1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
use crate::storage::SparseSetIndex;
use bevy_utils::HashSet;
use core::fmt;
use fixedbitset::FixedBitSet;
use std::marker::PhantomData;
/// A wrapper struct to make Debug representations of [`FixedBitSet`] easier
/// to read, when used to store [`SparseSetIndex`].
///
/// Instead of the raw integer representation of the `FixedBitSet`, the list of
/// `T` valid for [`SparseSetIndex`] is shown.
///
/// Normal `FixedBitSet` `Debug` output:
/// ```text
/// read_and_writes: FixedBitSet { data: [ 160 ], length: 8 }
/// ```
///
/// Which, unless you are a computer, doesn't help much understand what's in
/// the set. With `FormattedBitSet`, we convert the present set entries into
/// what they stand for, it is much clearer what is going on:
/// ```text
/// read_and_writes: [ ComponentId(5), ComponentId(7) ]
/// ```
struct FormattedBitSet<'a, T: SparseSetIndex> {
bit_set: &'a FixedBitSet,
_marker: PhantomData<T>,
}
impl<'a, T: SparseSetIndex> FormattedBitSet<'a, T> {
fn new(bit_set: &'a FixedBitSet) -> Self {
Self {
bit_set,
_marker: PhantomData,
}
}
}
impl<'a, T: SparseSetIndex + fmt::Debug> fmt::Debug for FormattedBitSet<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list()
.entries(self.bit_set.ones().map(T::get_sparse_set_index))
.finish()
}
}
/// Tracks read and write access to specific elements in a collection.
///
/// Used internally to ensure soundness during system initialization and execution.
/// See the [`is_compatible`](Access::is_compatible) and [`get_conflicts`](Access::get_conflicts) functions.
#[derive(Clone, Eq, PartialEq)]
pub struct Access<T: SparseSetIndex> {
/// All accessed elements.
reads_and_writes: FixedBitSet,
/// The exclusively-accessed elements.
writes: FixedBitSet,
/// Is `true` if this has access to all elements in the collection.
/// This field is a performance optimization for `&World` (also harder to mess up for soundness).
reads_all: bool,
/// Is `true` if this has mutable access to all elements in the collection.
/// If this is true, then `reads_all` must also be true.
writes_all: bool,
// Elements that are not accessed, but whose presence in an archetype affect query results.
archetypal: FixedBitSet,
marker: PhantomData<T>,
}
impl<T: SparseSetIndex + fmt::Debug> fmt::Debug for Access<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Access")
.field(
"read_and_writes",
&FormattedBitSet::<T>::new(&self.reads_and_writes),
)
.field("writes", &FormattedBitSet::<T>::new(&self.writes))
.field("reads_all", &self.reads_all)
.field("writes_all", &self.writes_all)
.field("archetypal", &FormattedBitSet::<T>::new(&self.archetypal))
.finish()
}
}
impl<T: SparseSetIndex> Default for Access<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: SparseSetIndex> Access<T> {
/// Creates an empty [`Access`] collection.
pub const fn new() -> Self {
Self {
reads_all: false,
writes_all: false,
reads_and_writes: FixedBitSet::new(),
writes: FixedBitSet::new(),
archetypal: FixedBitSet::new(),
marker: PhantomData,
}
}
/// Adds access to the element given by `index`.
pub fn add_read(&mut self, index: T) {
self.reads_and_writes
.grow_and_insert(index.sparse_set_index());
}
/// Adds exclusive access to the element given by `index`.
pub fn add_write(&mut self, index: T) {
self.reads_and_writes
.grow_and_insert(index.sparse_set_index());
self.writes.grow_and_insert(index.sparse_set_index());
}
/// Adds an archetypal (indirect) access to the element given by `index`.
///
/// This is for elements whose values are not accessed (and thus will never cause conflicts),
/// but whose presence in an archetype may affect query results.
///
/// Currently, this is only used for [`Has<T>`].
