at runtime.
///
/// This can be done through [`World::register_required_components`] or  [`World::register_required_components_with`]
/// for the [`Default`] and custom constructors respectively:
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Component)]
/// struct A;
///
/// #[derive(Component, Default, PartialEq, Eq, Debug)]
/// struct B(usize);
///
/// #[derive(Component, PartialEq, Eq, Debug)]
/// struct C(u32);
///
/// # let mut world = World::default();
/// // Register B as required by A and C as required by B.
/// world.register_required_components::<A, B>();
/// world.register_required_components_with::<B, C>(|| C(2));
///
/// // This will implicitly also insert B with its Default constructor
/// // and C with the custom constructor defined by B.
/// let id = world.spawn(A).id();
/// assert_eq!(&B(0), world.entity(id).get::<B>().unwrap());
/// assert_eq!(&C(2), world.entity(id).get::<C>().unwrap());
/// ```
///
/// Similar rules as before apply to duplicate requires fer a given type at different levels
/// of the inheritance tree. `A` requiring `C` directly would take precedence over indirectly
/// requiring it through `A` requiring `B` and `B` requiring `C`.
///
/// Unlike with the `require` attribute, directly requiring the same component multiple times
/// for the same component will result in a panic. This is done to prevent conflicting constructors
/// and confusing ordering dependencies.
///
/// Note that requirements must currently be registered before the requiring component is inserted
/// into the world for the first time. Registering requirements after this will lead to a panic.
///
/// # Relationships between Entities
///
/// Sometimes it is useful to define relationships between entities.  A common example is the
/// parent / child relationship. Since Components are how data is stored for Entities, one might
/// naturally think to create a Component which has a field of type [`Entity`].
///
/// To facilitate this pattern, Bevy provides the [`Relationship`](`crate::relationship::Relationship`)
/// trait. You can derive the [`Relationship`](`crate::relationship::Relationship`) and
/// [`RelationshipTarget`](`crate::relationship::RelationshipTarget`) traits in addition to the
/// Component trait in order to implement data driven relationships between entities, see the trait
/// docs for more details.
///
/// In addition, Bevy provides canonical implementations of the parent / child relationship via the
/// [`ChildOf`](crate::hierarchy::ChildOf) [`Relationship`](crate::relationship::Relationship) and
/// the [`Children`](crate::hierarchy::Children)
/// [`RelationshipTarget`](crate::relationship::RelationshipTarget).
///
/// # Adding component's hooks
///
/// See [`ComponentHooks`] for a detailed explanation of component's hooks.
///
/// Alternatively to the example shown in [`ComponentHooks`]' documentation, hooks can be configured using following attributes:
/// - `#[component(on_add = on_add_function)]`
/// - `#[component(on_insert = on_insert_function)]`
/// - `#[component(on_replace = on_replace_function)]`
/// - `#[component(on_remove = on_remove_function)]`
///
/// ```
/// # use bevy_ecs::component::{Component, HookContext};
/// # use bevy_ecs::world::DeferredWorld;
/// # use bevy_ecs::entity::Entity;
/// # use bevy_ecs::component::ComponentId;
/// # use core::panic::Location;
/// #
/// #[derive(Component)]
/// #[component(on_add = my_on_add_hook)]
/// #[component(on_insert = my_on_insert_hook)]
/// // Another possible way of configuring hooks:
/// // #[component(on_add = my_on_add_hook, on_insert = my_on_insert_hook)]
/// //
/// // We don't have a replace or remove hook, so we can leave them out:
/// // #[component(on_replace = my_on_replace_hook, on_remove = my_on_remove_hook)]
/// struct ComponentA;
///
/// fn my_on_add_hook(world: DeferredWorld, context: HookContext) {
///     // ...
/// }
///
/// // You can also destructure items directly in the signature
/// fn my_on_insert_hook(world: DeferredWorld, HookContext { caller, .. }: HookContext) {
///     // ...
/// }
/// ```
///
/// This also supports function calls that yield closures
///
/// ```
/// # use bevy_ecs::component::{Component, HookContext};
/// # use bevy_ecs::world::DeferredWorld;
/// #
/// #[derive(Component)]
/// #[component(on_add = my_msg_hook("hello"))]
/// #[component(on_despawn = my_msg_hook("yoink"))]
/// struct ComponentA;
///
/// // a hook closure generating function
/// fn my_msg_hook(message: &'static str) -> impl Fn(DeferredWorld, HookContext) {
///     move |_world, _ctx| {
///         println!("{message}");
///     }
/// }
/// ```
///
/// # Implementing the trait for foreign types
///
/// As a consequence of the [orphan rule], it is not possible to separate into two different crates the implementation of `Component` from the definition of a type.
/// This means that it is not possible to directly have a type defined in a third party library as a component.
/// This important limitation can be easily worked around using the [newtype pattern]:
/// this makes it possible to locally define and implement `Component` for a tuple struct that wraps the foreign type.
/// The following example gives a demonstration of this pattern.
///
/// ```
/// // `Component` is defined in the `bevy_ecs` crate.
/// use bevy_ecs::component::Component;
///
/// // `Duration` is defined in the `std` crate.
/// use std::time::Duration;
///
/// // It is not possible to implement `Component` for `Duration` from this position, as they are
/// // both foreign items, defined in an external crate. However, nothing prevents to define a new
/// // `Cooldown` type that wraps `Duration`. As `Cooldown` is defined in a local crate, it is
/// // possible to implement `Component` for it.
/// #[derive(Component)]
/// struct Cooldown(Duration);
/// ```
///
/// [orphan rule]: https://doc.rust-lang.org/book/ch10-02-traits.html#implementing-a-trait-on-a-type
/// [newtype pattern]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#using-the-newtype-pattern-to-implement-external-traits-on-external-types
///
/// # `!Sync` Components
/// A `!Sync` type cannot implement `Component`. However, it is possible to wrap a `Send` but not `Sync`
/// type in [`SyncCell`] or the currently unstable [`Exclusive`] to make it `Sync`. This forces only
/// having mutable access (`&mut T` only, never `&T`), but makes it safe to reference across multiple
/// threads.
///
/// This will fail to compile since `RefCell` is `!Sync`.
/// ```compile_fail
/// # use std::cell::RefCell;
/// # use bevy_ecs::component::Component;
/// #[derive(Component)]
/// struct NotSync {
///    counter: RefCell<usize>,
/// }
/// ```
///
/// This will compile since the `RefCell` is wrapped with `SyncCell`.
/// ```
/// # use std::cell::RefCell;
/// # use bevy_ecs::component::Component;
/// use bevy_utils::synccell::SyncCell;
///
/// // This will compile.
/// #[derive(Component)]
/// struct ActuallySync {
///    counter: SyncCell<RefCell<usize>>,
/// }
/// ```
///
/// [`SyncCell`]: bevy_utils::synccell::SyncCell
/// [`Exclusive`]: https://doc.rust-lang.org/nightly/std/sync/struct.Exclusive.html
#[diagnostic::on_unimplemented(
    message = "`{Self}` is not a `Component`",
    label = "invalid `Component`",
    note = "consider annotating `{Self}` with `#[derive(Component)]`"
)]
pub trait Component: Send + Sync + 'static {
    /// A constant indicating the storage type used for this component.
    const STORAGE_TYPE: StorageType;

    /// A marker type to assist Bevy with determining if this component is
    /// mutable, or immutable. Mutable components will have [`Component<Mutability = Mutable>`],
    /// while immutable components will instead have [`Component<Mutability = Immutable>`].
    ///
    /// * For a component to be mutable, this type must be [`Mutable`].
    /// * For a component to be immutable, this type must be [`Immutable`].
    type Mutability: ComponentMutability;

    /// Called when registering this component, allowing mutable access to its [`ComponentHooks`].
    #[deprecated(
        since = "0.16.0",
        note = "Use the individual hook methods instead (e.g., `Component::on_add`, etc.)"
    )]
    fn register_component_hooks(hooks: &mut ComponentHooks) {
        hooks.update_from_component::<Self>();
    }

    /// Gets the `on_add` [`ComponentHook`] for this [`Component`] if one is defined.
    fn on_add() -> Option<ComponentHook> {
        None
    }

    /// Gets the `on_insert` [`ComponentHook`] for this [`Component`] if one is defined.
    fn on_insert() -> Option<ComponentHook> {
        None
    }

    /// Gets the `on_replace` [`ComponentHook`] for this [`Component`] if one is defined.
    fn on_replace() -> Option<ComponentHook> {
        None
    }

    /// Gets the `on_remove` [`ComponentHook`] for this [`Component`] if one is defined.
    fn on_remove() -> Option<ComponentHook> {
        None
    }

    /// Gets the `on_despawn` [`ComponentHook`] for this [`Component`] if one is defined.
    fn on_despawn() -> Option<ComponentHook> {
        None
    }

    /// Registers required components.
    fn register_required_components(
        _component_id: ComponentId,
        _components: &mut ComponentsRegistrator,
        _required_components: &mut RequiredComponents,
        _inheritance_depth: u16,
        _recursion_check_stack: &mut Vec<ComponentId>,
    ) {
    }

    /// Called when registering this component, allowing to override clone function (or disable cloning altogether) for this component.
    ///
    /// See [Handlers section of `EntityClonerBuilder`](crate::entity::EntityClonerBuilder#handlers) to understand how this affects handler priority.
    #[inline]
    fn clone_behavior() -> ComponentCloneBehavior {
        ComponentCloneBehavior::Default
    }

    /// Maps the entities on this component using the given [`EntityMapper`]. This is used to remap entities in contexts like scenes and entity cloning.
    /// When deriving [`Component`], this is populated by annotating fields containing entities with `#[entities]`
    ///
    /// ```
    /// # use bevy_ecs::{component::Component, entity::Entity};
    /// #[derive(Component)]
    /// struct Inventory {
    ///     #[entities]
    ///     items: Vec<Entity>
    /// }
    /// ```
    ///
    /// Fields with `#[entities]` must implement [`MapEntities`](crate::entity::MapEntities).
    #[inline]
    fn map_entities<E: EntityMapper>(_this: &mut Self, _mapper: &mut E) {}
}

mod private {
    pub trait Seal {}
}

/// The mutability option for a [`Component`]. This can either be:
/// * [`Mutable`]
/// * [`Immutable`]
///
/// This is controlled through either [`Component::Mutability`] or `#[component(immutable)]`
/// when using the derive macro.
///
/// Immutable components are guaranteed to never have an exclusive reference,
/// `&mut ...`, created while inserted onto an entity.
/// In all other ways, they are identical to mutable components.
/// This restriction allows hooks to observe all changes made to an immutable
/// component, effectively turning the `OnInsert` and `OnReplace` hooks into a
/// `OnMutate` hook.
/// This is not practical for mutable components, as the runtime cost of invoking
/// a hook for every exclusive reference created would be far too high.
///
/// # Examples
///
/// ```rust
/// # use bevy_ecs::component::Component;
/// #
/// #[derive(Component)]
/// #[component(immutable)]
/// struct ImmutableFoo;
/// ```
pub trait ComponentMutability: private::Seal + 'static {
    /// Boolean to indicate if this mutability setting implies a mutable or immutable
    /// component.
    const MUTABLE: bool;
}

/// Parameter indicating a [`Component`] is immutable.
///
/// See [`ComponentMutability`] for details.
pub struct Immutable;

impl private::Seal for Immutable {}
impl ComponentMutability for Immutable {
    const MUTABLE: bool = false;
}

/// Parameter indicating a [`Component`] is mutable.
///
/// See [`ComponentMutability`] for details.
pub struct Mutable;

impl private::Seal for Mutable {}
impl ComponentMutability for Mutable {
    const MUTABLE: bool = true;
}

/// The storage used for a specific component type.
///
/// # Examples
/// The [`StorageType`] for a component is configured via the derive attribute
///
/// ```
/// # use bevy_ecs::{prelude::*, component::*};
/// #[derive(Component)]
/// #[component(storage = "SparseSet")]
/// struct A;
/// ```
#[derive(Debug, Copy, Clone, Default, Eq, PartialEq)]
pub enum StorageType {
    /// Provides fast and cache-friendly iteration, but slower addition and removal of components.
    /// This is the default storage type.
    #[default]
    Table,
    /// Provides fast addition and removal of components, but slower iteration.
    SparseSet,
}

