1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
//! Event handling types.
use crate as bevy_ecs;
#[cfg(feature = "multi_threaded")]
use crate::batching::BatchingStrategy;
use crate::change_detection::MutUntyped;
use crate::{
change_detection::{DetectChangesMut, Mut},
component::{Component, ComponentId, Tick},
system::{Local, Res, ResMut, Resource, SystemParam},
world::World,
};
pub use bevy_ecs_macros::Event;
use bevy_ecs_macros::SystemSet;
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
use bevy_utils::detailed_trace;
use std::ops::{Deref, DerefMut};
use std::{
cmp::Ordering,
fmt,
hash::{Hash, Hasher},
iter::Chain,
marker::PhantomData,
slice::Iter,
};
/// Something that "happens" and might be read / observed by app logic.
///
/// Events can be stored in an [`Events<E>`] resource
/// You can conveniently access events using the [`EventReader`] and [`EventWriter`] system parameter.
///
/// Events can also be "triggered" on a [`World`], which will then cause any [`Observer`] of that trigger to run.
///
/// This trait can be derived.
///
/// Events implement the [`Component`] type (and they automatically do when they are derived). Events are (generally)
/// not directly inserted as components. More often, the [`ComponentId`] is used to identify the event type within the
/// context of the ECS.
///
/// Events must be thread-safe.
///
/// [`World`]: crate::world::World
/// [`ComponentId`]: crate::component::ComponentId
/// [`Observer`]: crate::observer::Observer
#[diagnostic::on_unimplemented(
message = "`{Self}` is not an `Event`",
label = "invalid `Event`",
note = "consider annotating `{Self}` with `#[derive(Event)]`"
)]
pub trait Event: Component {}
/// An `EventId` uniquely identifies an event stored in a specific [`World`].
///
/// An `EventId` can among other things be used to trace the flow of an event from the point it was
/// sent to the point it was processed. `EventId`s increase monotonically by send order.
///
/// [`World`]: crate::world::World
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct EventId<E: Event> {
/// Uniquely identifies the event associated with this ID.
// This value corresponds to the order in which each event was added to the world.
pub id: usize,
#[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
_marker: PhantomData<E>,
}
impl<E: Event> Copy for EventId<E> {}
impl<E: Event> Clone for EventId<E> {
fn clone(&self) -> Self {
*self
}
}
impl<E: Event> fmt::Display for EventId<E> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
<Self as fmt::Debug>::fmt(self, f)
}
}
impl<E: Event> fmt::Debug for EventId<E> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"event<{}>#{}",
std::any::type_name::<E>().split("::").last().unwrap(),
self.id,
)
}
}
impl<E: Event> PartialEq for EventId<E> {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl<E: Event> Eq for EventId<E> {}
impl<E: Event> PartialOrd for EventId<E> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<E: Event> Ord for EventId<E> {
fn cmp(&self, other: &Self) -> Ordering {
self.id.cmp(&other.id)
}
}
impl<E: Event> Hash for EventId<E> {
fn hash<H: Hasher>(&self, state: &mut H) {
Hash::hash(&self.id, state);
}
}
#[derive(Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
struct EventInstance<E: Event> {
pub event_id: EventId<E>,
pub event: E,
}
/// An event collection that represents the events that occurred within the last two
/// [`Events::update`] calls.
/// Events can be written to using an [`EventWriter`]
/// and are typically cheaply read using an [`EventReader`].
///
/// Each event can be consumed by multiple systems, in parallel,
/// with consumption tracked by the [`EventReader`] on a per-system basis.
///
/// If no [ordering](https://github.com/bevyengine/bevy/blob/main/examples/ecs/ecs_guide.rs)
/// is applied between writing and reading systems, there is a risk of a race condition.
/// This means that whether the events arrive before or after the next [`Events::update`] is unpredictable.
///
/// This collection is meant to be paired with a system that calls
/// [`Events::update`] exactly once per update/frame.
///
/// [`event_update_system`] is a system that does this, typically initialized automatically using
/// [`add_event`](https://docs.rs/bevy/*/bevy/app/struct.App.html#method.add_event).
/// [`EventReader`]s are expected to read events from this collection at least once per loop/frame.
/// Events will persist across a single frame boundary and so ordering of event producers and
/// consumers is not critical (although poorly-planned ordering may cause accumulating lag).
/// If events are not handled by the end of the frame after they are updated, they will be
/// dropped silently.
///
/// # Example
/// ```
/// use bevy_ecs::event::{Event, Events};
///
/// #[derive(Event)]
/// struct MyEvent {
/// value: usize
/// }
///
/// // setup
/// let mut events = Events::<MyEvent>::default();
/// let mut reader = events.get_reader();
///
/// // run this once per update/frame
/// events.update();
///
/// // somewhere else: send an event
/// events.send(MyEvent { value: 1 });
///
/// // somewhere else: read the events
/// for event in reader.read(&events) {
/// assert_eq!(event.value, 1)
/// }
///
/// // events are only processed once per reader
/// assert_eq!(reader.read(&events).count(), 0);
/// ```
///
/// # Details
///
/// [`Events`] is implemented using a variation of a double buffer strategy.
/// Each call to [`update`](Events::update) swaps buffers and clears out the oldest one.
/// - [`EventReader`]s will read events from both buffers.
/// - [`EventReader`]s that read at least once per update will never drop events.
/// - [`EventReader`]s that read once within two updates might still receive some events
/// - [`EventReader`]s that read after two updates are guaranteed to drop all events that occurred
/// before those updates.
///
/// The buffers in [`Events`] will grow indefinitely if [`update`](Events::update) is never called.
///
/// An alternative call pattern would be to call [`update`](Events::update)
/// manually across frames to control when events are cleared.
/// This complicates consumption and risks ever-expanding memory usage if not cleaned up,
/// but can be done by adding your event as a resource instead of using
/// [`add_event`](https://docs.rs/bevy/*/bevy/app/struct.App.html#method.add_event).
///
/// [Example usage.](https://github.com/bevyengine/bevy/blob/latest/examples/ecs/event.rs)
/// [Example usage standalone.](https://github.com/bevyengine/bevy/blob/latest/crates/bevy_ecs/examples/events.rs)
///
#[derive(Debug, Resource)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct Events<E: Event> {
/// Holds the oldest still active events.