///
/// [`Has<T>`]: crate::query::Has
pub fn add_archetypal(&mut self, index: T) {
self.archetypal.grow_and_insert(index.sparse_set_index());
}
/// Returns `true` if this can access the element given by `index`.
pub fn has_read(&self, index: T) -> bool {
self.reads_all || self.reads_and_writes.contains(index.sparse_set_index())
}
/// Returns `true` if this can access anything.
pub fn has_any_read(&self) -> bool {
self.reads_all || !self.reads_and_writes.is_clear()
}
/// Returns `true` if this can exclusively access the element given by `index`.
pub fn has_write(&self, index: T) -> bool {
self.writes_all || self.writes.contains(index.sparse_set_index())
}
/// Returns `true` if this accesses anything mutably.
pub fn has_any_write(&self) -> bool {
self.writes_all || !self.writes.is_clear()
}
/// Returns true if this has an archetypal (indirect) access to the element given by `index`.
///
/// This is an element whose value is not accessed (and thus will never cause conflicts),
/// but whose presence in an archetype may affect query results.
///
/// Currently, this is only used for [`Has<T>`].
///
/// [`Has<T>`]: crate::query::Has
pub fn has_archetypal(&self, index: T) -> bool {
self.archetypal.contains(index.sparse_set_index())
}
/// Sets this as having access to all indexed elements (i.e. `&World`).
pub fn read_all(&mut self) {
self.reads_all = true;
}
/// Sets this as having mutable access to all indexed elements (i.e. `EntityMut`).
pub fn write_all(&mut self) {
self.reads_all = true;
self.writes_all = true;
}
/// Returns `true` if this has access to all indexed elements (i.e. `&World`).
pub fn has_read_all(&self) -> bool {
self.reads_all
}
/// Returns `true` if this has write access to all indexed elements (i.e. `EntityMut`).
pub fn has_write_all(&self) -> bool {
self.writes_all
}
/// Removes all writes.
pub fn clear_writes(&mut self) {
self.writes_all = false;
self.writes.clear();
}
/// Removes all accesses.
pub fn clear(&mut self) {
self.reads_all = false;
self.writes_all = false;
self.reads_and_writes.clear();
self.writes.clear();
}
/// Adds all access from `other`.
pub fn extend(&mut self, other: &Access<T>) {
self.reads_all = self.reads_all || other.reads_all;
self.writes_all = self.writes_all || other.writes_all;
self.reads_and_writes.union_with(&other.reads_and_writes);
self.writes.union_with(&other.writes);
}
/// Returns `true` if the access and `other` can be active at the same time.
///
/// [`Access`] instances are incompatible if one can write
/// an element that the other can read or write.
pub fn is_compatible(&self, other: &Access<T>) -> bool {
if self.writes_all {
return !other.has_any_read();
}
if other.writes_all {
return !self.has_any_read();
}
if self.reads_all {
return !other.has_any_write();
}
if other.reads_all {
return !self.has_any_write();
}
self.writes.is_disjoint(&other.reads_and_writes)
&& other.writes.is_disjoint(&self.reads_and_writes)
}
/// Returns `true` if the set is a subset of another, i.e. `other` contains
/// at least all the values in `self`.
pub fn is_subset(&self, other: &Access<T>) -> bool {
if self.writes_all {
return other.writes_all;
}
if other.writes_all {
return true;
}
if self.reads_all {
return other.reads_all;
}
if other.reads_all {
return self.writes.is_subset(&other.writes);
}
self.reads_and_writes.is_subset(&other.reads_and_writes)
&& self.writes.is_subset(&other.writes)
}
/// Returns a vector of elements that the access and `other` cannot access at the same time.
pub fn get_conflicts(&self, other: &Access<T>) -> Vec<T> {
let mut conflicts = FixedBitSet::default();
if self.reads_all {
// QUESTION: How to handle `other.writes_all`?
conflicts.extend(other.writes.ones());
}
if other.reads_all {
// QUESTION: How to handle `self.writes_all`.