/// The type used for [`Component`] lifecycle hooks such as `on_add`, `on_insert` or `on_remove`.
pub type ComponentHook = for<'w> fn(DeferredWorld<'w>, HookContext);

/// Context provided to a [`ComponentHook`].
#[derive(Clone, Copy, Debug)]
pub struct HookContext {
    /// The [`Entity`] this hook was invoked for.
    pub entity: Entity,
    /// The [`ComponentId`] this hook was invoked for.
    pub component_id: ComponentId,
    /// The caller location is `Some` if the `track_caller` feature is enabled.
    pub caller: MaybeLocation,
    /// Configures how relationship hooks will run
    pub relationship_hook_mode: RelationshipHookMode,
}

/// [`World`]-mutating functions that run as part of lifecycle events of a [`Component`].
///
/// Hooks are functions that run when a component is added, overwritten, or removed from an entity.
/// These are intended to be used for structural side effects that need to happen when a component is added or removed,
/// and are not intended for general-purpose logic.
///
/// For example, you might use a hook to update a cached index when a component is added,
/// to clean up resources when a component is removed,
/// or to keep hierarchical data structures across entities in sync.
///
/// This information is stored in the [`ComponentInfo`] of the associated component.
///
/// There is two ways of configuring hooks for a component:
/// 1. Defining the [`Component::register_component_hooks`] method (see [`Component`])
/// 2. Using the [`World::register_component_hooks`] method
///
/// # Example 2
///
/// ```
/// use bevy_ecs::prelude::*;
/// use bevy_platform::collections::HashSet;
///
/// #[derive(Component)]
/// struct MyTrackedComponent;
///
/// #[derive(Resource, Default)]
/// struct TrackedEntities(HashSet<Entity>);
///
/// let mut world = World::new();
/// world.init_resource::<TrackedEntities>();
///
/// // No entities with `MyTrackedComponent` have been added yet, so we can safely add component hooks
/// let mut tracked_component_query = world.query::<&MyTrackedComponent>();
/// assert!(tracked_component_query.iter(&world).next().is_none());
///
/// world.register_component_hooks::<MyTrackedComponent>().on_add(|mut world, context| {
///    let mut tracked_entities = world.resource_mut::<TrackedEntities>();
///   tracked_entities.0.insert(context.entity);
/// });
///
/// world.register_component_hooks::<MyTrackedComponent>().on_remove(|mut world, context| {
///   let mut tracked_entities = world.resource_mut::<TrackedEntities>();
///   tracked_entities.0.remove(&context.entity);
/// });
///
/// let entity = world.spawn(MyTrackedComponent).id();
/// let tracked_entities = world.resource::<TrackedEntities>();
/// assert!(tracked_entities.0.contains(&entity));
///
/// world.despawn(entity);
/// let tracked_entities = world.resource::<TrackedEntities>();
/// assert!(!tracked_entities.0.contains(&entity));
/// ```
#[derive(Debug, Clone, Default)]
pub struct ComponentHooks {
    pub(crate) on_add: Option<ComponentHook>,
    pub(crate) on_insert: Option<ComponentHook>,
    pub(crate) on_replace: Option<ComponentHook>,
    pub(crate) on_remove: Option<ComponentHook>,
    pub(crate) on_despawn: Option<ComponentHook>,
}

impl ComponentHooks {
    pub(crate) fn update_from_component<C: Component + ?Sized>(&mut self) -> &mut Self {
        if let Some(hook) = C::on_add() {
            self.on_add(hook);
        }
        if let Some(hook) = C::on_insert() {
            self.on_insert(hook);
        }
        if let Some(hook) = C::on_replace() {
            self.on_replace(hook);
        }
        if let Some(hook) = C::on_remove() {
            self.on_remove(hook);
        }
        if let Some(hook) = C::on_despawn() {
            self.on_despawn(hook);
        }

        self
    }

    /// Register a [`ComponentHook`] that will be run when this component is added to an entity.
    /// An `on_add` hook will always run before `on_insert` hooks. Spawning an entity counts as
    /// adding all of its components.
    ///
    /// # Panics
    ///
    /// Will panic if the component already has an `on_add` hook
    pub fn on_add(&mut self, hook: ComponentHook) -> &mut Self {
        self.try_on_add(hook)
            .expect("Component already has an on_add hook")
    }

    /// Register a [`ComponentHook`] that will be run when this component is added (with `.insert`)
    /// or replaced.
    ///
    /// An `on_insert` hook always runs after any `on_add` hooks (if the entity didn't already have the component).
    ///
    /// # Warning
    ///
    /// The hook won't run if the component is already present and is only mutated, such as in a system via a query.
    /// As a result, this is *not* an appropriate mechanism for reliably updating indexes and other caches.
    ///
    /// # Panics
    ///
    /// Will panic if the component already has an `on_insert` hook
    pub fn on_insert(&mut self, hook: ComponentHook) -> &mut Self {
        self.try_on_insert(hook)
            .expect("Component already has an on_insert hook")
    }

    /// Register a [`ComponentHook`] that will be run when this component is about to be dropped,
    /// such as being replaced (with `.insert`) or removed.
    ///
    /// If this component is inserted onto an entity that already has it, this hook will run before the value is replaced,
    /// allowing access to the previous data just before it is dropped.
    /// This hook does *not* run if the entity did not already have this component.
    ///
    /// An `on_replace` hook always runs before any `on_remove` hooks (if the component is being removed from the entity).
    ///
    /// # Warning
    ///
    /// The hook won't run if the component is already present and is only mutated, such as in a system via a query.
    /// As a result, this is *not* an appropriate mechanism for reliably updating indexes and other caches.
    ///
    /// # Panics
    ///
    /// Will panic if the component already has an `on_replace` hook
    pub fn on_replace(&mut self, hook: ComponentHook) -> &mut Self {
        self.try_on_replace(hook)
            .expect("Component already has an on_replace hook")
    }

    /// Register a [`ComponentHook`] that will be run when this component is removed from an entity.
    /// Despawning an entity counts as removing all of its components.
    ///
    /// # Panics
    ///
    /// Will panic if the component already has an `on_remove` hook
    pub fn on_remove(&mut self, hook: ComponentHook) -> &mut Self {
        self.try_on_remove(hook)
            .expect("Component already has an on_remove hook")
    }

    /// Register a [`ComponentHook`] that will be run for each component on an entity when it is despawned.
    ///
    /// # Panics
    ///
    /// Will panic if the component already has an `on_despawn` hook
    pub fn on_despawn(&mut self, hook: ComponentHook) -> &mut Self {
        self.try_on_despawn(hook)
            .expect("Component already has an on_despawn hook")
    }

    /// Attempt to register a [`ComponentHook`] that will be run when this component is added to an entity.
    ///
    /// This is a fallible version of [`Self::on_add`].
    ///
    /// Returns `None` if the component already has an `on_add` hook.
    pub fn try_on_add(&mut self, hook: ComponentHook) -> Option<&mut Self> {
        if self.on_add.is_some() {
            return None;
        }
        self.on_add = Some(hook);
        Some(self)
    }

    /// Attempt to register a [`ComponentHook`] that will be run when this component is added (with `.insert`)
    ///
    /// This is a fallible version of [`Self::on_insert`].
    ///
    /// Returns `None` if the component already has an `on_insert` hook.
    pub fn try_on_insert(&mut self, hook: ComponentHook) -> Option<&mut Self> {
        if self.on_insert.is_some() {
            return None;
        }
        self.on_insert = Some(hook);
        Some(self)
    }

    /// Attempt to register a [`ComponentHook`] that will be run when this component is replaced (with `.insert`) or removed
    ///
    /// This is a fallible version of [`Self::on_replace`].
    ///
    /// Returns `None` if the component already has an `on_replace` hook.
    pub fn try_on_replace(&mut self, hook: ComponentHook) -> Option<&mut Self> {
        if self.on_replace.is_some() {
            return None;
        }
        self.on_replace = Some(hook);
        Some(self)
    }

    /// Attempt to register a [`ComponentHook`] that will be run when this component is removed from an entity.
    ///
    /// This is a fallible version of [`Self::on_remove`].
    ///
    /// Returns `None` if the component already has an `on_remove` hook.
    pub fn try_on_remove(&mut self, hook: ComponentHook) -> Option<&mut Self> {
        if self.on_remove.is_some() {
            return None;
        }
        self.on_remove = Some(hook);
        Some(self)
    }

    /// Attempt to register a [`ComponentHook`] that will be run for each component on an entity when it is despawned.
    ///
    /// This is a fallible version of [`Self::on_despawn`].
    ///
    /// Returns `None` if the component already has an `on_despawn` hook.
    pub fn try_on_despawn(&mut self, hook: ComponentHook) -> Option<&mut Self> {
        if self.on_despawn.is_some() {
            return None;
        }
        self.on_despawn = Some(hook);
        Some(self)
    }
}

/// Stores metadata for a type of component or resource stored in a specific [`World`].
#[derive(Debug, Clone)]
pub struct ComponentInfo {
    id: ComponentId,
    descriptor: ComponentDescriptor,
    hooks: ComponentHooks,
    required_components: RequiredComponents,
    required_by: HashSet<ComponentId>,
}

impl ComponentInfo {
    /// Returns a value uniquely identifying the current component.
    #[inline]
    pub fn id(&self) -> ComponentId {
        self.id
    }

    /// Returns the name of the current component.
    #[inline]
    pub fn name(&self) -> &str {
        &self.descriptor.name
    }

    /// Returns `true` if the current component is mutable.
    #[inline]
    pub fn mutable(&self) -> bool {
        self.descriptor.mutable
    }

    /// Returns [`ComponentCloneBehavior`] of the current component.
    #[inline]
    pub fn clone_behavior(&self) -> &ComponentCloneBehavior {
        &self.descriptor.clone_behavior
    }

    /// Returns the [`TypeId`] of the underlying component type.
    /// Returns `None` if the component does not correspond to a Rust type.
    #[inline]
    pub fn type_id(&self) -> Option<TypeId> {
        self.descriptor.type_id
    }

    /// Returns the layout used to store values of this component in memory.
    #[inline]
    pub fn layout(&self) -> Layout {
        self.descriptor.layout
    }

    #[inline]
    /// Get the function which should be called to clean up values of
    /// the underlying component type. This maps to the
    /// [`Drop`] implementation for 'normal' Rust components
    ///
    /// Returns `None` if values of the underlying component type don't
    /// need to be dropped, e.g. as reported by [`needs_drop`].
    pub fn drop(&self) -> Option<unsafe fn(OwningPtr<'_>)> {
        self.descriptor.drop
    }

    /// Returns a value indicating the storage strategy for the current component.
    #[inline]
    pub fn storage_type(&self) -> StorageType {
        self.descriptor.storage_type
    }

    /// Returns `true` if the underlying component type can be freely shared between threads.
    /// If this returns `false`, then extra care must be taken to ensure that components
    /// are not accessed from the wrong thread.
    #[inline]
    pub fn is_send_and_sync(&self) -> bool {
        self.descriptor.is_send_and_sync
    }

    /// Create a new [`ComponentInfo`].
    pub(crate) fn new(id: ComponentId, descriptor: ComponentDescriptor) -> Self {
        ComponentInfo {
            id,
            descriptor,
            hooks: Default::default(),
            required_components: Default::default(),
            required_by: Default::default(),
        }
    }

    /// Update the given flags to include any [`ComponentHook`] registered to self
    #[inline]
    pub(crate) fn update_archetype_flags(&self, flags: &mut ArchetypeFlags) {
        if self.hooks().on_add.is_some() {
            flags.insert(ArchetypeFlags::ON_ADD_HOOK);
        }
        if self.hooks().on_insert.is_some() {
            flags.insert(ArchetypeFlags::ON_INSERT_HOOK);
        }
        if self.hooks().on_replace.is_some() {
            flags.insert(ArchetypeFlags::ON_REPLACE_HOOK);
        }
        if self.hooks().on_remove.is_some() {
            flags.insert(ArchetypeFlags::ON_REMOVE_HOOK);
        }
        if self.hooks().on_despawn.is_some() {
            flags.insert(ArchetypeFlags::ON_DESPAWN_HOOK);
        }
    }

    /// Provides a reference to the collection of hooks associated with this [`Component`]
    pub fn hooks(&self) -> &ComponentHooks {
        &self.hooks
    }

