1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
use crate::storage::SparseSetIndex;
use bevy_utils::HashSet;
use core::fmt;
use fixedbitset::FixedBitSet;
use std::marker::PhantomData;

/// A wrapper struct to make Debug representations of [`FixedBitSet`] easier
/// to read, when used to store [`SparseSetIndex`].
///
/// Instead of the raw integer representation of the `FixedBitSet`, the list of
/// `T` valid for [`SparseSetIndex`] is shown.
///
/// Normal `FixedBitSet` `Debug` output:
/// ```text
/// read_and_writes: FixedBitSet { data: [ 160 ], length: 8 }
/// ```
///
/// Which, unless you are a computer, doesn't help much understand what's in
/// the set. With `FormattedBitSet`, we convert the present set entries into
/// what they stand for, it is much clearer what is going on:
/// ```text
/// read_and_writes: [ ComponentId(5), ComponentId(7) ]
/// ```
struct FormattedBitSet<'a, T: SparseSetIndex> {
    bit_set: &'a FixedBitSet,
    _marker: PhantomData<T>,
}

impl<'a, T: SparseSetIndex> FormattedBitSet<'a, T> {
    fn new(bit_set: &'a FixedBitSet) -> Self {
        Self {
            bit_set,
            _marker: PhantomData,
        }
    }
}

impl<'a, T: SparseSetIndex + fmt::Debug> fmt::Debug for FormattedBitSet<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_list()
            .entries(self.bit_set.ones().map(T::get_sparse_set_index))
            .finish()
    }
}

/// Tracks read and write access to specific elements in a collection.
///
/// Used internally to ensure soundness during system initialization and execution.
/// See the [`is_compatible`](Access::is_compatible) and [`get_conflicts`](Access::get_conflicts) functions.
#[derive(Clone, Eq, PartialEq)]
pub struct Access<T: SparseSetIndex> {
    /// All accessed elements.
    reads_and_writes: FixedBitSet,
    /// The exclusively-accessed elements.
    writes: FixedBitSet,
    /// Is `true` if this has access to all elements in the collection.
    /// This field is a performance optimization for `&World` (also harder to mess up for soundness).
    reads_all: bool,
    /// Is `true` if this has mutable access to all elements in the collection.
    /// If this is true, then `reads_all` must also be true.
    writes_all: bool,
    // Elements that are not accessed, but whose presence in an archetype affect query results.
    archetypal: FixedBitSet,
    marker: PhantomData<T>,
}

impl<T: SparseSetIndex + fmt::Debug> fmt::Debug for Access<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Access")
            .field(
                "read_and_writes",
                &FormattedBitSet::<T>::new(&self.reads_and_writes),
            )
            .field("writes", &FormattedBitSet::<T>::new(&self.writes))
            .field("reads_all", &self.reads_all)
            .field("writes_all", &self.writes_all)
            .field("archetypal", &FormattedBitSet::<T>::new(&self.archetypal))
            .finish()
    }
}

impl<T: SparseSetIndex> Default for Access<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: SparseSetIndex> Access<T> {
    /// Creates an empty [`Access`] collection.
    pub const fn new() -> Self {
        Self {
            reads_all: false,
            writes_all: false,
            reads_and_writes: FixedBitSet::new(),
            writes: FixedBitSet::new(),
            archetypal: FixedBitSet::new(),
            marker: PhantomData,
        }
    }

    /// Adds access to the element given by `index`.
    pub fn add_read(&mut self, index: T) {
        self.reads_and_writes
            .grow_and_insert(index.sparse_set_index());
    }

    /// Adds exclusive access to the element given by `index`.
    pub fn add_write(&mut self, index: T) {
        self.reads_and_writes
            .grow_and_insert(index.sparse_set_index());
        self.writes.grow_and_insert(index.sparse_set_index());
    }

    /// Adds an archetypal (indirect) access to the element given by `index`.
    ///
    /// This is for elements whose values are not accessed (and thus will never cause conflicts),
    /// but whose presence in an archetype may affect query results.
    ///
    /// Currently, this is only used for [`Has<T>`].
    ///
    /// [`Has<T>`]: crate::query::Has
    pub fn add_archetypal(&mut self, index: T) {
        self.archetypal.grow_and_insert(index.sparse_set_index());
    }