conflicts.extend(self.writes.ones());
}
if self.writes_all {
conflicts.extend(other.reads_and_writes.ones());
}
if other.writes_all {
conflicts.extend(self.reads_and_writes.ones());
}
conflicts.extend(self.writes.intersection(&other.reads_and_writes));
conflicts.extend(self.reads_and_writes.intersection(&other.writes));
conflicts
.ones()
.map(SparseSetIndex::get_sparse_set_index)
.collect()
}
/// Returns the indices of the elements this has access to.
pub fn reads_and_writes(&self) -> impl Iterator<Item = T> + '_ {
self.reads_and_writes.ones().map(T::get_sparse_set_index)
}
/// Returns the indices of the elements this has non-exclusive access to.
pub fn reads(&self) -> impl Iterator<Item = T> + '_ {
self.reads_and_writes
.difference(&self.writes)
.map(T::get_sparse_set_index)
}
/// Returns the indices of the elements this has exclusive access to.
pub fn writes(&self) -> impl Iterator<Item = T> + '_ {
self.writes.ones().map(T::get_sparse_set_index)
}
/// Returns the indices of the elements that this has an archetypal access to.
///
/// These are elements whose values are not accessed (and thus will never cause conflicts),
/// but whose presence in an archetype may affect query results.
///
/// Currently, this is only used for [`Has<T>`].
///
/// [`Has<T>`]: crate::query::Has
pub fn archetypal(&self) -> impl Iterator<Item = T> + '_ {
self.archetypal.ones().map(T::get_sparse_set_index)
}
}
/// An [`Access`] that has been filtered to include and exclude certain combinations of elements.
///
/// Used internally to statically check if queries are disjoint.
///
/// Subtle: a `read` or `write` in `access` should not be considered to imply a
/// `with` access.
///
/// For example consider `Query<Option<&T>>` this only has a `read` of `T` as doing
/// otherwise would allow for queries to be considered disjoint when they shouldn't:
/// - `Query<(&mut T, Option<&U>)>` read/write `T`, read `U`, with `U`
/// - `Query<&mut T, Without<U>>` read/write `T`, without `U`
/// from this we could reasonably conclude that the queries are disjoint but they aren't.
///
/// In order to solve this the actual access that `Query<(&mut T, Option<&U>)>` has
/// is read/write `T`, read `U`. It must still have a read `U` access otherwise the following
/// queries would be incorrectly considered disjoint:
/// - `Query<&mut T>` read/write `T`
/// - `Query<Option<&T>>` accesses nothing
///
/// See comments the [`WorldQuery`](super::WorldQuery) impls of [`AnyOf`](super::AnyOf)/`Option`/[`Or`](super::Or) for more information.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct FilteredAccess<T: SparseSetIndex> {
pub(crate) access: Access<T>,
pub(crate) required: FixedBitSet,
// An array of filter sets to express `With` or `Without` clauses in disjunctive normal form, for example: `Or<(With<A>, With<B>)>`.
// Filters like `(With<A>, Or<(With<B>, Without<C>)>` are expanded into `Or<((With<A>, With<B>), (With<A>, Without<C>))>`.
pub(crate) filter_sets: Vec<AccessFilters<T>>,
}
impl<T: SparseSetIndex> Default for FilteredAccess<T> {
fn default() -> Self {
Self {
access: Access::default(),
required: FixedBitSet::default(),
filter_sets: vec![AccessFilters::default()],
}
}
}
impl<T: SparseSetIndex> From<FilteredAccess<T>> for FilteredAccessSet<T> {
fn from(filtered_access: FilteredAccess<T>) -> Self {
let mut base = FilteredAccessSet::<T>::default();
base.add(filtered_access);
base
}
}
impl<T: SparseSetIndex> FilteredAccess<T> {
/// Returns a reference to the underlying unfiltered access.