    /// Retrieves the [`RequiredComponents`] collection, which contains all required components (and their constructors)
    /// needed by this component. This includes _recursive_ required components.
    pub fn required_components(&self) -> &RequiredComponents {
        &self.required_components
    }
}

/// A value which uniquely identifies the type of a [`Component`] or [`Resource`] within a
/// [`World`].
///
/// Each time a new `Component` type is registered within a `World` using
/// e.g. [`World::register_component`] or [`World::register_component_with_descriptor`]
/// or a Resource with e.g. [`World::init_resource`],
/// a corresponding `ComponentId` is created to track it.
///
/// While the distinction between `ComponentId` and [`TypeId`] may seem superficial, breaking them
/// into two separate but related concepts allows components to exist outside of Rust's type system.
/// Each Rust type registered as a `Component` will have a corresponding `ComponentId`, but additional
/// `ComponentId`s may exist in a `World` to track components which cannot be
/// represented as Rust types for scripting or other advanced use-cases.
///
/// A `ComponentId` is tightly coupled to its parent `World`. Attempting to use a `ComponentId` from
/// one `World` to access the metadata of a `Component` in a different `World` is undefined behavior
/// and must not be attempted.
///
/// Given a type `T` which implements [`Component`], the `ComponentId` for `T` can be retrieved
/// from a `World` using [`World::component_id()`] or via [`Components::component_id()`]. Access
/// to the `ComponentId` for a [`Resource`] is available via [`Components::resource_id()`].
#[derive(Debug, Copy, Clone, Hash, Ord, PartialOrd, Eq, PartialEq)]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, Hash, PartialEq, Clone)
)]
pub struct ComponentId(usize);

impl ComponentId {
    /// Creates a new [`ComponentId`].
    ///
    /// The `index` is a unique value associated with each type of component in a given world.
    /// Usually, this value is taken from a counter incremented for each type of component registered with the world.
    #[inline]
    pub const fn new(index: usize) -> ComponentId {
        ComponentId(index)
    }

    /// Returns the index of the current component.
    #[inline]
    pub fn index(self) -> usize {
        self.0
    }
}

impl SparseSetIndex for ComponentId {
    #[inline]
    fn sparse_set_index(&self) -> usize {
        self.index()
    }

    #[inline]
    fn get_sparse_set_index(value: usize) -> Self {
        Self(value)
    }
}

/// A value describing a component or resource, which may or may not correspond to a Rust type.
#[derive(Clone)]
pub struct ComponentDescriptor {
    name: Cow<'static, str>,
    // SAFETY: This must remain private. It must match the statically known StorageType of the
    // associated rust component type if one exists.
    storage_type: StorageType,
    // SAFETY: This must remain private. It must only be set to "true" if this component is
    // actually Send + Sync
    is_send_and_sync: bool,
    type_id: Option<TypeId>,
    layout: Layout,
    // SAFETY: this function must be safe to call with pointers pointing to items of the type
    // this descriptor describes.
    // None if the underlying type doesn't need to be dropped
    drop: Option<for<'a> unsafe fn(OwningPtr<'a>)>,
    mutable: bool,
    clone_behavior: ComponentCloneBehavior,
}

// We need to ignore the `drop` field in our `Debug` impl
impl Debug for ComponentDescriptor {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("ComponentDescriptor")
            .field("name", &self.name)
            .field("storage_type", &self.storage_type)
            .field("is_send_and_sync", &self.is_send_and_sync)
            .field("type_id", &self.type_id)
            .field("layout", &self.layout)
            .field("mutable", &self.mutable)
            .field("clone_behavior", &self.clone_behavior)
            .finish()
    }
}

impl ComponentDescriptor {
    /// # Safety
    ///
    /// `x` must point to a valid value of type `T`.
    unsafe fn drop_ptr<T>(x: OwningPtr<'_>) {
        // SAFETY: Contract is required to be upheld by the caller.
        unsafe {
            x.drop_as::<T>();
        }
    }

    /// Create a new `ComponentDescriptor` for the type `T`.
    pub fn new<T: Component>() -> Self {
        Self {
            name: Cow::Borrowed(core::any::type_name::<T>()),
            storage_type: T::STORAGE_TYPE,
            is_send_and_sync: true,
            type_id: Some(TypeId::of::<T>()),
            layout: Layout::new::<T>(),
            drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
            mutable: T::Mutability::MUTABLE,
            clone_behavior: T::clone_behavior(),
        }
    }

    /// Create a new `ComponentDescriptor`.
    ///
    /// # Safety
    /// - the `drop` fn must be usable on a pointer with a value of the layout `layout`
    /// - the component type must be safe to access from any thread (Send + Sync in rust terms)
    pub unsafe fn new_with_layout(
        name: impl Into<Cow<'static, str>>,
        storage_type: StorageType,
        layout: Layout,
        drop: Option<for<'a> unsafe fn(OwningPtr<'a>)>,
        mutable: bool,
        clone_behavior: ComponentCloneBehavior,
    ) -> Self {
        Self {
            name: name.into(),
            storage_type,
            is_send_and_sync: true,
            type_id: None,
            layout,
            drop,
            mutable,
            clone_behavior,
        }
    }

    /// Create a new `ComponentDescriptor` for a resource.
    ///
    /// The [`StorageType`] for resources is always [`StorageType::Table`].
    pub fn new_resource<T: Resource>() -> Self {
        Self {
            name: Cow::Borrowed(core::any::type_name::<T>()),
            // PERF: `SparseStorage` may actually be a more
            // reasonable choice as `storage_type` for resources.
            storage_type: StorageType::Table,
            is_send_and_sync: true,
            type_id: Some(TypeId::of::<T>()),
            layout: Layout::new::<T>(),
            drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
            mutable: true,
            clone_behavior: ComponentCloneBehavior::Default,
        }
    }

    fn new_non_send<T: Any>(storage_type: StorageType) -> Self {
        Self {
            name: Cow::Borrowed(core::any::type_name::<T>()),
            storage_type,
            is_send_and_sync: false,
            type_id: Some(TypeId::of::<T>()),
            layout: Layout::new::<T>(),
            drop: needs_drop::<T>().then_some(Self::drop_ptr::<T> as _),
            mutable: true,
            clone_behavior: ComponentCloneBehavior::Default,
        }
    }

    /// Returns a value indicating the storage strategy for the current component.
    #[inline]
    pub fn storage_type(&self) -> StorageType {
        self.storage_type
    }

    /// Returns the [`TypeId`] of the underlying component type.
    /// Returns `None` if the component does not correspond to a Rust type.
    #[inline]
    pub fn type_id(&self) -> Option<TypeId> {
        self.type_id
    }

    /// Returns the name of the current component.
    #[inline]
    pub fn name(&self) -> &str {
        self.name.as_ref()
    }

    /// Returns whether this component is mutable.
    #[inline]
    pub fn mutable(&self) -> bool {
        self.mutable
    }
}

/// Function type that can be used to clone an entity.
pub type ComponentCloneFn = fn(&SourceComponent, &mut ComponentCloneCtx);

/// The clone behavior to use when cloning a [`Component`].
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub enum ComponentCloneBehavior {
    /// Uses the default behavior (which is passed to [`ComponentCloneBehavior::resolve`])
    #[default]
    Default,
    /// Do not clone this component.
    Ignore,
    /// Uses a custom [`ComponentCloneFn`].
    Custom(ComponentCloneFn),
}

impl ComponentCloneBehavior {
    /// Set clone handler based on `Clone` trait.
    ///
    /// If set as a handler for a component that is not the same as the one used to create this handler, it will panic.
    pub fn clone<C: Component + Clone>() -> Self {
        Self::Custom(component_clone_via_clone::<C>)
    }

    /// Set clone handler based on `Reflect` trait.
    #[cfg(feature = "bevy_reflect")]
    pub fn reflect() -> Self {
        Self::Custom(component_clone_via_reflect)
    }

    /// Returns the "global default"
    pub fn global_default_fn() -> ComponentCloneFn {
        #[cfg(feature = "bevy_reflect")]
        return component_clone_via_reflect;
        #[cfg(not(feature = "bevy_reflect"))]
        return component_clone_ignore;
    }

    /// Resolves the [`ComponentCloneBehavior`] to a [`ComponentCloneFn`]. If [`ComponentCloneBehavior::Default`] is
    /// specified, the given `default` function will be used.
    pub fn resolve(&self, default: ComponentCloneFn) -> ComponentCloneFn {
        match self {
            ComponentCloneBehavior::Default => default,
            ComponentCloneBehavior::Ignore => component_clone_ignore,
            ComponentCloneBehavior::Custom(custom) => *custom,
        }
    }
}

/// A queued component registration.
struct QueuedRegistration {
    registrator: Box<dyn FnOnce(&mut ComponentsRegistrator, ComponentId, ComponentDescriptor)>,
    id: ComponentId,
    descriptor: ComponentDescriptor,
}

impl QueuedRegistration {
    /// Creates the [`QueuedRegistration`].
    ///
    /// # Safety
    ///
    /// [`ComponentId`] must be unique.
    unsafe fn new(
        id: ComponentId,
        descriptor: ComponentDescriptor,
        func: impl FnOnce(&mut ComponentsRegistrator, ComponentId, ComponentDescriptor) + 'static,
    ) -> Self {
        Self {
            registrator: Box::new(func),
            id,
            descriptor,
        }
    }

    /// Performs the registration, returning the now valid [`ComponentId`].
    fn register(self, registrator: &mut ComponentsRegistrator) -> ComponentId {
        (self.registrator)(registrator, self.id, self.descriptor);
        self.id
    }
}

/// Allows queuing components to be registered.
#[derive(Default)]
pub struct QueuedComponents {
    components: TypeIdMap<QueuedRegistration>,
    resources: TypeIdMap<QueuedRegistration>,
    dynamic_registrations: Vec<QueuedRegistration>,
}

impl Debug for QueuedComponents {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        let components = self
            .components
            .iter()
            .map(|(type_id, queued)| (type_id, queued.id))
            .collect::<Vec<_>>();
        let resources = self
            .resources
            .iter()
            .map(|(type_id, queued)| (type_id, queued.id))
            .collect::<Vec<_>>();
        let dynamic_registrations = self
            .dynamic_registrations
            .iter()
            .map(|queued| queued.id)
            .collect::<Vec<_>>();
        write!(f, "components: {components:?}, resources: {resources:?}, dynamic_registrations: {dynamic_registrations:?}")
    }
}

/// Generates [`ComponentId`]s.
#[derive(Debug, Default)]
pub struct ComponentIds {
    next: bevy_platform::sync::atomic::AtomicUsize,
}

impl ComponentIds {
    /// Peeks the next [`ComponentId`] to be generated without generating it.
    pub fn peek(&self) -> ComponentId {
        ComponentId(
            self.next
                .load(bevy_platform::sync::atomic::Ordering::Relaxed),
        )
    }

    /// Generates and returns the next [`ComponentId`].
    pub fn next(&self) -> ComponentId {
        ComponentId(
            self.next
                .fetch_add(1, bevy_platform::sync::atomic::Ordering::Relaxed),
        )
    }

    /// Peeks the next [`ComponentId`] to be generated without generating it.
    pub fn peek_mut(&mut self) -> ComponentId {
        ComponentId(*self.next.get_mut())
    }

    /// Generates and returns the next [`ComponentId`].
    pub fn next_mut(&mut self) -> ComponentId {
        let id = self.next.get_mut();
        let result = ComponentId(*id);
        *id += 1;
        result
    }

    /// Returns the number of [`ComponentId`]s generated.
    pub fn len(&self) -> usize {
        self.peek().0
    }

    /// Returns true if and only if no ids have been generated.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

/// A type that enables queuing registration in [`Components`].
///
/// # Note
///
/// These queued registrations return [`ComponentId`]s.
/// These ids are not yet valid, but they will become valid
/// when either [`ComponentsRegistrator::apply_queued_registrations`] is called or the same registration is made directly.
/// In either case, the returned [`ComponentId`]s will be correct, but they are not correct yet.
///
/// Generally, that means these [`ComponentId`]s can be safely used for read-only purposes.
/// Modifying the contents of the world through these [`ComponentId`]s directly without waiting for them to be fully registered
/// and without then confirming that they have been fully registered is not supported.
/// Hence, extra care is needed with these [`ComponentId`]s to ensure all safety rules are followed.
///
/// As a rule of thumb, if you have mutable access to [`ComponentsRegistrator`], prefer to use that instead.
/// Use this only if you need to know the id of a component but do not need to modify the contents of the world based on that id.
#[derive(Clone, Copy)]
pub struct ComponentsQueuedRegistrator<'w> {
    components: &'w Components,
    ids: &'w ComponentIds,
}

impl Deref for ComponentsQueuedRegistrator<'_> {
    type Target = Components;

    fn deref(&self) -> &Self::Target {
        self.components
    }
}

impl<'w> ComponentsQueuedRegistrator<'w> {
    /// Constructs a new [`ComponentsQueuedRegistrator`].
    ///
    /// # Safety
    ///
    /// The [`Components`] and [`ComponentIds`] must match.
    /// For example, they must be from the same world.
    pub unsafe fn new(components: &'w Components, ids: &'w ComponentIds) -> Self {
        Self { components, ids }
    }