/// Note that `a.start_event_count + a.len()` should always be equal to `events_b.start_event_count`.
events_a: EventSequence<E>,
/// Holds the newer events.
events_b: EventSequence<E>,
event_count: usize,
}
// Derived Default impl would incorrectly require E: Default
impl<E: Event> Default for Events<E> {
fn default() -> Self {
Self {
events_a: Default::default(),
events_b: Default::default(),
event_count: Default::default(),
}
}
}
impl<E: Event> Events<E> {
/// Returns the index of the oldest event stored in the event buffer.
pub fn oldest_event_count(&self) -> usize {
self.events_a
.start_event_count
.min(self.events_b.start_event_count)
}
/// "Sends" an `event` by writing it to the current event buffer. [`EventReader`]s can then read
/// the event.
/// This method returns the [ID](`EventId`) of the sent `event`.
pub fn send(&mut self, event: E) -> EventId<E> {
let event_id = EventId {
id: self.event_count,
_marker: PhantomData,
};
detailed_trace!("Events::send() -> id: {}", event_id);
let event_instance = EventInstance { event_id, event };
self.events_b.push(event_instance);
self.event_count += 1;
event_id
}
/// Sends a list of `events` all at once, which can later be read by [`EventReader`]s.
/// This is more efficient than sending each event individually.
/// This method returns the [IDs](`EventId`) of the sent `events`.
pub fn send_batch(&mut self, events: impl IntoIterator<Item = E>) -> SendBatchIds<E> {
let last_count = self.event_count;
self.extend(events);
SendBatchIds {
last_count,
event_count: self.event_count,
_marker: PhantomData,
}
}
/// Sends the default value of the event. Useful when the event is an empty struct.
/// This method returns the [ID](`EventId`) of the sent `event`.
pub fn send_default(&mut self) -> EventId<E>
where
E: Default,
{
self.send(Default::default())
}
/// Gets a new [`ManualEventReader`]. This will include all events already in the event buffers.
pub fn get_reader(&self) -> ManualEventReader<E> {
ManualEventReader::default()
}
/// Gets a new [`ManualEventReader`]. This will ignore all events already in the event buffers.
/// It will read all future events.
pub fn get_reader_current(&self) -> ManualEventReader<E> {
ManualEventReader {
last_event_count: self.event_count,
..Default::default()
}
}
/// Swaps the event buffers and clears the oldest event buffer. In general, this should be
/// called once per frame/update.
///
/// If you need access to the events that were removed, consider using [`Events::update_drain`].
pub fn update(&mut self) {
std::mem::swap(&mut self.events_a, &mut self.events_b);
self.events_b.clear();
self.events_b.start_event_count = self.event_count;
debug_assert_eq!(
self.events_a.start_event_count + self.events_a.len(),
self.events_b.start_event_count
);
}
/// Swaps the event buffers and drains the oldest event buffer, returning an iterator
/// of all events that were removed. In general, this should be called once per frame/update.
///
/// If you do not need to take ownership of the removed events, use [`Events::update`] instead.
#[must_use = "If you do not need the returned events, call .update() instead."]
pub fn update_drain(&mut self) -> impl Iterator<Item = E> + '_ {
std::mem::swap(&mut self.events_a, &mut self.events_b);
let iter = self.events_b.events.drain(..);
self.events_b.start_event_count = self.event_count;
debug_assert_eq!(
self.events_a.start_event_count + self.events_a.len(),
self.events_b.start_event_count
);
iter.map(|e| e.event)
}
#[inline]
fn reset_start_event_count(&mut self) {
self.events_a.start_event_count = self.event_count;
self.events_b.start_event_count = self.event_count;
}
/// Removes all events.
#[inline]
pub fn clear(&mut self) {
self.reset_start_event_count();
self.events_a.clear();
self.events_b.clear();
}
/// Returns the number of events currently stored in the event buffer.
#[inline]
pub fn len(&self) -> usize {
self.events_a.len() + self.events_b.len()
}
/// Returns true if there are no events currently stored in the event buffer.
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Creates a draining iterator that removes all events.
pub fn drain(&mut self) -> impl Iterator<Item = E> + '_ {
self.reset_start_event_count();
// Drain the oldest events first, then the newest
self.events_a
.drain(..)
.chain(self.events_b.drain(..))
.map(|i| i.event)
}
/// Iterates over events that happened since the last "update" call.
/// WARNING: You probably don't want to use this call. In most cases you should use an
/// [`EventReader`]. You should only use this if you know you only need to consume events
/// between the last `update()` call and your call to `iter_current_update_events`.
/// If events happen outside that window, they will not be handled. For example, any events that
/// happen after this call and before the next `update()` call will be dropped.
pub fn iter_current_update_events(&self) -> impl ExactSizeIterator<Item = &E> {
self.events_b.iter().map(|i| &i.event)
}
/// Get a specific event by id if it still exists in the events buffer.
pub fn get_event(&self, id: usize) -> Option<(&E, EventId<E>)> {
if id < self.oldest_id() {
return None;
}
let sequence = self.sequence(id);
let index = id.saturating_sub(sequence.start_event_count);
sequence
.get(index)
.map(|instance| (&instance.event, instance.event_id))
}
/// Oldest id still in the events buffer.
pub fn oldest_id(&self) -> usize {
self.events_a.start_event_count
}
/// Which event buffer is this event id a part of.
fn sequence(&self, id: usize) -> &EventSequence<E> {
if id < self.events_b.start_event_count {
&self.events_a
} else {
&self.events_b
}
}
}
impl<E: Event> Extend<E> for Events<E> {
fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = E>,
{
let old_count = self.event_count;
let mut event_count = self.event_count;
let events = iter.into_iter().map(|event| {
let event_id = EventId {
id: event_count,
_marker: PhantomData,
};
event_count += 1;
EventInstance { event_id, event }
});
self.events_b.extend(events);
if old_count != event_count {
detailed_trace!(
"Events::extend() -> ids: ({}..{})",
self.event_count,
event_count
);
}
self.event_count = event_count;
}
}
#[derive(Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
struct EventSequence<E: Event> {
events: Vec<EventInstance<E>>,
start_event_count: usize,
}
// Derived Default impl would incorrectly require E: Default
impl<E: Event> Default for EventSequence<E> {
fn default() -> Self {
Self {
events: Default::default(),
start_event_count: Default::default(),
}
}
}
impl<E: Event> Deref for EventSequence<E> {
type Target = Vec<EventInstance<E>>;
fn deref(&self) -> &Self::Target {
&self.events
}
}
impl<E: Event> DerefMut for EventSequence<E> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.events
}
}
/// Reads events of type `T` in order and tracks which events have already been read.