#[inline]
pub fn access(&self) -> &Access<T> {
&self.access
}
/// Returns a mutable reference to the underlying unfiltered access.
#[inline]
pub fn access_mut(&mut self) -> &mut Access<T> {
&mut self.access
}
/// Adds access to the element given by `index`.
pub fn add_read(&mut self, index: T) {
self.access.add_read(index.clone());
self.add_required(index.clone());
self.and_with(index);
}
/// Adds exclusive access to the element given by `index`.
pub fn add_write(&mut self, index: T) {
self.access.add_write(index.clone());
self.add_required(index.clone());
self.and_with(index);
}
fn add_required(&mut self, index: T) {
self.required.grow_and_insert(index.sparse_set_index());
}
/// Adds a `With` filter: corresponds to a conjunction (AND) operation.
///
/// Suppose we begin with `Or<(With<A>, With<B>)>`, which is represented by an array of two `AccessFilter` instances.
/// Adding `AND With<C>` via this method transforms it into the equivalent of `Or<((With<A>, With<C>), (With<B>, With<C>))>`.
pub fn and_with(&mut self, index: T) {
for filter in &mut self.filter_sets {
filter.with.grow_and_insert(index.sparse_set_index());
}
}
/// Adds a `Without` filter: corresponds to a conjunction (AND) operation.
///
/// Suppose we begin with `Or<(With<A>, With<B>)>`, which is represented by an array of two `AccessFilter` instances.
/// Adding `AND Without<C>` via this method transforms it into the equivalent of `Or<((With<A>, Without<C>), (With<B>, Without<C>))>`.
pub fn and_without(&mut self, index: T) {
for filter in &mut self.filter_sets {
filter.without.grow_and_insert(index.sparse_set_index());
}
}
/// Appends an array of filters: corresponds to a disjunction (OR) operation.
///
/// As the underlying array of filters represents a disjunction,
/// where each element (`AccessFilters`) represents a conjunction,
/// we can simply append to the array.
pub fn append_or(&mut self, other: &FilteredAccess<T>) {
self.filter_sets.append(&mut other.filter_sets.clone());
}
/// Adds all of the accesses from `other` to `self`.
pub fn extend_access(&mut self, other: &FilteredAccess<T>) {
self.access.extend(&other.access);
}
/// Returns `true` if this and `other` can be active at the same time.
pub fn is_compatible(&self, other: &FilteredAccess<T>) -> bool {
if self.access.is_compatible(&other.access) {
return true;
}
// If the access instances are incompatible, we want to check that whether filters can
// guarantee that queries are disjoint.
// Since the `filter_sets` array represents a Disjunctive Normal Form formula ("ORs of ANDs"),
// we need to make sure that each filter set (ANDs) rule out every filter set from the `other` instance.
//
// For example, `Query<&mut C, Or<(With<A>, Without<B>)>>` is compatible `Query<&mut C, (With<B>, Without<A>)>`,
// but `Query<&mut C, Or<(Without<A>, Without<B>)>>` isn't compatible with `Query<&mut C, Or<(With<A>, With<B>)>>`.
self.filter_sets.iter().all(|filter| {
other
.filter_sets
.iter()
.all(|other_filter| filter.is_ruled_out_by(other_filter))
})
}
/// Returns a vector of elements that this and `other` cannot access at the same time.
pub fn get_conflicts(&self, other: &FilteredAccess<T>) -> Vec<T> {
if !self.is_compatible(other) {
// filters are disjoint, so we can just look at the unfiltered intersection
return self.access.get_conflicts(&other.access);
}
Vec::new()
}
/// Adds all access and filters from `other`.
///
/// Corresponds to a conjunction operation (AND) for filters.