    /// Queues this function to run as a component registrator.
    ///
    /// # Safety
    ///
    /// The [`TypeId`] must not already be registered or queued as a component.
    unsafe fn force_register_arbitrary_component(
        &self,
        type_id: TypeId,
        descriptor: ComponentDescriptor,
        func: impl FnOnce(&mut ComponentsRegistrator, ComponentId, ComponentDescriptor) + 'static,
    ) -> ComponentId {
        let id = self.ids.next();
        self.components
            .queued
            .write()
            .unwrap_or_else(PoisonError::into_inner)
            .components
            .insert(
                type_id,
                // SAFETY: The id was just generated.
                unsafe { QueuedRegistration::new(id, descriptor, func) },
            );
        id
    }

    /// Queues this function to run as a resource registrator.
    ///
    /// # Safety
    ///
    /// The [`TypeId`] must not already be registered or queued as a resource.
    unsafe fn force_register_arbitrary_resource(
        &self,
        type_id: TypeId,
        descriptor: ComponentDescriptor,
        func: impl FnOnce(&mut ComponentsRegistrator, ComponentId, ComponentDescriptor) + 'static,
    ) -> ComponentId {
        let id = self.ids.next();
        self.components
            .queued
            .write()
            .unwrap_or_else(PoisonError::into_inner)
            .resources
            .insert(
                type_id,
                // SAFETY: The id was just generated.
                unsafe { QueuedRegistration::new(id, descriptor, func) },
            );
        id
    }

    /// Queues this function to run as a dynamic registrator.
    fn force_register_arbitrary_dynamic(
        &self,
        descriptor: ComponentDescriptor,
        func: impl FnOnce(&mut ComponentsRegistrator, ComponentId, ComponentDescriptor) + 'static,
    ) -> ComponentId {
        let id = self.ids.next();
        self.components
            .queued
            .write()
            .unwrap_or_else(PoisonError::into_inner)
            .dynamic_registrations
            .push(
                // SAFETY: The id was just generated.
                unsafe { QueuedRegistration::new(id, descriptor, func) },
            );
        id
    }

    /// This is a queued version of [`ComponentsRegistrator::register_component`].
    /// This will reserve an id and queue the registration.
    /// These registrations will be carried out at the next opportunity.
    ///
    /// If this has already been registered or queued, this returns the previous [`ComponentId`].
    ///
    /// # Note
    ///
    /// Technically speaking, the returned [`ComponentId`] is not valid, but it will become valid later.
    /// See type level docs for details.
    #[inline]
    pub fn queue_register_component<T: Component>(&self) -> ComponentId {
        self.component_id::<T>().unwrap_or_else(|| {
            // SAFETY: We just checked that this type was not in the queue.
            unsafe {
                self.force_register_arbitrary_component(
                    TypeId::of::<T>(),
                    ComponentDescriptor::new::<T>(),
                    |registrator, id, _descriptor| {
                        // SAFETY: We just checked that this is not currently registered or queued, and if it was registered since, this would have been dropped from the queue.
                        #[expect(unused_unsafe, reason = "More precise to specify.")]
                        unsafe {
                            registrator.register_component_unchecked::<T>(&mut Vec::new(), id);
                        }
                    },
                )
            }
        })
    }

    /// This is a queued version of [`ComponentsRegistrator::register_component_with_descriptor`].
    /// This will reserve an id and queue the registration.
    /// These registrations will be carried out at the next opportunity.
    ///
    /// # Note
    ///
    /// Technically speaking, the returned [`ComponentId`] is not valid, but it will become valid later.
    /// See type level docs for details.
    #[inline]
    pub fn queue_register_component_with_descriptor(
        &self,
        descriptor: ComponentDescriptor,
    ) -> ComponentId {
        self.force_register_arbitrary_dynamic(descriptor, |registrator, id, descriptor| {
            // SAFETY: Id uniqueness handled by caller.
            unsafe {
                registrator.register_component_inner(id, descriptor);
            }
        })
    }

    /// This is a queued version of [`ComponentsRegistrator::register_resource`].
    /// This will reserve an id and queue the registration.
    /// These registrations will be carried out at the next opportunity.
    ///
    /// If this has already been registered or queued, this returns the previous [`ComponentId`].
    ///
    /// # Note
    ///
    /// Technically speaking, the returned [`ComponentId`] is not valid, but it will become valid later.
    /// See type level docs for details.
    #[inline]
    pub fn queue_register_resource<T: Resource>(&self) -> ComponentId {
        let type_id = TypeId::of::<T>();
        self.get_resource_id(type_id).unwrap_or_else(|| {
            // SAFETY: We just checked that this type was not in the queue.
            unsafe {
                self.force_register_arbitrary_resource(
                    type_id,
                    ComponentDescriptor::new_resource::<T>(),
                    move |registrator, id, descriptor| {
                        // SAFETY: We just checked that this is not currently registered or queued, and if it was registered since, this would have been dropped from the queue.
                        // SAFETY: Id uniqueness handled by caller, and the type_id matches descriptor.
                        #[expect(unused_unsafe, reason = "More precise to specify.")]
                        unsafe {
                            registrator.register_resource_unchecked(type_id, id, descriptor);
                        }
                    },
                )
            }
        })
    }

    /// This is a queued version of [`ComponentsRegistrator::register_non_send`].
    /// This will reserve an id and queue the registration.
    /// These registrations will be carried out at the next opportunity.
    ///
    /// If this has already been registered or queued, this returns the previous [`ComponentId`].
    ///
    /// # Note
    ///
    /// Technically speaking, the returned [`ComponentId`] is not valid, but it will become valid later.
    /// See type level docs for details.
    #[inline]
    pub fn queue_register_non_send<T: Any>(&self) -> ComponentId {
        let type_id = TypeId::of::<T>();
        self.get_resource_id(type_id).unwrap_or_else(|| {
            // SAFETY: We just checked that this type was not in the queue.
            unsafe {
                self.force_register_arbitrary_resource(
                    type_id,
                    ComponentDescriptor::new_non_send::<T>(StorageType::default()),
                    move |registrator, id, descriptor| {
                        // SAFETY: We just checked that this is not currently registered or queued, and if it was registered since, this would have been dropped from the queue.
                        // SAFETY: Id uniqueness handled by caller, and the type_id matches descriptor.
                        #[expect(unused_unsafe, reason = "More precise to specify.")]
                        unsafe {
                            registrator.register_resource_unchecked(type_id, id, descriptor);
                        }
                    },
                )
            }
        })
    }

    /// This is a queued version of [`ComponentsRegistrator::register_resource_with_descriptor`].
    /// This will reserve an id and queue the registration.
    /// These registrations will be carried out at the next opportunity.
    ///
    /// # Note
    ///
    /// Technically speaking, the returned [`ComponentId`] is not valid, but it will become valid later.
    /// See type level docs for details.
    #[inline]
    pub fn queue_register_resource_with_descriptor(
        &self,
        descriptor: ComponentDescriptor,
    ) -> ComponentId {
        self.force_register_arbitrary_dynamic(descriptor, |registrator, id, descriptor| {
            // SAFETY: Id uniqueness handled by caller.
            unsafe {
                registrator.register_component_inner(id, descriptor);
            }
        })
    }
}

/// A [`Components`] wrapper that enables additional features, like registration.
pub struct ComponentsRegistrator<'w> {
    components: &'w mut Components,
    ids: &'w mut ComponentIds,
}

impl Deref for ComponentsRegistrator<'_> {
    type Target = Components;

    fn deref(&self) -> &Self::Target {
        self.components
    }
}

impl DerefMut for ComponentsRegistrator<'_> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.components
    }
}

impl<'w> ComponentsRegistrator<'w> {
    /// Constructs a new [`ComponentsRegistrator`].
    ///
    /// # Safety
    ///
    /// The [`Components`] and [`ComponentIds`] must match.
    /// For example, they must be from the same world.
    pub unsafe fn new(components: &'w mut Components, ids: &'w mut ComponentIds) -> Self {
        Self { components, ids }
    }

    /// Converts this [`ComponentsRegistrator`] into a [`ComponentsQueuedRegistrator`].
    /// This is intended for use to pass this value to a function that requires [`ComponentsQueuedRegistrator`].
    /// It is generally not a good idea to queue a registration when you can instead register directly on this type.
    pub fn as_queued(&self) -> ComponentsQueuedRegistrator<'_> {
        // SAFETY: ensured by the caller that created self.
        unsafe { ComponentsQueuedRegistrator::new(self.components, self.ids) }
    }

    /// Applies every queued registration.
    /// This ensures that every valid [`ComponentId`] is registered,
    /// enabling retrieving [`ComponentInfo`], etc.
    pub fn apply_queued_registrations(&mut self) {
        if !self.any_queued_mut() {
            return;
        }

        // Note:
        //
        // This is not just draining the queue. We need to empty the queue without removing the information from `Components`.
        // If we drained directly, we could break invariance.
        //
        // For example, say `ComponentA` and `ComponentB` are queued, and `ComponentA` requires `ComponentB`.
        // If we drain directly, and `ComponentA` was the first to be registered, then, when `ComponentA`
        // registers `ComponentB` in `Component::register_required_components`,
        // `Components` will not know that `ComponentB` was queued
        // (since it will have been drained from the queue.)
        // If that happened, `Components` would assign a new `ComponentId` to `ComponentB`
        // which would be *different* than the id it was assigned in the queue.
        // Then, when the drain iterator gets to `ComponentB`,
        // it would be unsafely registering `ComponentB`, which is already registered.
        //
        // As a result, we need to pop from each queue one by one instead of draining.

        // components
        while let Some(registrator) = {
            let queued = self
                .components
                .queued
                .get_mut()
                .unwrap_or_else(PoisonError::into_inner);
            queued.components.keys().next().copied().map(|type_id| {
                // SAFETY: the id just came from a valid iterator.
                unsafe { queued.components.remove(&type_id).debug_checked_unwrap() }
            })
        } {
            registrator.register(self);
        }

        // resources
        while let Some(registrator) = {
            let queued = self
                .components
                .queued
                .get_mut()
                .unwrap_or_else(PoisonError::into_inner);
            queued.resources.keys().next().copied().map(|type_id| {
                // SAFETY: the id just came from a valid iterator.
                unsafe { queued.resources.remove(&type_id).debug_checked_unwrap() }
            })
        } {
            registrator.register(self);
        }

        // dynamic
        let queued = &mut self
            .components
            .queued
            .get_mut()
            .unwrap_or_else(PoisonError::into_inner);
        if !queued.dynamic_registrations.is_empty() {
            for registrator in core::mem::take(&mut queued.dynamic_registrations) {
                registrator.register(self);
            }
        }
    }

    /// Registers a [`Component`] of type `T` with this instance.
    /// If a component of this type has already been registered, this will return
    /// the ID of the pre-existing component.
    ///
    /// # See also
    ///
    /// * [`Components::component_id()`]
    /// * [`ComponentsRegistrator::register_component_with_descriptor()`]
    #[inline]
    pub fn register_component<T: Component>(&mut self) -> ComponentId {
        self.register_component_checked::<T>(&mut Vec::new())
    }

    /// Same as [`Self::register_component_unchecked`] but keeps a checks for safety.
    #[inline]
    fn register_component_checked<T: Component>(
        &mut self,
        recursion_check_stack: &mut Vec<ComponentId>,
    ) -> ComponentId {
        let type_id = TypeId::of::<T>();
        if let Some(id) = self.indices.get(&type_id) {
            return *id;
        }

        if let Some(registrator) = self
            .components
            .queued
            .get_mut()
            .unwrap_or_else(PoisonError::into_inner)
            .components
            .remove(&type_id)
        {
            // If we are trying to register something that has already been queued, we respect the queue.
            // Just like if we are trying to register something that already is, we respect the first registration.
            return registrator.register(self);
        }

        let id = self.ids.next_mut();
        // SAFETY: The component is not currently registered, and the id is fresh.
        unsafe {
            self.register_component_unchecked::<T>(recursion_check_stack, id);
        }
        id
    }