///
/// # Concurrency
///
/// Unlike [`EventWriter<T>`], systems with `EventReader<T>` param can be executed concurrently
/// (but not concurrently with `EventWriter<T>` systems for the same event type).
#[derive(SystemParam, Debug)]
pub struct EventReader<'w, 's, E: Event> {
reader: Local<'s, ManualEventReader<E>>,
events: Res<'w, Events<E>>,
}
impl<'w, 's, E: Event> EventReader<'w, 's, E> {
/// Iterates over the events this [`EventReader`] has not seen yet. This updates the
/// [`EventReader`]'s event counter, which means subsequent event reads will not include events
/// that happened before now.
pub fn read(&mut self) -> EventIterator<'_, E> {
self.reader.read(&self.events)
}
/// Like [`read`](Self::read), except also returning the [`EventId`] of the events.
pub fn read_with_id(&mut self) -> EventIteratorWithId<'_, E> {
self.reader.read_with_id(&self.events)
}
/// Returns a parallel iterator over the events this [`EventReader`] has not seen yet.
/// See also [`for_each`](EventParIter::for_each).
///
/// # Example
/// ```
/// # use bevy_ecs::prelude::*;
/// # use std::sync::atomic::{AtomicUsize, Ordering};
///
/// #[derive(Event)]
/// struct MyEvent {
/// value: usize,
/// }
///
/// #[derive(Resource, Default)]
/// struct Counter(AtomicUsize);
///
/// // setup
/// let mut world = World::new();
/// world.init_resource::<Events<MyEvent>>();
/// world.insert_resource(Counter::default());
///
/// let mut schedule = Schedule::default();
/// schedule.add_systems(|mut events: EventReader<MyEvent>, counter: Res<Counter>| {
/// events.par_read().for_each(|MyEvent { value }| {
/// counter.0.fetch_add(*value, Ordering::Relaxed);
/// });
/// });
/// for value in 0..100 {
/// world.send_event(MyEvent { value });
/// }
/// schedule.run(&mut world);
/// let Counter(counter) = world.remove_resource::<Counter>().unwrap();
/// // all events were processed
/// assert_eq!(counter.into_inner(), 4950);
/// ```
///
#[cfg(feature = "multi_threaded")]
pub fn par_read(&mut self) -> EventParIter<'_, E> {
self.reader.par_read(&self.events)
}
/// Determines the number of events available to be read from this [`EventReader`] without consuming any.
pub fn len(&self) -> usize {
self.reader.len(&self.events)
}
/// Returns `true` if there are no events available to read.
///
/// # Example
///
/// The following example shows a useful pattern where some behavior is triggered if new events are available.
/// [`EventReader::clear()`] is used so the same events don't re-trigger the behavior the next time the system runs.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #
/// #[derive(Event)]
/// struct CollisionEvent;
///
/// fn play_collision_sound(mut events: EventReader<CollisionEvent>) {
/// if !events.is_empty() {
/// events.clear();
/// // Play a sound
/// }
/// }
/// # bevy_ecs::system::assert_is_system(play_collision_sound);
/// ```
pub fn is_empty(&self) -> bool {
self.reader.is_empty(&self.events)
}
/// Consumes all available events.
///
/// This means these events will not appear in calls to [`EventReader::read()`] or
/// [`EventReader::read_with_id()`] and [`EventReader::is_empty()`] will return `true`.
///
/// For usage, see [`EventReader::is_empty()`].
pub fn clear(&mut self) {
self.reader.clear(&self.events);
}
}
/// Sends events of type `T`.
///
/// # Usage
///
/// `EventWriter`s are usually declared as a [`SystemParam`].
/// ```
/// # use bevy_ecs::prelude::*;
///
/// #[derive(Event)]
/// pub struct MyEvent; // Custom event type.
/// fn my_system(mut writer: EventWriter<MyEvent>) {
/// writer.send(MyEvent);
/// }
///
/// # bevy_ecs::system::assert_is_system(my_system);
/// ```
/// # Observers
///
/// "Buffered" Events, such as those sent directly in [`Events`] or sent using [`EventWriter`], do _not_ automatically
/// trigger any [`Observer`]s watching for that event, as each [`Event`] has different requirements regarding _if_ it will
/// be triggered, and if so, _when_ it will be triggered in the schedule.
///
/// # Concurrency
///
/// `EventWriter` param has [`ResMut<Events<T>>`](Events) inside. So two systems declaring `EventWriter<T>` params
/// for the same event type won't be executed concurrently.
///
/// # Untyped events
///
/// `EventWriter` can only send events of one specific type, which must be known at compile-time.
/// This is not a problem most of the time, but you may find a situation where you cannot know
/// ahead of time every kind of event you'll need to send. In this case, you can use the "type-erased event" pattern.
///
/// ```
/// # use bevy_ecs::{prelude::*, event::Events};
/// # #[derive(Event)]
/// # pub struct MyEvent;
/// fn send_untyped(mut commands: Commands) {
/// // Send an event of a specific type without having to declare that
/// // type as a SystemParam.
/// //
/// // Effectively, we're just moving the type parameter from the /type/ to the /method/,
/// // which allows one to do all kinds of clever things with type erasure, such as sending
/// // custom events to unknown 3rd party plugins (modding API).
/// //
/// // NOTE: the event won't actually be sent until commands get applied during
/// // apply_deferred.
/// commands.add(|w: &mut World| {
/// w.send_event(MyEvent);
/// });
/// }
/// ```
/// Note that this is considered *non-idiomatic*, and should only be used when `EventWriter` will not work.