///
/// Extending `Or<(With<A>, Without<B>)>` with `Or<(With<C>, Without<D>)>` will result in
/// `Or<((With<A>, With<C>), (With<A>, Without<D>), (Without<B>, With<C>), (Without<B>, Without<D>))>`.
pub fn extend(&mut self, other: &FilteredAccess<T>) {
self.access.extend(&other.access);
self.required.union_with(&other.required);
// We can avoid allocating a new array of bitsets if `other` contains just a single set of filters:
// in this case we can short-circuit by performing an in-place union for each bitset.
if other.filter_sets.len() == 1 {
for filter in &mut self.filter_sets {
filter.with.union_with(&other.filter_sets[0].with);
filter.without.union_with(&other.filter_sets[0].without);
}
return;
}
let mut new_filters = Vec::with_capacity(self.filter_sets.len() * other.filter_sets.len());
for filter in &self.filter_sets {
for other_filter in &other.filter_sets {
let mut new_filter = filter.clone();
new_filter.with.union_with(&other_filter.with);
new_filter.without.union_with(&other_filter.without);
new_filters.push(new_filter);
}
}
self.filter_sets = new_filters;
}
/// Sets the underlying unfiltered access as having access to all indexed elements.
pub fn read_all(&mut self) {
self.access.read_all();
}
/// Sets the underlying unfiltered access as having mutable access to all indexed elements.
pub fn write_all(&mut self) {
self.access.write_all();
}
/// Returns `true` if the set is a subset of another, i.e. `other` contains
/// at least all the values in `self`.
pub fn is_subset(&self, other: &FilteredAccess<T>) -> bool {
self.required.is_subset(&other.required) && self.access().is_subset(other.access())
}
/// Returns the indices of the elements that this access filters for.
pub fn with_filters(&self) -> impl Iterator<Item = T> + '_ {
self.filter_sets
.iter()
.flat_map(|f| f.with.ones().map(T::get_sparse_set_index))
}
/// Returns the indices of the elements that this access filters out.
pub fn without_filters(&self) -> impl Iterator<Item = T> + '_ {
self.filter_sets
.iter()
.flat_map(|f| f.without.ones().map(T::get_sparse_set_index))
}
}
#[derive(Clone, Eq, PartialEq)]
pub(crate) struct AccessFilters<T> {
pub(crate) with: FixedBitSet,
pub(crate) without: FixedBitSet,
_index_type: PhantomData<T>,
}
impl<T: SparseSetIndex + fmt::Debug> fmt::Debug for AccessFilters<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("AccessFilters")
.field("with", &FormattedBitSet::<T>::new(&self.with))
.field("without", &FormattedBitSet::<T>::new(&self.without))
.finish()
}
}
impl<T: SparseSetIndex> Default for AccessFilters<T> {
fn default() -> Self {
Self {
with: FixedBitSet::default(),
without: FixedBitSet::default(),
_index_type: PhantomData,
}
}
}
impl<T: SparseSetIndex> AccessFilters<T> {
fn is_ruled_out_by(&self, other: &Self) -> bool {
// Although not technically complete, we don't consider the case when `AccessFilters`'s
// `without` bitset contradicts its own `with` bitset (e.g. `(With<A>, Without<A>)`).
// Such query would be considered compatible with any other query, but as it's almost
// always an error, we ignore this case instead of treating such query as compatible
// with others.
!self.with.is_disjoint(&other.without) || !self.without.is_disjoint(&other.with)
}
}
/// A collection of [`FilteredAccess`] instances.
///
/// Used internally to statically check if systems have conflicting access.
///
/// It stores multiple sets of accesses.
/// - A "combined" set, which is the access of all filters in this set combined.
/// - The set of access of each individual filters in this set.
#[derive(Debug, Clone)]
pub struct FilteredAccessSet<T: SparseSetIndex> {
combined_access: Access<T>,
filtered_accesses: Vec<FilteredAccess<T>>,
}
impl<T: SparseSetIndex> FilteredAccessSet<T> {
/// Returns a reference to the unfiltered access of the entire set.
#[inline]
pub fn combined_access(&self) -> &Access<T> {
&self.combined_access
}
/// Returns `true` if this and `other` can be active at the same time.