    /// # Safety
    ///
    /// Neither this component, nor its id may be registered or queued. This must be a new registration.
    #[inline]
    unsafe fn register_component_unchecked<T: Component>(
        &mut self,
        recursion_check_stack: &mut Vec<ComponentId>,
        id: ComponentId,
    ) {
        // SAFETY: ensured by caller.
        unsafe {
            self.register_component_inner(id, ComponentDescriptor::new::<T>());
        }
        let type_id = TypeId::of::<T>();
        let prev = self.indices.insert(type_id, id);
        debug_assert!(prev.is_none());

        let mut required_components = RequiredComponents::default();
        T::register_required_components(
            id,
            self,
            &mut required_components,
            0,
            recursion_check_stack,
        );
        // SAFETY: we just inserted it in `register_component_inner`
        let info = unsafe {
            &mut self
                .components
                .components
                .get_mut(id.0)
                .debug_checked_unwrap()
                .as_mut()
                .debug_checked_unwrap()
        };

        #[expect(
            deprecated,
            reason = "need to use this method until it is removed to ensure user defined components register hooks correctly"
        )]
        // TODO: Replace with `info.hooks.update_from_component::<T>();` once `Component::register_component_hooks` is removed
        T::register_component_hooks(&mut info.hooks);

        info.required_components = required_components;
    }

    /// Registers a component described by `descriptor`.
    ///
    /// # Note
    ///
    /// If this method is called multiple times with identical descriptors, a distinct [`ComponentId`]
    /// will be created for each one.
    ///
    /// # See also
    ///
    /// * [`Components::component_id()`]
    /// * [`ComponentsRegistrator::register_component()`]
    #[inline]
    pub fn register_component_with_descriptor(
        &mut self,
        descriptor: ComponentDescriptor,
    ) -> ComponentId {
        let id = self.ids.next_mut();
        // SAFETY: The id is fresh.
        unsafe {
            self.register_component_inner(id, descriptor);
        }
        id
    }

    // NOTE: This should maybe be private, but it is currently public so that `bevy_ecs_macros` can use it.
    //       We can't directly move this there either, because this uses `Components::get_required_by_mut`,
    //       which is private, and could be equally risky to expose to users.
    /// Registers the given component `R` and [required components] inherited from it as required by `T`,
    /// and adds `T` to their lists of requirees.
    ///
    /// The given `inheritance_depth` determines how many levels of inheritance deep the requirement is.
    /// A direct requirement has a depth of `0`, and each level of inheritance increases the depth by `1`.
    /// Lower depths are more specific requirements, and can override existing less specific registrations.
    ///
    /// The `recursion_check_stack` allows checking whether this component tried to register itself as its
    /// own (indirect) required component.
    ///
    /// This method does *not* register any components as required by components that require `T`.
    ///
    /// Only use this method if you know what you are doing. In most cases, you should instead use [`World::register_required_components`],
    /// or the equivalent method in `bevy_app::App`.
    ///
    /// [required component]: Component#required-components
    #[doc(hidden)]
    pub fn register_required_components_manual<T: Component, R: Component>(
        &mut self,
        required_components: &mut RequiredComponents,
        constructor: fn() -> R,
        inheritance_depth: u16,
        recursion_check_stack: &mut Vec<ComponentId>,
    ) {
        let requiree = self.register_component_checked::<T>(recursion_check_stack);
        let required = self.register_component_checked::<R>(recursion_check_stack);

        // SAFETY: We just created the components.
        unsafe {
            self.register_required_components_manual_unchecked::<R>(
                requiree,
                required,
                required_components,
                constructor,
                inheritance_depth,
            );
        }
    }

    /// Registers a [`Resource`] of type `T` with this instance.
    /// If a resource of this type has already been registered, this will return
    /// the ID of the pre-existing resource.
    ///
    /// # See also
    ///
    /// * [`Components::resource_id()`]
    /// * [`ComponentsRegistrator::register_resource_with_descriptor()`]
    #[inline]
    pub fn register_resource<T: Resource>(&mut self) -> ComponentId {
        // SAFETY: The [`ComponentDescriptor`] matches the [`TypeId`]
        unsafe {
            self.register_resource_with(TypeId::of::<T>(), || {
                ComponentDescriptor::new_resource::<T>()
            })
        }
    }

    /// Registers a [non-send resource](crate::system::NonSend) of type `T` with this instance.
    /// If a resource of this type has already been registered, this will return
    /// the ID of the pre-existing resource.
    #[inline]
    pub fn register_non_send<T: Any>(&mut self) -> ComponentId {
        // SAFETY: The [`ComponentDescriptor`] matches the [`TypeId`]
        unsafe {
            self.register_resource_with(TypeId::of::<T>(), || {
                ComponentDescriptor::new_non_send::<T>(StorageType::default())
            })
        }
    }

    /// Same as [`Components::register_resource_unchecked`] but handles safety.
    ///
    /// # Safety
    ///
    /// The [`ComponentDescriptor`] must match the [`TypeId`].
    #[inline]
    unsafe fn register_resource_with(
        &mut self,
        type_id: TypeId,
        descriptor: impl FnOnce() -> ComponentDescriptor,
    ) -> ComponentId {
        if let Some(id) = self.resource_indices.get(&type_id) {
            return *id;
        }

        if let Some(registrator) = self
            .components
            .queued
            .get_mut()
            .unwrap_or_else(PoisonError::into_inner)
            .resources
            .remove(&type_id)
        {
            // If we are trying to register something that has already been queued, we respect the queue.
            // Just like if we are trying to register something that already is, we respect the first registration.
            return registrator.register(self);
        }

        let id = self.ids.next_mut();
        // SAFETY: The resource is not currently registered, the id is fresh, and the [`ComponentDescriptor`] matches the [`TypeId`]
        unsafe {
            self.register_resource_unchecked(type_id, id, descriptor());
        }
        id
    }

    /// Registers a [`Resource`] described by `descriptor`.
    ///
    /// # Note
    ///
    /// If this method is called multiple times with identical descriptors, a distinct [`ComponentId`]
    /// will be created for each one.
    ///
    /// # See also
    ///
    /// * [`Components::resource_id()`]
    /// * [`ComponentsRegistrator::register_resource()`]
    #[inline]
    pub fn register_resource_with_descriptor(
        &mut self,
        descriptor: ComponentDescriptor,
    ) -> ComponentId {
        let id = self.ids.next_mut();
        // SAFETY: The id is fresh.
        unsafe {
            self.register_component_inner(id, descriptor);
        }
        id
    }
}

/// Stores metadata associated with each kind of [`Component`] in a given [`World`].
#[derive(Debug, Default)]
pub struct Components {
    components: Vec<Option<ComponentInfo>>,
    indices: TypeIdMap<ComponentId>,
    resource_indices: TypeIdMap<ComponentId>,
    // This is kept internal and local to verify that no deadlocks can occor.
    queued: bevy_platform::sync::RwLock<QueuedComponents>,
}

impl Components {
    /// This registers any descriptor, component or resource.
    ///
    /// # Safety
    ///
    /// The id must have never been registered before. This must be a fresh registration.
    #[inline]
    unsafe fn register_component_inner(
        &mut self,
        id: ComponentId,
        descriptor: ComponentDescriptor,
    ) {
        let info = ComponentInfo::new(id, descriptor);
        let least_len = id.0 + 1;
        if self.components.len() < least_len {
            self.components.resize_with(least_len, || None);
        }
        // SAFETY: We just extended the vec to make this index valid.
        let slot = unsafe { self.components.get_mut(id.0).debug_checked_unwrap() };
        // Caller ensures id is unique
        debug_assert!(slot.is_none());
        *slot = Some(info);
    }

    /// Returns the number of components registered or queued with this instance.
    #[inline]
    pub fn len(&self) -> usize {
        self.num_queued() + self.num_registered()
    }

    /// Returns `true` if there are no components registered or queued with this instance. Otherwise, this returns `false`.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Returns the number of components registered with this instance.
    #[inline]
    pub fn num_queued(&self) -> usize {
        let queued = self.queued.read().unwrap_or_else(PoisonError::into_inner);
        queued.components.len() + queued.dynamic_registrations.len() + queued.resources.len()
    }

    /// Returns `true` if there are any components registered with this instance. Otherwise, this returns `false`.
    #[inline]
    pub fn any_queued(&self) -> bool {
        self.num_queued() > 0
    }

    /// A faster version of [`Self::num_queued`].
    #[inline]
    pub fn num_queued_mut(&mut self) -> usize {
        let queued = self
            .queued
            .get_mut()
            .unwrap_or_else(PoisonError::into_inner);
        queued.components.len() + queued.dynamic_registrations.len() + queued.resources.len()
    }

    /// A faster version of [`Self::any_queued`].
    #[inline]
    pub fn any_queued_mut(&mut self) -> bool {
        self.num_queued_mut() > 0
    }

    /// Returns the number of components registered with this instance.
    #[inline]
    pub fn num_registered(&self) -> usize {
        self.components.len()
    }

    /// Returns `true` if there are any components registered with this instance. Otherwise, this returns `false`.
    #[inline]
    pub fn any_registered(&self) -> bool {
        self.num_registered() > 0
    }

    /// Gets the metadata associated with the given component, if it is registered.
    /// This will return `None` if the id is not regiserted or is queued.
    ///
    /// This will return an incorrect result if `id` did not come from the same world as `self`. It may return `None` or a garbage value.
    #[inline]
    pub fn get_info(&self, id: ComponentId) -> Option<&ComponentInfo> {
        self.components.get(id.0).and_then(|info| info.as_ref())
    }

    /// Gets the [`ComponentDescriptor`] of the component with this [`ComponentId`] if it is present.
    /// This will return `None` only if the id is neither regisered nor queued to be registered.
    ///
    /// Currently, the [`Cow`] will be [`Cow::Owned`] if and only if the component is queued. It will be [`Cow::Borrowed`] otherwise.
    ///
    /// This will return an incorrect result if `id` did not come from the same world as `self`. It may return `None` or a garbage value.
    #[inline]
    pub fn get_descriptor<'a>(&'a self, id: ComponentId) -> Option<Cow<'a, ComponentDescriptor>> {
        self.components
            .get(id.0)
            .and_then(|info| info.as_ref().map(|info| Cow::Borrowed(&info.descriptor)))
            .or_else(|| {
                let queued = self.queued.read().unwrap_or_else(PoisonError::into_inner);
                // first check components, then resources, then dynamic
                queued
                    .components
                    .values()
                    .chain(queued.resources.values())
                    .chain(queued.dynamic_registrations.iter())
                    .find(|queued| queued.id == id)
                    .map(|queued| Cow::Owned(queued.descriptor.clone()))
            })
    }

    /// Gets the name of the component with this [`ComponentId`] if it is present.
    /// This will return `None` only if the id is neither regisered nor queued to be registered.
    ///
    /// This will return an incorrect result if `id` did not come from the same world as `self`. It may return `None` or a garbage value.
    #[inline]
    pub fn get_name<'a>(&'a self, id: ComponentId) -> Option<Cow<'a, str>> {
        self.components
            .get(id.0)
            .and_then(|info| {
                info.as_ref()
                    .map(|info| Cow::Borrowed(info.descriptor.name()))
            })
            .or_else(|| {
                let queued = self.queued.read().unwrap_or_else(PoisonError::into_inner);
                // first check components, then resources, then dynamic
                queued
                    .components
                    .values()
                    .chain(queued.resources.values())
                    .chain(queued.dynamic_registrations.iter())
                    .find(|queued| queued.id == id)
                    .map(|queued| queued.descriptor.name.clone())
            })
    }

    /// Gets the metadata associated with the given component.
    /// # Safety
    ///
    /// `id` must be a valid and fully registered [`ComponentId`].
    #[inline]
    pub unsafe fn get_info_unchecked(&self, id: ComponentId) -> &ComponentInfo {
        // SAFETY: The caller ensures `id` is valid.
        unsafe {
            self.components
                .get(id.0)
                .debug_checked_unwrap()
                .as_ref()
                .debug_checked_unwrap()
        }
    }