///
/// [`Observer`]: crate::observer::Observer
#[derive(SystemParam)]
pub struct EventWriter<'w, E: Event> {
events: ResMut<'w, Events<E>>,
}
impl<'w, E: Event> EventWriter<'w, E> {
/// Sends an `event`, which can later be read by [`EventReader`]s.
/// This method returns the [ID](`EventId`) of the sent `event`.
///
/// See [`Events`] for details.
pub fn send(&mut self, event: E) -> EventId<E> {
self.events.send(event)
}
/// Sends a list of `events` all at once, which can later be read by [`EventReader`]s.
/// This is more efficient than sending each event individually.
/// This method returns the [IDs](`EventId`) of the sent `events`.
///
/// See [`Events`] for details.
pub fn send_batch(&mut self, events: impl IntoIterator<Item = E>) -> SendBatchIds<E> {
self.events.send_batch(events)
}
/// Sends the default value of the event. Useful when the event is an empty struct.
/// This method returns the [ID](`EventId`) of the sent `event`.
///
/// See [`Events`] for details.
pub fn send_default(&mut self) -> EventId<E>
where
E: Default,
{
self.events.send_default()
}
}
/// Stores the state for an [`EventReader`].
///
/// Access to the [`Events<E>`] resource is required to read any incoming events.
///
/// In almost all cases, you should just use an [`EventReader`],
/// which will automatically manage the state for you.
///
/// However, this type can be useful if you need to manually track events,
/// such as when you're attempting to send and receive events of the same type in the same system.
///
/// # Example
///
/// ```
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::event::{Event, Events, ManualEventReader};
///
/// #[derive(Event, Clone, Debug)]
/// struct MyEvent;
///
/// /// A system that both sends and receives events using a [`Local`] [`ManualEventReader`].
/// fn send_and_receive_manual_event_reader(
/// // The `Local` `SystemParam` stores state inside the system itself, rather than in the world.
/// // `ManualEventReader<T>` is the internal state of `EventReader<T>`, which tracks which events have been seen.
/// mut local_event_reader: Local<ManualEventReader<MyEvent>>,
/// // We can access the `Events` resource mutably, allowing us to both read and write its contents.
/// mut events: ResMut<Events<MyEvent>>,
/// ) {
/// // We must collect the events to resend, because we can't mutate events while we're iterating over the events.
/// let mut events_to_resend = Vec::new();
///
/// for event in local_event_reader.read(&events) {
/// events_to_resend.push(event.clone());
/// }
///
/// for event in events_to_resend {
/// events.send(MyEvent);
/// }
/// }
///
/// # bevy_ecs::system::assert_is_system(send_and_receive_manual_event_reader);
/// ```
#[derive(Debug)]
pub struct ManualEventReader<E: Event> {
last_event_count: usize,
_marker: PhantomData<E>,
}
impl<E: Event> Default for ManualEventReader<E> {
fn default() -> Self {
ManualEventReader {
last_event_count: 0,
_marker: Default::default(),
}
}
}
impl<E: Event> Clone for ManualEventReader<E> {
fn clone(&self) -> Self {
ManualEventReader {
last_event_count: self.last_event_count,
_marker: PhantomData,
}
}
}
#[allow(clippy::len_without_is_empty)] // Check fails since the is_empty implementation has a signature other than `(&self) -> bool`
impl<E: Event> ManualEventReader<E> {
/// See [`EventReader::read`]
pub fn read<'a>(&'a mut self, events: &'a Events<E>) -> EventIterator<'a, E> {
self.read_with_id(events).without_id()
}
/// See [`EventReader::read_with_id`]
pub fn read_with_id<'a>(&'a mut self, events: &'a Events<E>) -> EventIteratorWithId<'a, E> {
EventIteratorWithId::new(self, events)
}
/// See [`EventReader::par_read`]
#[cfg(feature = "multi_threaded")]
pub fn par_read<'a>(&'a mut self, events: &'a Events<E>) -> EventParIter<'a, E> {
EventParIter::new(self, events)
}
/// See [`EventReader::len`]
pub fn len(&self, events: &Events<E>) -> usize {
// The number of events in this reader is the difference between the most recent event
// and the last event seen by it. This will be at most the number of events contained
// with the events (any others have already been dropped)
// TODO: Warn when there are dropped events, or return e.g. a `Result<usize, (usize, usize)>`
events
.event_count
.saturating_sub(self.last_event_count)
.min(events.len())
}
/// Amount of events we missed.
pub fn missed_events(&self, events: &Events<E>) -> usize {
events
.oldest_event_count()
.saturating_sub(self.last_event_count)
}
/// See [`EventReader::is_empty()`]
pub fn is_empty(&self, events: &Events<E>) -> bool {
self.len(events) == 0
}
/// See [`EventReader::clear()`]
pub fn clear(&mut self, events: &Events<E>) {
self.last_event_count = events.event_count;
}
}
/// An iterator that yields any unread events from an [`EventReader`] or [`ManualEventReader`].
#[derive(Debug)]
pub struct EventIterator<'a, E: Event> {
iter: EventIteratorWithId<'a, E>,
}
impl<'a, E: Event> Iterator for EventIterator<'a, E> {
type Item = &'a E;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|(event, _)| event)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn count(self) -> usize {
self.iter.count()
}
fn last(self) -> Option<Self::Item>
where
Self: Sized,
{
self.iter.last().map(|(event, _)| event)
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.iter.nth(n).map(|(event, _)| event)
}
}
impl<'a, E: Event> ExactSizeIterator for EventIterator<'a, E> {
fn len(&self) -> usize {
self.iter.len()
}
}
/// An iterator that yields any unread events (and their IDs) from an [`EventReader`] or [`ManualEventReader`].