    /// Returns `true` if this can access the element given by `index`.
    pub fn has_read(&self, index: T) -> bool {
        self.reads_all || self.reads_and_writes.contains(index.sparse_set_index())
    }

    /// Returns `true` if this can access anything.
    pub fn has_any_read(&self) -> bool {
        self.reads_all || !self.reads_and_writes.is_clear()
    }

    /// Returns `true` if this can exclusively access the element given by `index`.
    pub fn has_write(&self, index: T) -> bool {
        self.writes_all || self.writes.contains(index.sparse_set_index())
    }

    /// Returns `true` if this accesses anything mutably.
    pub fn has_any_write(&self) -> bool {
        self.writes_all || !self.writes.is_clear()
    }

    /// Returns true if this has an archetypal (indirect) access to the element given by `index`.
    ///
    /// This is an element whose value is not accessed (and thus will never cause conflicts),
    /// but whose presence in an archetype may affect query results.
    ///
    /// Currently, this is only used for [`Has<T>`].
    ///
    /// [`Has<T>`]: crate::query::Has
    pub fn has_archetypal(&self, index: T) -> bool {
        self.archetypal.contains(index.sparse_set_index())
    }

    /// Sets this as having access to all indexed elements (i.e. `&World`).
    pub fn read_all(&mut self) {
        self.reads_all = true;
    }

    /// Sets this as having mutable access to all indexed elements (i.e. `EntityMut`).
    pub fn write_all(&mut self) {
        self.reads_all = true;
        self.writes_all = true;
    }

    /// Returns `true` if this has access to all indexed elements (i.e. `&World`).
    pub fn has_read_all(&self) -> bool {
        self.reads_all
    }

    /// Returns `true` if this has write access to all indexed elements (i.e. `EntityMut`).
    pub fn has_write_all(&self) -> bool {
        self.writes_all
    }

    /// Removes all writes.
    pub fn clear_writes(&mut self) {
        self.writes_all = false;
        self.writes.clear();
    }

    /// Removes all accesses.
    pub fn clear(&mut self) {
        self.reads_all = false;
        self.writes_all = false;
        self.reads_and_writes.clear();
        self.writes.clear();
    }

    /// Adds all access from `other`.
    pub fn extend(&mut self, other: &Access<T>) {
        self.reads_all = self.reads_all || other.reads_all;
        self.writes_all = self.writes_all || other.writes_all;
        self.reads_and_writes.union_with(&other.reads_and_writes);
        self.writes.union_with(&other.writes);
    }

    /// Returns `true` if the access and `other` can be active at the same time.
    ///
    /// [`Access`] instances are incompatible if one can write
    /// an element that the other can read or write.
    pub fn is_compatible(&self, other: &Access<T>) -> bool {
        if self.writes_all {
            return !other.has_any_read();
        }

        if other.writes_all {
            return !self.has_any_read();
        }

        if self.reads_all {
            return !other.has_any_write();
        }

        if other.reads_all {
            return !self.has_any_write();
        }

        self.writes.is_disjoint(&other.reads_and_writes)
            && other.writes.is_disjoint(&self.reads_and_writes)
    }

    /// Returns `true` if the set is a subset of another, i.e. `other` contains
    /// at least all the values in `self`.
    pub fn is_subset(&self, other: &Access<T>) -> bool {
        if self.writes_all {
            return other.writes_all;
        }

        if other.writes_all {
            return true;
        }

        if self.reads_all {
            return other.reads_all;
        }

        if other.reads_all {
            return self.writes.is_subset(&other.writes);
        }

        self.reads_and_writes.is_subset(&other.reads_and_writes)
            && self.writes.is_subset(&other.writes)
    }