    #[inline]
    pub(crate) fn get_hooks_mut(&mut self, id: ComponentId) -> Option<&mut ComponentHooks> {
        self.components
            .get_mut(id.0)
            .and_then(|info| info.as_mut().map(|info| &mut info.hooks))
    }

    #[inline]
    pub(crate) fn get_required_components_mut(
        &mut self,
        id: ComponentId,
    ) -> Option<&mut RequiredComponents> {
        self.components
            .get_mut(id.0)
            .and_then(|info| info.as_mut().map(|info| &mut info.required_components))
    }

    /// Registers the given component `R` and [required components] inherited from it as required by `T`.
    ///
    /// When `T` is added to an entity, `R` will also be added if it was not already provided.
    /// The given `constructor` will be used for the creation of `R`.
    ///
    /// [required components]: Component#required-components
    ///
    /// # Safety
    ///
    /// The given component IDs `required` and `requiree` must be valid.
    ///
    /// # Errors
    ///
    /// Returns a [`RequiredComponentsError`] if the `required` component is already a directly required component for the `requiree`.
    ///
    /// Indirect requirements through other components are allowed. In those cases, the more specific
    /// registration will be used.
    pub(crate) unsafe fn register_required_components<R: Component>(
        &mut self,
        requiree: ComponentId,
        required: ComponentId,
        constructor: fn() -> R,
    ) -> Result<(), RequiredComponentsError> {
        // SAFETY: The caller ensures that the `requiree` is valid.
        let required_components = unsafe {
            self.get_required_components_mut(requiree)
                .debug_checked_unwrap()
        };

        // Cannot directly require the same component twice.
        if required_components
            .0
            .get(&required)
            .is_some_and(|c| c.inheritance_depth == 0)
        {
            return Err(RequiredComponentsError::DuplicateRegistration(
                requiree, required,
            ));
        }

        // Register the required component for the requiree.
        // This is a direct requirement with a depth of `0`.
        required_components.register_by_id(required, constructor, 0);

        // Add the requiree to the list of components that require the required component.
        // SAFETY: The component is in the list of required components, so it must exist already.
        let required_by = unsafe { self.get_required_by_mut(required).debug_checked_unwrap() };
        required_by.insert(requiree);

        let mut required_components_tmp = RequiredComponents::default();
        // SAFETY: The caller ensures that the `requiree` and `required` components are valid.
        let inherited_requirements = unsafe {
            self.register_inherited_required_components(
                requiree,
                required,
                &mut required_components_tmp,
            )
        };

        // SAFETY: The caller ensures that the `requiree` is valid.
        let required_components = unsafe {
            self.get_required_components_mut(requiree)
                .debug_checked_unwrap()
        };
        required_components.0.extend(required_components_tmp.0);

        // Propagate the new required components up the chain to all components that require the requiree.
        if let Some(required_by) = self
            .get_required_by(requiree)
            .map(|set| set.iter().copied().collect::<SmallVec<[ComponentId; 8]>>())
        {
            // `required` is now required by anything that `requiree` was required by.
            self.get_required_by_mut(required)
                .unwrap()
                .extend(required_by.iter().copied());
            for &required_by_id in required_by.iter() {
                // SAFETY: The component is in the list of required components, so it must exist already.
                let required_components = unsafe {
                    self.get_required_components_mut(required_by_id)
                        .debug_checked_unwrap()
                };

                // Register the original required component in the "parent" of the requiree.
                // The inheritance depth is 1 deeper than the `requiree` wrt `required_by_id`.
                let depth = required_components.0.get(&requiree).expect("requiree is required by required_by_id, so its required_components must include requiree").inheritance_depth;
                required_components.register_by_id(required, constructor, depth + 1);

                for (component_id, component) in inherited_requirements.iter() {
                    // Register the required component.
                    // The inheritance depth of inherited components is whatever the requiree's
                    // depth is relative to `required_by_id`, plus the inheritance depth of the
                    // inherited component relative to the requiree, plus 1 to account for the
                    // requiree in between.
                    // SAFETY: Component ID and constructor match the ones on the original requiree.
                    //         The original requiree is responsible for making sure the registration is safe.
                    unsafe {
                        required_components.register_dynamic_with(
                            *component_id,
                            component.inheritance_depth + depth + 1,
                            || component.constructor.clone(),
                        );
                    };
                }
            }
        }

        Ok(())
    }

    /// Registers the components inherited from `required` for the given `requiree`,
    /// returning the requirements in a list.
    ///
    /// # Safety
    ///
    /// The given component IDs `requiree` and `required` must be valid.
    unsafe fn register_inherited_required_components(
        &mut self,
        requiree: ComponentId,
        required: ComponentId,
        required_components: &mut RequiredComponents,
    ) -> Vec<(ComponentId, RequiredComponent)> {
        // Get required components inherited from the `required` component.
        // SAFETY: The caller ensures that the `required` component is valid.
        let required_component_info = unsafe { self.get_info(required).debug_checked_unwrap() };
        let inherited_requirements: Vec<(ComponentId, RequiredComponent)> = required_component_info
            .required_components()
            .0
            .iter()
            .map(|(component_id, required_component)| {
                (
                    *component_id,
                    RequiredComponent {
                        constructor: required_component.constructor.clone(),
                        // Add `1` to the inheritance depth since this will be registered
                        // for the component that requires `required`.
                        inheritance_depth: required_component.inheritance_depth + 1,
                    },
                )
            })
            .collect();

        // Register the new required components.
        for (component_id, component) in inherited_requirements.iter() {
            // Register the required component for the requiree.
            // SAFETY: Component ID and constructor match the ones on the original requiree.
            unsafe {
                required_components.register_dynamic_with(
                    *component_id,
                    component.inheritance_depth,
                    || component.constructor.clone(),
                );
            };

            // Add the requiree to the list of components that require the required component.
            // SAFETY: The caller ensures that the required components are valid.
            let required_by = unsafe {
                self.get_required_by_mut(*component_id)
                    .debug_checked_unwrap()
            };
            required_by.insert(requiree);
        }

        inherited_requirements
    }

    /// Registers the given component `R` and [required components] inherited from it as required by `T`,
    /// and adds `T` to their lists of requirees.
    ///
    /// The given `inheritance_depth` determines how many levels of inheritance deep the requirement is.
    /// A direct requirement has a depth of `0`, and each level of inheritance increases the depth by `1`.
    /// Lower depths are more specific requirements, and can override existing less specific registrations.
    ///
    /// This method does *not* register any components as required by components that require `T`.
    ///
    /// [required component]: Component#required-components
    ///
    /// # Safety
    ///
    /// The given component IDs `required` and `requiree` must be valid.
    pub(crate) unsafe fn register_required_components_manual_unchecked<R: Component>(
        &mut self,
        requiree: ComponentId,
        required: ComponentId,
        required_components: &mut RequiredComponents,
        constructor: fn() -> R,
        inheritance_depth: u16,
    ) {
        // Components cannot require themselves.
        if required == requiree {
            return;
        }

        // Register the required component `R` for the requiree.
        required_components.register_by_id(required, constructor, inheritance_depth);

        // Add the requiree to the list of components that require `R`.
        // SAFETY: The caller ensures that the component ID is valid.
        //         Assuming it is valid, the component is in the list of required components, so it must exist already.
        let required_by = unsafe { self.get_required_by_mut(required).debug_checked_unwrap() };
        required_by.insert(requiree);

        self.register_inherited_required_components(requiree, required, required_components);
    }

    #[inline]
    pub(crate) fn get_required_by(&self, id: ComponentId) -> Option<&HashSet<ComponentId>> {
        self.components
            .get(id.0)
            .and_then(|info| info.as_ref().map(|info| &info.required_by))
    }

    #[inline]
    pub(crate) fn get_required_by_mut(
        &mut self,
        id: ComponentId,
    ) -> Option<&mut HashSet<ComponentId>> {
        self.components
            .get_mut(id.0)
            .and_then(|info| info.as_mut().map(|info| &mut info.required_by))
    }

    /// Returns true if the [`ComponentId`] is fully registered and valid.
    /// Ids may be invalid if they are still queued to be registered.
    /// Those ids are still correct, but they are not usable in every context yet.
    #[inline]
    pub fn is_id_valid(&self, id: ComponentId) -> bool {
        self.components.get(id.0).is_some_and(Option::is_some)
    }

    /// Type-erased equivalent of [`Components::valid_component_id()`].
    #[inline]
    pub fn get_valid_id(&self, type_id: TypeId) -> Option<ComponentId> {
        self.indices.get(&type_id).copied()
    }

    /// Returns the [`ComponentId`] of the given [`Component`] type `T` if it is fully registered.
    /// If you want to include queued registration, see [`Components::component_id()`].
    ///
    /// ```
    /// use bevy_ecs::prelude::*;
    ///
    /// let mut world = World::new();
    ///
    /// #[derive(Component)]
    /// struct ComponentA;
    ///
    /// let component_a_id = world.register_component::<ComponentA>();
    ///
    /// assert_eq!(component_a_id, world.components().valid_component_id::<ComponentA>().unwrap())
    /// ```
    ///
    /// # See also
    ///
    /// * [`Components::get_valid_id()`]
    /// * [`Components::valid_resource_id()`]
    /// * [`World::component_id()`]
    #[inline]
    pub fn valid_component_id<T: Component>(&self) -> Option<ComponentId> {
        self.get_id(TypeId::of::<T>())
    }

    /// Type-erased equivalent of [`Components::valid_resource_id()`].
    #[inline]
    pub fn get_valid_resource_id(&self, type_id: TypeId) -> Option<ComponentId> {
        self.resource_indices.get(&type_id).copied()
    }

    /// Returns the [`ComponentId`] of the given [`Resource`] type `T` if it is fully registered.
    /// If you want to include queued registration, see [`Components::resource_id()`].
    ///
    /// ```
    /// use bevy_ecs::prelude::*;
    ///
    /// let mut world = World::new();
    ///
    /// #[derive(Resource, Default)]
    /// struct ResourceA;
    ///
    /// let resource_a_id = world.init_resource::<ResourceA>();
    ///
    /// assert_eq!(resource_a_id, world.components().valid_resource_id::<ResourceA>().unwrap())
    /// ```
    ///
    /// # See also
    ///
    /// * [`Components::valid_component_id()`]
    /// * [`Components::get_resource_id()`]
    #[inline]
    pub fn valid_resource_id<T: Resource>(&self) -> Option<ComponentId> {
        self.get_resource_id(TypeId::of::<T>())
    }

    /// Type-erased equivalent of [`Components::component_id()`].
    #[inline]
    pub fn get_id(&self, type_id: TypeId) -> Option<ComponentId> {
        self.indices.get(&type_id).copied().or_else(|| {
            self.queued
                .read()
                .unwrap_or_else(PoisonError::into_inner)
                .components
                .get(&type_id)
                .map(|queued| queued.id)
        })
    }

    /// Returns the [`ComponentId`] of the given [`Component`] type `T`.
    ///
    /// The returned `ComponentId` is specific to the `Components` instance
    /// it was retrieved from and should not be used with another `Components`
    /// instance.
    ///
    /// Returns [`None`] if the `Component` type has not
    /// yet been initialized using [`ComponentsRegistrator::register_component()`] or [`ComponentsQueuedRegistrator::queue_register_component()`].
    ///
    /// ```
    /// use bevy_ecs::prelude::*;
    ///
    /// let mut world = World::new();
    ///
    /// #[derive(Component)]
    /// struct ComponentA;
    ///
    /// let component_a_id = world.register_component::<ComponentA>();
    ///
    /// assert_eq!(component_a_id, world.components().component_id::<ComponentA>().unwrap())
    /// ```
    ///
    /// # See also
    ///
    /// * [`Components::get_id()`]
    /// * [`Components::resource_id()`]
    /// * [`World::component_id()`]
    #[inline]
    pub fn component_id<T: Component>(&self) -> Option<ComponentId> {
        self.get_id(TypeId::of::<T>())
    }

    /// Type-erased equivalent of [`Components::resource_id()`].
    #[inline]
    pub fn get_resource_id(&self, type_id: TypeId) -> Option<ComponentId> {
        self.resource_indices.get(&type_id).copied().or_else(|| {
            self.queued
                .read()
                .unwrap_or_else(PoisonError::into_inner)
                .resources
                .get(&type_id)
                .map(|queued| queued.id)
        })
    }