///
/// Access conflict resolution happen in two steps:
/// 1. A "coarse" check, if there is no mutual unfiltered conflict between
/// `self` and `other`, we already know that the two access sets are
/// compatible.
/// 2. A "fine grained" check, it kicks in when the "coarse" check fails.
/// the two access sets might still be compatible if some of the accesses
/// are restricted with the [`With`](super::With) or [`Without`](super::Without) filters so that access is
/// mutually exclusive. The fine grained phase iterates over all filters in
/// the `self` set and compares it to all the filters in the `other` set,
/// making sure they are all mutually compatible.
pub fn is_compatible(&self, other: &FilteredAccessSet<T>) -> bool {
if self.combined_access.is_compatible(other.combined_access()) {
return true;
}
for filtered in &self.filtered_accesses {
for other_filtered in &other.filtered_accesses {
if !filtered.is_compatible(other_filtered) {
return false;
}
}
}
true
}
/// Returns a vector of elements that this set and `other` cannot access at the same time.
pub fn get_conflicts(&self, other: &FilteredAccessSet<T>) -> Vec<T> {
// if the unfiltered access is incompatible, must check each pair
let mut conflicts = HashSet::new();
if !self.combined_access.is_compatible(other.combined_access()) {
for filtered in &self.filtered_accesses {
for other_filtered in &other.filtered_accesses {
conflicts.extend(filtered.get_conflicts(other_filtered).into_iter());
}
}
}
conflicts.into_iter().collect()
}
/// Returns a vector of elements that this set and `other` cannot access at the same time.
pub fn get_conflicts_single(&self, filtered_access: &FilteredAccess<T>) -> Vec<T> {
// if the unfiltered access is incompatible, must check each pair
let mut conflicts = HashSet::new();
if !self.combined_access.is_compatible(filtered_access.access()) {
for filtered in &self.filtered_accesses {
conflicts.extend(filtered.get_conflicts(filtered_access).into_iter());
}
}
conflicts.into_iter().collect()
}
/// Adds the filtered access to the set.
pub fn add(&mut self, filtered_access: FilteredAccess<T>) {
self.combined_access.extend(&filtered_access.access);
self.filtered_accesses.push(filtered_access);
}
/// Adds a read access without filters to the set.
pub(crate) fn add_unfiltered_read(&mut self, index: T) {
let mut filter = FilteredAccess::default();
filter.add_read(index);
self.add(filter);
}
/// Adds a write access without filters to the set.
pub(crate) fn add_unfiltered_write(&mut self, index: T) {
let mut filter = FilteredAccess::default();
filter.add_write(index);
self.add(filter);
}
/// Adds all of the accesses from the passed set to `self`.
pub fn extend(&mut self, filtered_access_set: FilteredAccessSet<T>) {
self.combined_access
.extend(&filtered_access_set.combined_access);
self.filtered_accesses
.extend(filtered_access_set.filtered_accesses);
}
/// Marks the set as reading all possible indices of type T.
pub fn read_all(&mut self) {
self.combined_access.read_all();
}
/// Marks the set as writing all T.
pub fn write_all(&mut self) {
self.combined_access.write_all();
}
/// Removes all accesses stored in this set.