#[derive(Debug)]
pub struct EventIteratorWithId<'a, E: Event> {
reader: &'a mut ManualEventReader<E>,
chain: Chain<Iter<'a, EventInstance<E>>, Iter<'a, EventInstance<E>>>,
unread: usize,
}
impl<'a, E: Event> EventIteratorWithId<'a, E> {
/// Creates a new iterator that yields any `events` that have not yet been seen by `reader`.
pub fn new(reader: &'a mut ManualEventReader<E>, events: &'a Events<E>) -> Self {
let a_index = reader
.last_event_count
.saturating_sub(events.events_a.start_event_count);
let b_index = reader
.last_event_count
.saturating_sub(events.events_b.start_event_count);
let a = events.events_a.get(a_index..).unwrap_or_default();
let b = events.events_b.get(b_index..).unwrap_or_default();
let unread_count = a.len() + b.len();
// Ensure `len` is implemented correctly
debug_assert_eq!(unread_count, reader.len(events));
reader.last_event_count = events.event_count - unread_count;
// Iterate the oldest first, then the newer events
let chain = a.iter().chain(b.iter());
Self {
reader,
chain,
unread: unread_count,
}
}
/// Iterate over only the events.
pub fn without_id(self) -> EventIterator<'a, E> {
EventIterator { iter: self }
}
}
impl<'a, E: Event> Iterator for EventIteratorWithId<'a, E> {
type Item = (&'a E, EventId<E>);
fn next(&mut self) -> Option<Self::Item> {
match self
.chain
.next()
.map(|instance| (&instance.event, instance.event_id))
{
Some(item) => {
detailed_trace!("EventReader::iter() -> {}", item.1);
self.reader.last_event_count += 1;
self.unread -= 1;
Some(item)
}
None => None,
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.chain.size_hint()
}
fn count(self) -> usize {
self.reader.last_event_count += self.unread;
self.unread
}
fn last(self) -> Option<Self::Item>
where
Self: Sized,
{
let EventInstance { event_id, event } = self.chain.last()?;
self.reader.last_event_count += self.unread;
Some((event, *event_id))
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
if let Some(EventInstance { event_id, event }) = self.chain.nth(n) {
self.reader.last_event_count += n + 1;
self.unread -= n + 1;
Some((event, *event_id))
} else {
self.reader.last_event_count += self.unread;
self.unread = 0;
None
}
}
}
impl<'a, E: Event> ExactSizeIterator for EventIteratorWithId<'a, E> {
fn len(&self) -> usize {
self.unread
}
}
/// A parallel iterator over `Event`s.
#[cfg(feature = "multi_threaded")]
#[derive(Debug)]
pub struct EventParIter<'a, E: Event> {
reader: &'a mut ManualEventReader<E>,
slices: [&'a [EventInstance<E>]; 2],
batching_strategy: BatchingStrategy,
unread: usize,
}
#[cfg(feature = "multi_threaded")]
impl<'a, E: Event> EventParIter<'a, E> {
/// Creates a new parallel iterator over `events` that have not yet been seen by `reader`.
pub fn new(reader: &'a mut ManualEventReader<E>, events: &'a Events<E>) -> Self {
let a_index = reader
.last_event_count
.saturating_sub(events.events_a.start_event_count);
let b_index = reader
.last_event_count
.saturating_sub(events.events_b.start_event_count);
let a = events.events_a.get(a_index..).unwrap_or_default();
let b = events.events_b.get(b_index..).unwrap_or_default();
let unread_count = a.len() + b.len();
// Ensure `len` is implemented correctly
debug_assert_eq!(unread_count, reader.len(events));
reader.last_event_count = events.event_count - unread_count;
Self {
reader,
slices: [a, b],
batching_strategy: BatchingStrategy::default(),
unread: unread_count,
}
}
/// Changes the batching strategy used when iterating.
///
/// For more information on how this affects the resultant iteration, see
/// [`BatchingStrategy`].
pub fn batching_strategy(mut self, strategy: BatchingStrategy) -> Self {
self.batching_strategy = strategy;
self
}
/// Runs the provided closure for each unread event in parallel.
///
/// Unlike normal iteration, the event order is not guaranteed in any form.
///
/// # Panics
/// If the [`ComputeTaskPool`] is not initialized. If using this from an event reader that is being
/// initialized and run from the ECS scheduler, this should never panic.
///
/// [`ComputeTaskPool`]: bevy_tasks::ComputeTaskPool
pub fn for_each<FN: Fn(&'a E) + Send + Sync + Clone>(self, func: FN) {
self.for_each_with_id(move |e, _| func(e));
}
/// Runs the provided closure for each unread event in parallel, like [`for_each`](Self::for_each),
/// but additionally provides the `EventId` to the closure.
///
/// Note that the order of iteration is not guaranteed, but `EventId`s are ordered by send order.
///
/// # Panics
/// If the [`ComputeTaskPool`] is not initialized. If using this from an event reader that is being
/// initialized and run from the ECS scheduler, this should never panic.
///
/// [`ComputeTaskPool`]: bevy_tasks::ComputeTaskPool
pub fn for_each_with_id<FN: Fn(&'a E, EventId<E>) + Send + Sync + Clone>(mut self, func: FN) {
#[cfg(any(target_arch = "wasm32", not(feature = "multi_threaded")))]
{
self.into_iter().for_each(|(e, i)| func(e, i));
}
#[cfg(all(not(target_arch = "wasm32"), feature = "multi_threaded"))]
{
let pool = bevy_tasks::ComputeTaskPool::get();
let thread_count = pool.thread_num();
if thread_count <= 1 {
return self.into_iter().for_each(|(e, i)| func(e, i));
}
let batch_size = self
.batching_strategy
.calc_batch_size(|| self.len(), thread_count);
let chunks = self.slices.map(|s| s.chunks_exact(batch_size));
let remainders = chunks.each_ref().map(|c| c.remainder());
pool.scope(|scope| {
for batch in chunks.into_iter().flatten().chain(remainders) {
let func = func.clone();
scope.spawn(async move {
for event in batch {
func(&event.event, event.event_id);
}
});
}
});
// Events are guaranteed to be read at this point.
self.reader.last_event_count += self.unread;
self.unread = 0;
}
}
/// Returns the number of [`Event`]s to be iterated.
pub fn len(&self) -> usize {
self.slices.iter().map(|s| s.len()).sum()
}
/// Returns [`true`] if there are no events remaining in this iterator.
pub fn is_empty(&self) -> bool {
self.slices.iter().all(|x| x.is_empty())
}
}
#[cfg(feature = "multi_threaded")]
impl<'a, E: Event> IntoIterator for EventParIter<'a, E> {
type IntoIter = EventIteratorWithId<'a, E>;
type Item = <Self::IntoIter as Iterator>::Item;
fn into_iter(self) -> Self::IntoIter {
let EventParIter {
reader,
slices: [a, b],
..