    /// Returns a vector of elements that the access and `other` cannot access at the same time.
    pub fn get_conflicts(&self, other: &Access<T>) -> Vec<T> {
        let mut conflicts = FixedBitSet::default();
        if self.reads_all {
            // QUESTION: How to handle `other.writes_all`?
            conflicts.extend(other.writes.ones());
        }

        if other.reads_all {
            // QUESTION: How to handle `self.writes_all`.
            conflicts.extend(self.writes.ones());
        }

        if self.writes_all {
            conflicts.extend(other.reads_and_writes.ones());
        }

        if other.writes_all {
            conflicts.extend(self.reads_and_writes.ones());
        }

        conflicts.extend(self.writes.intersection(&other.reads_and_writes));
        conflicts.extend(self.reads_and_writes.intersection(&other.writes));
        conflicts
            .ones()
            .map(SparseSetIndex::get_sparse_set_index)
            .collect()
    }

    /// Returns the indices of the elements this has access to.
    pub fn reads_and_writes(&self) -> impl Iterator<Item = T> + '_ {
        self.reads_and_writes.ones().map(T::get_sparse_set_index)
    }

    /// Returns the indices of the elements this has non-exclusive access to.
    pub fn reads(&self) -> impl Iterator<Item = T> + '_ {
        self.reads_and_writes
            .difference(&self.writes)
            .map(T::get_sparse_set_index)
    }

    /// Returns the indices of the elements this has exclusive access to.
    pub fn writes(&self) -> impl Iterator<Item = T> + '_ {
        self.writes.ones().map(T::get_sparse_set_index)
    }

    /// Returns the indices of the elements that this has an archetypal access to.
    ///
    /// These are elements whose values are not accessed (and thus will never cause conflicts),
    /// but whose presence in an archetype may affect query results.
    ///
    /// Currently, this is only used for [`Has<T>`].
    ///
    /// [`Has<T>`]: crate::query::Has
    pub fn archetypal(&self) -> impl Iterator<Item = T> + '_ {
        self.archetypal.ones().map(T::get_sparse_set_index)
    }
}

/// An [`Access`] that has been filtered to include and exclude certain combinations of elements.
///
/// Used internally to statically check if queries are disjoint.
///
/// Subtle: a `read` or `write` in `access` should not be considered to imply a
/// `with` access.
///
/// For example consider `Query<Option<&T>>` this only has a `read` of `T` as doing
/// otherwise would allow for queries to be considered disjoint when they shouldn't:
/// - `Query<(&mut T, Option<&U>)>` read/write `T`, read `U`, with `U`
/// - `Query<&mut T, Without<U>>` read/write `T`, without `U`
/// from this we could reasonably conclude that the queries are disjoint but they aren't.
///
/// In order to solve this the actual access that `Query<(&mut T, Option<&U>)>` has
/// is read/write `T`, read `U`. It must still have a read `U` access otherwise the following
/// queries would be incorrectly considered disjoint:
/// - `Query<&mut T>`  read/write `T`
/// - `Query<Option<&T>>` accesses nothing
///
/// See comments the [`WorldQuery`](super::WorldQuery) impls of [`AnyOf`](super::AnyOf)/`Option`/[`Or`](super::Or) for more information.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct FilteredAccess<T: SparseSetIndex> {
    pub(crate) access: Access<T>,
    pub(crate) required: FixedBitSet,
    // An array of filter sets to express `With` or `Without` clauses in disjunctive normal form, for example: `Or<(With<A>, With<B>)>`.
    // Filters like `(With<A>, Or<(With<B>, Without<C>)>` are expanded into `Or<((With<A>, With<B>), (With<A>, Without<C>))>`.
    pub(crate) filter_sets: Vec<AccessFilters<T>>,
}

impl<T: SparseSetIndex> Default for FilteredAccess<T> {
    fn default() -> Self {
        Self {
            access: Access::default(),
            required: FixedBitSet::default(),
            filter_sets: vec![AccessFilters::default()],
        }
    }
}

impl<T: SparseSetIndex> From<FilteredAccess<T>> for FilteredAccessSet<T> {
    fn from(filtered_access: FilteredAccess<T>) -> Self {
        let mut base = FilteredAccessSet::<T>::default();
        base.add(filtered_access);
        base
    }
}

impl<T: SparseSetIndex> FilteredAccess<T> {
    /// Returns a reference to the underlying unfiltered access.
    #[inline]
    pub fn access(&self) -> &Access<T> {
        &self.access
    }