pub fn clear(&mut self) {
self.combined_access.clear();
self.filtered_accesses.clear();
}
}
impl<T: SparseSetIndex> Default for FilteredAccessSet<T> {
fn default() -> Self {
Self {
combined_access: Default::default(),
filtered_accesses: Vec::new(),
}
}
}
#[cfg(test)]
mod tests {
use crate::query::access::AccessFilters;
use crate::query::{Access, FilteredAccess, FilteredAccessSet};
use fixedbitset::FixedBitSet;
use std::marker::PhantomData;
#[test]
fn read_all_access_conflicts() {
// read_all / single write
let mut access_a = Access::<usize>::default();
access_a.add_write(0);
let mut access_b = Access::<usize>::default();
access_b.read_all();
assert!(!access_b.is_compatible(&access_a));
// read_all / read_all
let mut access_a = Access::<usize>::default();
access_a.read_all();
let mut access_b = Access::<usize>::default();
access_b.read_all();
assert!(access_b.is_compatible(&access_a));
}
#[test]
fn access_get_conflicts() {
let mut access_a = Access::<usize>::default();
access_a.add_read(0);
access_a.add_read(1);
let mut access_b = Access::<usize>::default();
access_b.add_read(0);
access_b.add_write(1);
assert_eq!(access_a.get_conflicts(&access_b), vec![1]);
let mut access_c = Access::<usize>::default();
access_c.add_write(0);
access_c.add_write(1);
assert_eq!(access_a.get_conflicts(&access_c), vec![0, 1]);
assert_eq!(access_b.get_conflicts(&access_c), vec![0, 1]);
let mut access_d = Access::<usize>::default();
access_d.add_read(0);
assert_eq!(access_d.get_conflicts(&access_a), vec![]);
assert_eq!(access_d.get_conflicts(&access_b), vec![]);
assert_eq!(access_d.get_conflicts(&access_c), vec![0]);
}
#[test]
fn filtered_combined_access() {
let mut access_a = FilteredAccessSet::<usize>::default();
access_a.add_unfiltered_read(1);
let mut filter_b = FilteredAccess::<usize>::default();
filter_b.add_write(1);
let conflicts = access_a.get_conflicts_single(&filter_b);
assert_eq!(
&conflicts,
&[1_usize],
"access_a: {access_a:?}, filter_b: {filter_b:?}"
);
}
#[test]
fn filtered_access_extend() {
let mut access_a = FilteredAccess::<usize>::default();
access_a.add_read(0);
access_a.add_read(1);
access_a.and_with(2);
let mut access_b = FilteredAccess::<usize>::default();
access_b.add_read(0);
access_b.add_write(3);
access_b.and_without(4);
access_a.extend(&access_b);
let mut expected = FilteredAccess::<usize>::default();
expected.add_read(0);
expected.add_read(1);
expected.and_with(2);
expected.add_write(3);
expected.and_without(4);
assert!(access_a.eq(&expected));
}
#[test]
fn filtered_access_extend_or() {
let mut access_a = FilteredAccess::<usize>::default();
// Exclusive access to `(&mut A, &mut B)`.
access_a.add_write(0);
access_a.add_write(1);
// Filter by `With<C>`.
let mut access_b = FilteredAccess::<usize>::default();
access_b.and_with(2);
// Filter by `(With<D>, Without<E>)`.
let mut access_c = FilteredAccess::<usize>::default();
access_c.and_with(3);
access_c.and_without(4);
// Turns `access_b` into `Or<(With<C>, (With<D>, Without<D>))>`.
access_b.append_or(&access_c);
// Applies the filters to the initial query, which corresponds to the FilteredAccess'
// representation of `Query<(&mut A, &mut B), Or<(With<C>, (With<D>, Without<E>))>>`.
access_a.extend(&access_b);
// Construct the expected `FilteredAccess` struct.
// The intention here is to test that exclusive access implied by `add_write`
// forms correct normalized access structs when extended with `Or` filters.
let mut expected = FilteredAccess::<usize>::default();
expected.add_write(0);
expected.add_write(1);
// The resulted access is expected to represent `Or<((With<A>, With<B>, With<C>), (With<A>, With<B>, With<D>, Without<E>))>`.
expected.filter_sets = vec![
AccessFilters {
with: FixedBitSet::with_capacity_and_blocks(3, [0b111]),
without: FixedBitSet::default(),
_index_type: PhantomData,
},
AccessFilters {
with: FixedBitSet::with_capacity_and_blocks(4, [0b1011]),
without: FixedBitSet::with_capacity_and_blocks(5, [0b10000]),
_index_type: PhantomData,
},
];
assert_eq!(access_a, expected);
}
}