} = self;
let unread = a.len() + b.len();
let chain = a.iter().chain(b);
EventIteratorWithId {
reader,
chain,
unread,
}
}
}
#[doc(hidden)]
struct RegisteredEvent {
component_id: ComponentId,
// Required to flush the secondary buffer and drop events even if left unchanged.
previously_updated: bool,
// SAFETY: The component ID and the function must be used to fetch the Events<T> resource
// of the same type initialized in `register_event`, or improper type casts will occur.
update: unsafe fn(MutUntyped),
}
/// A registry of all of the [`Events`] in the [`World`], used by [`event_update_system`]
/// to update all of the events.
#[derive(Resource, Default)]
pub struct EventRegistry {
/// Should the events be updated?
///
/// This field is generally automatically updated by the [`signal_event_update_system`](crate::event::update::signal_event_update_system).
pub should_update: ShouldUpdateEvents,
event_updates: Vec<RegisteredEvent>,
}
/// Controls whether or not the events in an [`EventRegistry`] should be updated.
#[derive(Default, Debug, Clone, Copy, PartialEq, Eq)]
pub enum ShouldUpdateEvents {
/// Without any fixed timestep, events should always be updated each frame.
#[default]
Always,
/// We need to wait until at least one pass of the fixed update schedules to update the events.
Waiting,
/// At least one pass of the fixed update schedules has occurred, and the events are ready to be updated.
Ready,
}
impl EventRegistry {
/// Registers an event type to be updated in a given [`World`]
///
/// If no instance of the [`EventRegistry`] exists in the world, this will add one - otherwise it will use
/// the existing instance.
pub fn register_event<T: Event>(world: &mut World) {
// By initializing the resource here, we can be sure that it is present,
// and receive the correct, up-to-date `ComponentId` even if it was previously removed.
let component_id = world.init_resource::<Events<T>>();
let mut registry = world.get_resource_or_insert_with(Self::default);
registry.event_updates.push(RegisteredEvent {
component_id,
previously_updated: false,
update: |ptr| {
// SAFETY: The resource was initialized with the type Events<T>.
unsafe { ptr.with_type::<Events<T>>() }
.bypass_change_detection()
.update();
},
});
}
/// Removes an event from the world and it's associated [`EventRegistry`].
pub fn deregister_events<T: Event>(world: &mut World) {
let component_id = world.init_resource::<Events<T>>();
let mut registry = world.get_resource_or_insert_with(Self::default);
registry
.event_updates
.retain(|e| e.component_id != component_id);
world.remove_resource::<Events<T>>();
}
/// Updates all of the registered events in the World.
pub fn run_updates(&mut self, world: &mut World, last_change_tick: Tick) {
for registered_event in &mut self.event_updates {
// Bypass the type ID -> Component ID lookup with the cached component ID.
if let Some(events) = world.get_resource_mut_by_id(registered_event.component_id) {
let has_changed = events.has_changed_since(last_change_tick);
if registered_event.previously_updated || has_changed {
// SAFETY: The update function pointer is called with the resource
// fetched from the same component ID.
unsafe { (registered_event.update)(events) };
// Always set to true if the events have changed, otherwise disable running on the second invocation
// to wait for more changes.
registered_event.previously_updated =
has_changed || !registered_event.previously_updated;
}
}
}
}
}
#[doc(hidden)]
#[derive(SystemSet, Clone, Debug, PartialEq, Eq, Hash)]
pub struct EventUpdates;
/// Signals the [`event_update_system`] to run after `FixedUpdate` systems.
///
/// This will change the behavior of the [`EventRegistry`] to only run after a fixed update cycle has passed.
/// Normally, this will simply run every frame.
pub fn signal_event_update_system(signal: Option<ResMut<EventRegistry>>) {
if let Some(mut registry) = signal {
registry.should_update = ShouldUpdateEvents::Ready;
}
}
/// A system that calls [`Events::update`] on all registered [`Events`] in the world.
pub fn event_update_system(world: &mut World, mut last_change_tick: Local<Tick>) {
if world.contains_resource::<EventRegistry>() {
world.resource_scope(|world, mut registry: Mut<EventRegistry>| {
registry.run_updates(world, *last_change_tick);
registry.should_update = match registry.should_update {
// If we're always updating, keep doing so.
ShouldUpdateEvents::Always => ShouldUpdateEvents::Always,
// Disable the system until signal_event_update_system runs again.
ShouldUpdateEvents::Waiting | ShouldUpdateEvents::Ready => {
ShouldUpdateEvents::Waiting
}
};
});
}
*last_change_tick = world.change_tick();
}
/// A run condition for [`event_update_system`].
///
/// If [`signal_event_update_system`] has been run at least once,
/// we will wait for it to be run again before updating the events.
///
/// Otherwise, we will always update the events.
pub fn event_update_condition(maybe_signal: Option<Res<EventRegistry>>) -> bool {
match maybe_signal {
Some(signal) => match signal.should_update {
ShouldUpdateEvents::Always | ShouldUpdateEvents::Ready => true,
ShouldUpdateEvents::Waiting => false,
},
None => true,
}
}
/// [`Iterator`] over sent [`EventIds`](`EventId`) from a batch.