    /// Returns the [`ComponentId`] of the given [`Resource`] type `T`.
    ///
    /// The returned `ComponentId` is specific to the `Components` instance
    /// it was retrieved from and should not be used with another `Components`
    /// instance.
    ///
    /// Returns [`None`] if the `Resource` type has not
    /// yet been initialized using [`ComponentsRegistrator::register_resource()`] or [`ComponentsQueuedRegistrator::queue_register_resource()`].
    ///
    /// ```
    /// use bevy_ecs::prelude::*;
    ///
    /// let mut world = World::new();
    ///
    /// #[derive(Resource, Default)]
    /// struct ResourceA;
    ///
    /// let resource_a_id = world.init_resource::<ResourceA>();
    ///
    /// assert_eq!(resource_a_id, world.components().resource_id::<ResourceA>().unwrap())
    /// ```
    ///
    /// # See also
    ///
    /// * [`Components::component_id()`]
    /// * [`Components::get_resource_id()`]
    #[inline]
    pub fn resource_id<T: Resource>(&self) -> Option<ComponentId> {
        self.get_resource_id(TypeId::of::<T>())
    }

    /// # Safety
    ///
    /// The [`ComponentDescriptor`] must match the [`TypeId`].
    /// The [`ComponentId`] must be unique.
    /// The [`TypeId`] and [`ComponentId`] must not be registered or queued.
    #[inline]
    unsafe fn register_resource_unchecked(
        &mut self,
        type_id: TypeId,
        component_id: ComponentId,
        descriptor: ComponentDescriptor,
    ) {
        // SAFETY: ensured by caller
        unsafe {
            self.register_component_inner(component_id, descriptor);
        }
        let prev = self.resource_indices.insert(type_id, component_id);
        debug_assert!(prev.is_none());
    }

    /// Gets an iterator over all components fully registered with this instance.
    pub fn iter_registered(&self) -> impl Iterator<Item = &ComponentInfo> + '_ {
        self.components.iter().filter_map(Option::as_ref)
    }
}

/// A value that tracks when a system ran relative to other systems.
/// This is used to power change detection.
///
/// *Note* that a system that hasn't been run yet has a `Tick` of 0.
#[derive(Copy, Clone, Default, Debug, Eq, Hash, PartialEq)]
#[cfg_attr(
    feature = "bevy_reflect",
    derive(Reflect),
    reflect(Debug, Hash, PartialEq, Clone)
)]
pub struct Tick {
    tick: u32,
}

impl Tick {
    /// The maximum relative age for a change tick.
    /// The value of this is equal to [`MAX_CHANGE_AGE`].
    ///
    /// Since change detection will not work for any ticks older than this,
    /// ticks are periodically scanned to ensure their relative values are below this.
    pub const MAX: Self = Self::new(MAX_CHANGE_AGE);

    /// Creates a new [`Tick`] wrapping the given value.
    #[inline]
    pub const fn new(tick: u32) -> Self {
        Self { tick }
    }

    /// Gets the value of this change tick.
    #[inline]
    pub const fn get(self) -> u32 {
        self.tick
    }

    /// Sets the value of this change tick.
    #[inline]
    pub fn set(&mut self, tick: u32) {
        self.tick = tick;
    }

    /// Returns `true` if this `Tick` occurred since the system's `last_run`.
    ///
    /// `this_run` is the current tick of the system, used as a reference to help deal with wraparound.
    #[inline]
    pub fn is_newer_than(self, last_run: Tick, this_run: Tick) -> bool {
        // This works even with wraparound because the world tick (`this_run`) is always "newer" than
        // `last_run` and `self.tick`, and we scan periodically to clamp `ComponentTicks` values
        // so they never get older than `u32::MAX` (the difference would overflow).
        //
        // The clamp here ensures determinism (since scans could differ between app runs).
        let ticks_since_insert = this_run.relative_to(self).tick.min(MAX_CHANGE_AGE);
        let ticks_since_system = this_run.relative_to(last_run).tick.min(MAX_CHANGE_AGE);

        ticks_since_system > ticks_since_insert
    }

    /// Returns a change tick representing the relationship between `self` and `other`.
    #[inline]
    pub(crate) fn relative_to(self, other: Self) -> Self {
        let tick = self.tick.wrapping_sub(other.tick);
        Self { tick }
    }

    /// Wraps this change tick's value if it exceeds [`Tick::MAX`].
    ///
    /// Returns `true` if wrapping was performed. Otherwise, returns `false`.
    #[inline]
    pub(crate) fn check_tick(&mut self, tick: Tick) -> bool {
        let age = tick.relative_to(*self);
        // This comparison assumes that `age` has not overflowed `u32::MAX` before, which will be true
        // so long as this check always runs before that can happen.
        if age.get() > Self::MAX.get() {
            *self = tick.relative_to(Self::MAX);
            true
        } else {
            false
        }
    }
}

/// Interior-mutable access to the [`Tick`]s for a single component or resource.
#[derive(Copy, Clone, Debug)]
pub struct TickCells<'a> {
    /// The tick indicating when the value was added to the world.
    pub added: &'a UnsafeCell<Tick>,
    /// The tick indicating the last time the value was modified.
    pub changed: &'a UnsafeCell<Tick>,
}

impl<'a> TickCells<'a> {
    /// # Safety
    /// All cells contained within must uphold the safety invariants of [`UnsafeCellDeref::read`].
    #[inline]
    pub(crate) unsafe fn read(&self) -> ComponentTicks {
        ComponentTicks {
            // SAFETY: The callers uphold the invariants for `read`.
            added: unsafe { self.added.read() },
            // SAFETY: The callers uphold the invariants for `read`.
            changed: unsafe { self.changed.read() },
        }
    }
}

/// Records when a component or resource was added and when it was last mutably dereferenced (or added).
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, Clone))]
pub struct ComponentTicks {
    /// Tick recording the time this component or resource was added.
    pub added: Tick,

    /// Tick recording the time this component or resource was most recently changed.
    pub changed: Tick,
}

impl ComponentTicks {
    /// Returns `true` if the component or resource was added after the system last ran
    /// (or the system is running for the first time).
    #[inline]
    pub fn is_added(&self, last_run: Tick, this_run: Tick) -> bool {
        self.added.is_newer_than(last_run, this_run)
    }

    /// Returns `true` if the component or resource was added or mutably dereferenced after the system last ran
    /// (or the system is running for the first time).
    #[inline]
    pub fn is_changed(&self, last_run: Tick, this_run: Tick) -> bool {
        self.changed.is_newer_than(last_run, this_run)
    }

    /// Creates a new instance with the same change tick for `added` and `changed`.
    pub fn new(change_tick: Tick) -> Self {
        Self {
            added: change_tick,
            changed: change_tick,
        }
    }

    /// Manually sets the change tick.
    ///
    /// This is normally done automatically via the [`DerefMut`] implementation
    /// on [`Mut<T>`](crate::change_detection::Mut), [`ResMut<T>`](crate::change_detection::ResMut), etc.
    /// However, components and resources that make use of interior mutability might require manual updates.
    ///
    /// # Example
    /// ```no_run
    /// # use bevy_ecs::{world::World, component::ComponentTicks};
    /// let world: World = unimplemented!();
    /// let component_ticks: ComponentTicks = unimplemented!();
    ///
    /// component_ticks.set_changed(world.read_change_tick());
    /// ```
    #[inline]
    pub fn set_changed(&mut self, change_tick: Tick) {
        self.changed = change_tick;
    }
}

/// A [`SystemParam`] that provides access to the [`ComponentId`] for a specific component type.
///
/// # Example
/// ```
/// # use bevy_ecs::{system::Local, component::{Component, ComponentId, ComponentIdFor}};
/// #[derive(Component)]
/// struct Player;
/// fn my_system(component_id: ComponentIdFor<Player>) {
///     let component_id: ComponentId = component_id.get();
///     // ...
/// }
/// ```
#[derive(SystemParam)]
pub struct ComponentIdFor<'s, T: Component>(Local<'s, InitComponentId<T>>);

impl<T: Component> ComponentIdFor<'_, T> {
    /// Gets the [`ComponentId`] for the type `T`.
    #[inline]
    pub fn get(&self) -> ComponentId {
        **self
    }
}

impl<T: Component> Deref for ComponentIdFor<'_, T> {
    type Target = ComponentId;
    fn deref(&self) -> &Self::Target {
        &self.0.component_id
    }
}

impl<T: Component> From<ComponentIdFor<'_, T>> for ComponentId {
    #[inline]
    fn from(to_component_id: ComponentIdFor<T>) -> ComponentId {
        *to_component_id
    }
}

/// Initializes the [`ComponentId`] for a specific type when used with [`FromWorld`].
struct InitComponentId<T: Component> {
    component_id: ComponentId,
    marker: PhantomData<T>,
}

impl<T: Component> FromWorld for InitComponentId<T> {
    fn from_world(world: &mut World) -> Self {
        Self {
            component_id: world.register_component::<T>(),
            marker: PhantomData,
        }
    }
}

/// An error returned when the registration of a required component fails.
#[derive(Error, Debug)]
#[non_exhaustive]
pub enum RequiredComponentsError {
    /// The component is already a directly required component for the requiree.
    #[error("Component {0:?} already directly requires component {1:?}")]
    DuplicateRegistration(ComponentId, ComponentId),
    /// An archetype with the component that requires other components already exists
    #[error("An archetype with the component {0:?} that requires other components already exists")]
    ArchetypeExists(ComponentId),
}

/// A Required Component constructor. See [`Component`] for details.
#[derive(Clone)]
pub struct RequiredComponentConstructor(
    pub Arc<dyn Fn(&mut Table, &mut SparseSets, Tick, TableRow, Entity, MaybeLocation)>,
);

impl RequiredComponentConstructor {
    /// # Safety
    /// This is intended to only be called in the context of [`BundleInfo::write_components`] to initialized required components.
    /// Calling it _anywhere else_ should be considered unsafe.
    ///
    /// `table_row` and `entity` must correspond to a valid entity that currently needs a component initialized via the constructor stored
    /// on this [`RequiredComponentConstructor`]. The stored constructor must correspond to a component on `entity` that needs initialization.
    /// `table` and `sparse_sets` must correspond to storages on a world where `entity` needs this required component initialized.
    ///
    /// Again, don't call this anywhere but [`BundleInfo::write_components`].
    pub(crate) unsafe fn initialize(
        &self,
        table: &mut Table,
        sparse_sets: &mut SparseSets,
        change_tick: Tick,
        table_row: TableRow,
        entity: Entity,
        caller: MaybeLocation,
    ) {
        (self.0)(table, sparse_sets, change_tick, table_row, entity, caller);
    }
}

/// Metadata associated with a required component. See [`Component`] for details.
#[derive(Clone)]
pub struct RequiredComponent {
    /// The constructor used for the required component.
    pub constructor: RequiredComponentConstructor,

    /// The depth of the component requirement in the requirement hierarchy for this component.
    /// This is used for determining which constructor is used in cases where there are duplicate requires.
    ///
    /// For example, consider the inheritance tree `X -> Y -> Z`, where `->` indicates a requirement.
    /// `X -> Y` and `Y -> Z` are direct requirements with a depth of 0, while `Z` is only indirectly
    /// required for `X` with a depth of `1`.
    ///
    /// In cases where there are multiple conflicting requirements with the same depth, a higher priority
    /// will be given to components listed earlier in the `require` attribute, or to the latest added requirement
    /// if registered at runtime.
    pub inheritance_depth: u16,
}

/// The collection of metadata for components that are required for a given component.
///
/// For more information, see the "Required Components" section of [`Component`].
#[derive(Default, Clone)]
pub struct RequiredComponents(pub(crate) HashMap<ComponentId, RequiredComponent>);

impl Debug for RequiredComponents {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_tuple("RequiredComponents")
            .field(&self.0.keys())
            .finish()
    }
}

impl RequiredComponents {
    /// Registers a required component.
    ///
    /// If the component is already registered, it will be overwritten if the given inheritance depth
    /// is smaller than the depth of the existing registration. Otherwise, the new registration will be ignored.
    ///
    /// # Safety
    ///
    /// `component_id` must match the type initialized by `constructor`.
    /// `constructor` _must_ initialize a component for `component_id` in such a way that
    /// matches the storage type of the component. It must only use the given `table_row` or `Entity` to
    /// initialize the storage for `component_id` corresponding to the given entity.
    pub unsafe fn register_dynamic_with(
        &mut self,
        component_id: ComponentId,
        inheritance_depth: u16,
        constructor: impl FnOnce() -> RequiredComponentConstructor,
    ) {
        let entry = self.0.entry(component_id);
        match entry {
            bevy_platform::collections::hash_map::Entry::Occupied(mut occupied) => {
                let current = occupied.get_mut();
                if current.inheritance_depth > inheritance_depth {
                    *current = RequiredComponent {
                        constructor: constructor(),
                        inheritance_depth,
                    }
                }
            }
            bevy_platform::collections::hash_map::Entry::Vacant(vacant) => {
                vacant.insert(RequiredComponent {
                    constructor: constructor(),
                    inheritance_depth,
                });
            }
        }
    }