pub struct SendBatchIds<E> {
last_count: usize,
event_count: usize,
_marker: PhantomData<E>,
}
impl<E: Event> Iterator for SendBatchIds<E> {
type Item = EventId<E>;
fn next(&mut self) -> Option<Self::Item> {
if self.last_count >= self.event_count {
return None;
}
let result = Some(EventId {
id: self.last_count,
_marker: PhantomData,
});
self.last_count += 1;
result
}
}
impl<E: Event> ExactSizeIterator for SendBatchIds<E> {
fn len(&self) -> usize {
self.event_count.saturating_sub(self.last_count)
}
}
#[cfg(test)]
mod tests {
use crate::system::assert_is_read_only_system;
use super::*;
#[derive(Event, Copy, Clone, PartialEq, Eq, Debug)]
struct TestEvent {
i: usize,
}
#[test]
fn test_events() {
let mut events = Events::<TestEvent>::default();
let event_0 = TestEvent { i: 0 };
let event_1 = TestEvent { i: 1 };
let event_2 = TestEvent { i: 2 };
// this reader will miss event_0 and event_1 because it wont read them over the course of
// two updates
let mut reader_missed = events.get_reader();
let mut reader_a = events.get_reader();
events.send(event_0);
assert_eq!(
get_events(&events, &mut reader_a),
vec![event_0],
"reader_a created before event receives event"
);
assert_eq!(
get_events(&events, &mut reader_a),
vec![],
"second iteration of reader_a created before event results in zero events"
);
let mut reader_b = events.get_reader();
assert_eq!(
get_events(&events, &mut reader_b),
vec![event_0],
"reader_b created after event receives event"
);
assert_eq!(
get_events(&events, &mut reader_b),
vec![],
"second iteration of reader_b created after event results in zero events"
);
events.send(event_1);
let mut reader_c = events.get_reader();
assert_eq!(
get_events(&events, &mut reader_c),
vec![event_0, event_1],
"reader_c created after two events receives both events"
);
assert_eq!(
get_events(&events, &mut reader_c),
vec![],
"second iteration of reader_c created after two event results in zero events"
);
assert_eq!(
get_events(&events, &mut reader_a),
vec![event_1],
"reader_a receives next unread event"
);
events.update();
let mut reader_d = events.get_reader();
events.send(event_2);
assert_eq!(
get_events(&events, &mut reader_a),
vec![event_2],
"reader_a receives event created after update"
);
assert_eq!(
get_events(&events, &mut reader_b),
vec![event_1, event_2],
"reader_b receives events created before and after update"
);
assert_eq!(
get_events(&events, &mut reader_d),
vec![event_0, event_1, event_2],
"reader_d receives all events created before and after update"
);
events.update();
assert_eq!(
get_events(&events, &mut reader_missed),
vec![event_2],
"reader_missed missed events unread after two update() calls"
);
}
fn get_events<E: Event + Clone>(
events: &Events<E>,
reader: &mut ManualEventReader<E>,
) -> Vec<E> {
reader.read(events).cloned().collect::<Vec<E>>()
}
#[derive(Event, PartialEq, Eq, Debug)]
struct E(usize);
fn events_clear_and_read_impl(clear_func: impl FnOnce(&mut Events<E>)) {
let mut events = Events::<E>::default();
let mut reader = events.get_reader();
assert!(reader.read(&events).next().is_none());
events.send(E(0));
assert_eq!(*reader.read(&events).next().unwrap(), E(0));
assert_eq!(reader.read(&events).next(), None);
events.send(E(1));
clear_func(&mut events);
assert!(reader.read(&events).next().is_none());
events.send(E(2));
events.update();
events.send(E(3));
assert!(reader.read(&events).eq([E(2), E(3)].iter()));
}
#[test]
fn test_events_clear_and_read() {
events_clear_and_read_impl(|events| events.clear());
}
#[test]
fn test_events_drain_and_read() {
events_clear_and_read_impl(|events| {
assert!(events.drain().eq(vec![E(0), E(1)].into_iter()));
});
}
#[test]
fn test_events_extend_impl() {
let mut events = Events::<TestEvent>::default();
let mut reader = events.get_reader();
events.extend(vec![TestEvent { i: 0 }, TestEvent { i: 1 }]);
assert!(reader
.read(&events)
.eq([TestEvent { i: 0 }, TestEvent { i: 1 }].iter()));
}
#[test]
fn test_events_empty() {
let mut events = Events::<TestEvent>::default();
assert!(events.is_empty());
events.send(TestEvent { i: 0 });
assert!(!events.is_empty());
events.update();
assert!(!events.is_empty());
// events are only empty after the second call to update
// due to double buffering.
events.update();
assert!(events.is_empty());
}
#[test]
fn test_event_reader_len_empty() {
let events = Events::<TestEvent>::default();
assert_eq!(events.get_reader().len(&events), 0);
assert!(events.get_reader().is_empty(&events));
}
#[test]
fn test_event_reader_len_filled() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
assert_eq!(events.get_reader().len(&events), 1);
assert!(!events.get_reader().is_empty(&events));
}
#[test]
fn test_event_iter_len_updated() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
events.send(TestEvent { i: 1 });
events.send(TestEvent { i: 2 });
let mut reader = events.get_reader();
let mut iter = reader.read(&events);
assert_eq!(iter.len(), 3);
iter.next();
assert_eq!(iter.len(), 2);
iter.next();
assert_eq!(iter.len(), 1);
iter.next();
assert_eq!(iter.len(), 0);
}
#[test]
fn test_event_reader_len_current() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
let reader = events.get_reader_current();
dbg!(&reader);
dbg!(&events);
assert!(reader.is_empty(&events));
events.send(TestEvent { i: 0 });
assert_eq!(reader.len(&events), 1);
assert!(!reader.is_empty(&events));
}
#[test]
fn test_event_reader_len_update() {
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
events.send(TestEvent { i: 0 });
let reader = events.get_reader();
assert_eq!(reader.len(&events), 2);
events.update();
events.send(TestEvent { i: 0 });
assert_eq!(reader.len(&events), 3);
events.update();
assert_eq!(reader.len(&events), 1);
events.update();
assert!(reader.is_empty(&events));
}
#[test]
fn test_event_reader_clear() {
use bevy_ecs::prelude::*;
let mut world = World::new();
let mut events = Events::<TestEvent>::default();
events.send(TestEvent { i: 0 });
world.insert_resource(events);
let mut reader = IntoSystem::into_system(|mut events: EventReader<TestEvent>| -> bool {
if !events.is_empty() {
events.clear();
false
} else {
true
}
});
reader.initialize(&mut world);
let is_empty = reader.run((), &mut world);
assert!(!is_empty, "EventReader should not be empty");
let is_empty = reader.run((), &mut world);
assert!(is_empty, "EventReader should be empty");
}
#[test]
fn test_update_drain() {
let mut events = Events::<TestEvent>::default();
let mut reader = events.get_reader();
events.send(TestEvent { i: 0 });
events.send(TestEvent { i: 1 });
assert_eq!(reader.read(&events).count(), 2);
let mut old_events = Vec::from_iter(events.update_drain());
assert!(old_events.is_empty());
events.send(TestEvent { i: 2 });
assert_eq!(reader.read(&events).count(), 1);
old_events.extend(events.update_drain());
assert_eq!(old_events.len(), 2);
old_events.extend(events.update_drain());
assert_eq!(
old_events,
&[TestEvent { i: 0 }, TestEvent { i: 1 }, TestEvent { i: 2 }]
);
}
#[allow(clippy::iter_nth_zero)]
#[test]
fn test_event_iter_nth() {
use bevy_ecs::prelude::*;
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
world.send_event(TestEvent { i: 0 });
world.send_event(TestEvent { i: 1 });
world.send_event(TestEvent { i: 2 });
world.send_event(TestEvent { i: 3 });
world.send_event(TestEvent { i: 4 });
let mut schedule = Schedule::default();
schedule.add_systems(|mut events: EventReader<TestEvent>| {
let mut iter = events.read();
assert_eq!(iter.next(), Some(&TestEvent { i: 0 }));
assert_eq!(iter.nth(2), Some(&TestEvent { i: 3 }));
assert_eq!(iter.nth(1), None);
assert!(events.is_empty());
});
schedule.run(&mut world);
}
#[test]
fn test_event_iter_last() {
use bevy_ecs::prelude::*;
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
let mut reader =
IntoSystem::into_system(|mut events: EventReader<TestEvent>| -> Option<TestEvent> {
events.read().last().copied()
});
reader.initialize(&mut world);
let last = reader.run((), &mut world);
assert!(last.is_none(), "EventReader should be empty");
world.send_event(TestEvent { i: 0 });
let last = reader.run((), &mut world);
assert_eq!(last, Some(TestEvent { i: 0 }));
world.send_event(TestEvent { i: 1 });
world.send_event(TestEvent { i: 2 });
world.send_event(TestEvent { i: 3 });
let last = reader.run((), &mut world);
assert_eq!(last, Some(TestEvent { i: 3 }));
let last = reader.run((), &mut world);
assert!(last.is_none(), "EventReader should be empty");
}
#[derive(Event, Clone, PartialEq, Debug, Default)]
struct EmptyTestEvent;
#[test]
fn test_firing_empty_event() {
let mut events = Events::<EmptyTestEvent>::default();
events.send_default();
let mut reader = events.get_reader();
assert_eq!(get_events(&events, &mut reader), vec![EmptyTestEvent]);
}
#[test]
fn ensure_reader_readonly() {
fn reader_system(_: EventReader<EmptyTestEvent>) {}
assert_is_read_only_system(reader_system);
}
#[test]
fn test_send_events_ids() {
let mut events = Events::<TestEvent>::default();
let event_0 = TestEvent { i: 0 };
let event_1 = TestEvent { i: 1 };
let event_2 = TestEvent { i: 2 };
let event_0_id = events.send(event_0);
assert_eq!(
events.get_event(event_0_id.id),
Some((&event_0, event_0_id)),
"Getting a sent event by ID should return the original event"
);
let mut event_ids = events.send_batch([event_1, event_2]);
let event_id = event_ids.next().expect("Event 1 must have been sent");
assert_eq!(
events.get_event(event_id.id),
Some((&event_1, event_id)),
"Getting a sent event by ID should return the original event"
);
let event_id = event_ids.next().expect("Event 2 must have been sent");
assert_eq!(
events.get_event(event_id.id),
Some((&event_2, event_id)),
"Getting a sent event by ID should return the original event"
);
assert!(
event_ids.next().is_none(),
"Only sent two events; got more than two IDs"
);
}
#[cfg(feature = "multi_threaded")]
#[test]
fn test_events_par_iter() {
use crate::prelude::*;
use std::sync::atomic::{AtomicUsize, Ordering};
#[derive(Resource)]
struct Counter(AtomicUsize);
let mut world = World::new();
world.init_resource::<Events<TestEvent>>();
for _ in 0..100 {
world.send_event(TestEvent { i: 1 });
}
let mut schedule = Schedule::default();
schedule.add_systems(
|mut events: EventReader<TestEvent>, counter: ResMut<Counter>| {
events.par_read().for_each(|event| {
counter.0.fetch_add(event.i, Ordering::Relaxed);
});
},
);
world.insert_resource(Counter(AtomicUsize::new(0)));
schedule.run(&mut world);
let counter = world.remove_resource::<Counter>().unwrap();
assert_eq!(counter.0.into_inner(), 100);
world.insert_resource(Counter(AtomicUsize::new(0)));
schedule.run(&mut world);
let counter = world.remove_resource::<Counter>().unwrap();
assert_eq!(counter.0.into_inner(), 0);
}
#[test]
fn iter_current_update_events_iterates_over_current_events() {
#[derive(Event, Clone)]
struct TestEvent;
let mut test_events = Events::<TestEvent>::default();
// Starting empty
assert_eq!(test_events.len(), 0);
assert_eq!(test_events.iter_current_update_events().count(), 0);
test_events.update();
// Sending one event
test_events.send(TestEvent);
assert_eq!(test_events.len(), 1);
assert_eq!(test_events.iter_current_update_events().count(), 1);
test_events.update();
// Sending two events on the next frame
test_events.send(TestEvent);
test_events.send(TestEvent);
assert_eq!(test_events.len(), 3); // Events are double-buffered, so we see 1 + 2 = 3
assert_eq!(test_events.iter_current_update_events().count(), 2);
test_events.update();
// Sending zero events
assert_eq!(test_events.len(), 2); // Events are double-buffered, so we see 2 + 0 = 2
assert_eq!(test_events.iter_current_update_events().count(), 0);
}
#[test]
fn test_event_registry_can_add_and_remove_events_to_world() {
use bevy_ecs::prelude::*;
let mut world = World::new();
EventRegistry::register_event::<TestEvent>(&mut world);
let has_events = world.get_resource::<Events<TestEvent>>().is_some();
assert!(has_events, "Should have the events resource");
EventRegistry::deregister_events::<TestEvent>(&mut world);
let has_events = world.get_resource::<Events<TestEvent>>().is_some();
assert!(!has_events, "Should not have the events resource");
}
}