    /// Registers a required component.
    ///
    /// If the component is already registered, it will be overwritten if the given inheritance depth
    /// is smaller than the depth of the existing registration. Otherwise, the new registration will be ignored.
    pub fn register<C: Component>(
        &mut self,
        components: &mut ComponentsRegistrator,
        constructor: fn() -> C,
        inheritance_depth: u16,
    ) {
        let component_id = components.register_component::<C>();
        self.register_by_id(component_id, constructor, inheritance_depth);
    }

    /// Registers the [`Component`] with the given ID as required if it exists.
    ///
    /// If the component is already registered, it will be overwritten if the given inheritance depth
    /// is smaller than the depth of the existing registration. Otherwise, the new registration will be ignored.
    pub fn register_by_id<C: Component>(
        &mut self,
        component_id: ComponentId,
        constructor: fn() -> C,
        inheritance_depth: u16,
    ) {
        let erased = || {
            RequiredComponentConstructor({
                // `portable-atomic-util` `Arc` is not able to coerce an unsized
                // type like `std::sync::Arc` can. Creating a `Box` first does the
                // coercion.
                //
                // This would be resolved by https://github.com/rust-lang/rust/issues/123430

                #[cfg(not(target_has_atomic = "ptr"))]
                use alloc::boxed::Box;

                type Constructor = dyn for<'a, 'b> Fn(
                    &'a mut Table,
                    &'b mut SparseSets,
                    Tick,
                    TableRow,
                    Entity,
                    MaybeLocation,
                );

                #[cfg(not(target_has_atomic = "ptr"))]
                type Intermediate<T> = Box<T>;

                #[cfg(target_has_atomic = "ptr")]
                type Intermediate<T> = Arc<T>;

                let boxed: Intermediate<Constructor> = Intermediate::new(
                    move |table, sparse_sets, change_tick, table_row, entity, caller| {
                        OwningPtr::make(constructor(), |ptr| {
                            // SAFETY: This will only be called in the context of `BundleInfo::write_components`, which will
                            // pass in a valid table_row and entity requiring a C constructor
                            // C::STORAGE_TYPE is the storage type associated with `component_id` / `C`
                            // `ptr` points to valid `C` data, which matches the type associated with `component_id`
                            unsafe {
                                BundleInfo::initialize_required_component(
                                    table,
                                    sparse_sets,
                                    change_tick,
                                    table_row,
                                    entity,
                                    component_id,
                                    C::STORAGE_TYPE,
                                    ptr,
                                    caller,
                                );
                            }
                        });
                    },
                );

                Arc::from(boxed)
            })
        };

        // SAFETY:
        // `component_id` matches the type initialized by the `erased` constructor above.
        // `erased` initializes a component for `component_id` in such a way that
        // matches the storage type of the component. It only uses the given `table_row` or `Entity` to
        // initialize the storage corresponding to the given entity.
        unsafe { self.register_dynamic_with(component_id, inheritance_depth, erased) };
    }

    /// Iterates the ids of all required components. This includes recursive required components.
    pub fn iter_ids(&self) -> impl Iterator<Item = ComponentId> + '_ {
        self.0.keys().copied()
    }

    /// Removes components that are explicitly provided in a given [`Bundle`]. These components should
    /// be logically treated as normal components, not "required components".
    ///
    /// [`Bundle`]: crate::bundle::Bundle
    pub(crate) fn remove_explicit_components(&mut self, components: &[ComponentId]) {
        for component in components {
            self.0.remove(component);
        }
    }

    /// Merges `required_components` into this collection. This only inserts a required component
    /// if it _did not already exist_ *or* if the required component is more specific than the existing one
    /// (in other words, if the inheritance depth is smaller).
    ///
    /// See [`register_dynamic_with`](Self::register_dynamic_with) for details.
    pub(crate) fn merge(&mut self, required_components: &RequiredComponents) {
        for (
            component_id,
            RequiredComponent {
                constructor,
                inheritance_depth,
            },
        ) in required_components.0.iter()
        {
            // SAFETY: This exact registration must have been done on `required_components`, so safety is ensured by that caller.
            unsafe {
                self.register_dynamic_with(*component_id, *inheritance_depth, || {
                    constructor.clone()
                });
            }
        }
    }
}

// NOTE: This should maybe be private, but it is currently public so that `bevy_ecs_macros` can use it.
// This exists as a standalone function instead of being inlined into the component derive macro so as
// to reduce the amount of generated code.
#[doc(hidden)]
pub fn enforce_no_required_components_recursion(
    components: &Components,
    recursion_check_stack: &[ComponentId],
) {
    if let Some((&requiree, check)) = recursion_check_stack.split_last() {
        if let Some(direct_recursion) = check
            .iter()
            .position(|&id| id == requiree)
            .map(|index| index == check.len() - 1)
        {
            panic!(
                "Recursive required components detected: {}\nhelp: {}",
                recursion_check_stack
                    .iter()
                    .map(|id| format!("{}", ShortName(&components.get_name(*id).unwrap())))
                    .collect::<Vec<_>>()
                    .join(" → "),
                if direct_recursion {
                    format!(
                        "Remove require({}).",
                        ShortName(&components.get_name(requiree).unwrap())
                    )
                } else {
                    "If this is intentional, consider merging the components.".into()
                }
            );
        }
    }
}

/// Component [clone handler function](ComponentCloneFn) implemented using the [`Clone`] trait.
/// Can be [set](Component::clone_behavior) as clone handler for the specific component it is implemented for.
/// It will panic if set as handler for any other component.
///
pub fn component_clone_via_clone<C: Clone + Component>(
    source: &SourceComponent,
    ctx: &mut ComponentCloneCtx,
) {
    if let Some(component) = source.read::<C>() {
        ctx.write_target_component(component.clone());
    }
}

/// Component [clone handler function](ComponentCloneFn) implemented using reflect.
/// Can be [set](Component::clone_behavior) as clone handler for any registered component,
/// but only reflected components will be cloned.
///
/// To clone a component using this handler, the following must be true:
/// - World has [`AppTypeRegistry`](crate::reflect::AppTypeRegistry)
/// - Component has [`TypeId`]
/// - Component is registered
/// - Component has [`ReflectFromPtr`](bevy_reflect::ReflectFromPtr) registered
/// - Component can be cloned via [`PartialReflect::reflect_clone`] _or_ has one of the following registered: [`ReflectFromReflect`](bevy_reflect::ReflectFromReflect),
///   [`ReflectDefault`](bevy_reflect::std_traits::ReflectDefault), [`ReflectFromWorld`](crate::reflect::ReflectFromWorld)
///
/// If any of the conditions is not satisfied, the component will be skipped.
///
/// See [`EntityClonerBuilder`](crate::entity::EntityClonerBuilder) for details.
///
/// [`PartialReflect::reflect_clone`]: bevy_reflect::PartialReflect::reflect_clone
#[cfg(feature = "bevy_reflect")]
pub fn component_clone_via_reflect(source: &SourceComponent, ctx: &mut ComponentCloneCtx) {
    let Some(app_registry) = ctx.type_registry().cloned() else {
        return;
    };
    let registry = app_registry.read();
    let Some(source_component_reflect) = source.read_reflect(&registry) else {
        return;
    };
    let component_info = ctx.component_info();
    // checked in read_source_component_reflect
    let type_id = component_info.type_id().unwrap();

    // Try to clone using `reflect_clone`
    if let Ok(mut component) = source_component_reflect.reflect_clone() {
        if let Some(reflect_component) =
            registry.get_type_data::<crate::reflect::ReflectComponent>(type_id)
        {
            reflect_component.map_entities(&mut *component, ctx.entity_mapper());
        }
        drop(registry);

        ctx.write_target_component_reflect(component);
        return;
    }

    // Try to clone using ReflectFromReflect
    if let Some(reflect_from_reflect) =
        registry.get_type_data::<bevy_reflect::ReflectFromReflect>(type_id)
    {
        if let Some(mut component) =
            reflect_from_reflect.from_reflect(source_component_reflect.as_partial_reflect())
        {
            if let Some(reflect_component) =
                registry.get_type_data::<crate::reflect::ReflectComponent>(type_id)
            {
                reflect_component.map_entities(&mut *component, ctx.entity_mapper());
            }
            drop(registry);

            ctx.write_target_component_reflect(component);
            return;
        }
    }
    // Else, try to clone using ReflectDefault
    if let Some(reflect_default) =
        registry.get_type_data::<bevy_reflect::std_traits::ReflectDefault>(type_id)
    {
        let mut component = reflect_default.default();
        component.apply(source_component_reflect.as_partial_reflect());
        drop(registry);
        ctx.write_target_component_reflect(component);
        return;
    }
    // Otherwise, try to clone using ReflectFromWorld
    if let Some(reflect_from_world) =
        registry.get_type_data::<crate::reflect::ReflectFromWorld>(type_id)
    {
        let reflect_from_world = reflect_from_world.clone();
        let source_component_cloned = source_component_reflect.to_dynamic();
        let component_layout = component_info.layout();
        let target = ctx.target();
        let component_id = ctx.component_id();
        drop(registry);
        ctx.queue_deferred(move |world: &mut World, mapper: &mut dyn EntityMapper| {
            let mut component = reflect_from_world.from_world(world);
            assert_eq!(type_id, (*component).type_id());
            component.apply(source_component_cloned.as_partial_reflect());
            if let Some(reflect_component) = app_registry
                .read()
                .get_type_data::<crate::reflect::ReflectComponent>(type_id)
            {
                reflect_component.map_entities(&mut *component, mapper);
            }
            // SAFETY:
            // - component_id is from the same world as target entity
            // - component is a valid value represented by component_id
            unsafe {
                let raw_component_ptr =
                    core::ptr::NonNull::new_unchecked(Box::into_raw(component).cast::<u8>());
                world
                    .entity_mut(target)
                    .insert_by_id(component_id, OwningPtr::new(raw_component_ptr));

                if component_layout.size() > 0 {
                    // Ensure we don't attempt to deallocate zero-sized components
                    alloc::alloc::dealloc(raw_component_ptr.as_ptr(), component_layout);
                }
            }
        });
    }
}

/// Noop implementation of component clone handler function.
///
/// See [`EntityClonerBuilder`](crate::entity::EntityClonerBuilder) for details.
pub fn component_clone_ignore(_source: &SourceComponent, _ctx: &mut ComponentCloneCtx) {}

/// Wrapper for components clone specialization using autoderef.
#[doc(hidden)]
pub struct DefaultCloneBehaviorSpecialization<T>(PhantomData<T>);

impl<T> Default for DefaultCloneBehaviorSpecialization<T> {
    fn default() -> Self {
        Self(PhantomData)
    }
}

/// Base trait for components clone specialization using autoderef.
#[doc(hidden)]
pub trait DefaultCloneBehaviorBase {
    fn default_clone_behavior(&self) -> ComponentCloneBehavior;
}
impl<C> DefaultCloneBehaviorBase for DefaultCloneBehaviorSpecialization<C> {
    fn default_clone_behavior(&self) -> ComponentCloneBehavior {
        ComponentCloneBehavior::Default
    }
}

/// Specialized trait for components clone specialization using autoderef.
#[doc(hidden)]
pub trait DefaultCloneBehaviorViaClone {
    fn default_clone_behavior(&self) -> ComponentCloneBehavior;
}
impl<C: Clone + Component> DefaultCloneBehaviorViaClone for &DefaultCloneBehaviorSpecialization<C> {
    fn default_clone_behavior(&self) -> ComponentCloneBehavior {
        ComponentCloneBehavior::clone::<C>()
    }
}