    /// Returns a mutable reference to the underlying unfiltered access.
    #[inline]
    pub fn access_mut(&mut self) -> &mut Access<T> {
        &mut self.access
    }

    /// Adds access to the element given by `index`.
    pub fn add_read(&mut self, index: T) {
        self.access.add_read(index.clone());
        self.add_required(index.clone());
        self.and_with(index);
    }

    /// Adds exclusive access to the element given by `index`.
    pub fn add_write(&mut self, index: T) {
        self.access.add_write(index.clone());
        self.add_required(index.clone());
        self.and_with(index);
    }

    fn add_required(&mut self, index: T) {
        self.required.grow_and_insert(index.sparse_set_index());
    }

    /// Adds a `With` filter: corresponds to a conjunction (AND) operation.
    ///
    /// Suppose we begin with `Or<(With<A>, With<B>)>`, which is represented by an array of two `AccessFilter` instances.
    /// Adding `AND With<C>` via this method transforms it into the equivalent of  `Or<((With<A>, With<C>), (With<B>, With<C>))>`.
    pub fn and_with(&mut self, index: T) {
        for filter in &mut self.filter_sets {
            filter.with.grow_and_insert(index.sparse_set_index());
        }
    }

    /// Adds a `Without` filter: corresponds to a conjunction (AND) operation.
    ///
    /// Suppose we begin with `Or<(With<A>, With<B>)>`, which is represented by an array of two `AccessFilter` instances.
    /// Adding `AND Without<C>` via this method transforms it into the equivalent of  `Or<((With<A>, Without<C>), (With<B>, Without<C>))>`.
    pub fn and_without(&mut self, index: T) {
        for filter in &mut self.filter_sets {
            filter.without.grow_and_insert(index.sparse_set_index());
        }
    }

    /// Appends an array of filters: corresponds to a disjunction (OR) operation.
    ///
    /// As the underlying array of filters represents a disjunction,
    /// where each element (`AccessFilters`) represents a conjunction,
    /// we can simply append to the array.
    pub fn append_or(&mut self, other: &FilteredAccess<T>) {
        self.filter_sets.append(&mut other.filter_sets.clone());
    }

    /// Adds all of the accesses from `other` to `self`.
    pub fn extend_access(&mut self, other: &FilteredAccess<T>) {
        self.access.extend(&other.access);
    }

    /// Returns `true` if this and `other` can be active at the same time.
    pub fn is_compatible(&self, other: &FilteredAccess<T>) -> bool {
        if self.access.is_compatible(&other.access) {
            return true;
        }

        // If the access instances are incompatible, we want to check that whether filters can
        // guarantee that queries are disjoint.
        // Since the `filter_sets` array represents a Disjunctive Normal Form formula ("ORs of ANDs"),
        // we need to make sure that each filter set (ANDs) rule out every filter set from the `other` instance.
        //
        // For example, `Query<&mut C, Or<(With<A>, Without<B>)>>` is compatible `Query<&mut C, (With<B>, Without<A>)>`,
        // but `Query<&mut C, Or<(Without<A>, Without<B>)>>` isn't compatible with `Query<&mut C, Or<(With<A>, With<B>)>>`.
        self.filter_sets.iter().all(|filter| {
            other
                .filter_sets
                .iter()
                .all(|other_filter| filter.is_ruled_out_by(other_filter))
        })
    }

    /// Returns a vector of elements that this and `other` cannot access at the same time.
    pub fn get_conflicts(&self, other: &FilteredAccess<T>) -> Vec<T> {
        if !self.is_compatible(other) {
            // filters are disjoint, so we can just look at the unfiltered intersection
            return self.access.get_conflicts(&other.access);
        }
        Vec::new()
    }

    /// Adds all access and filters from `other`.
    ///
    /// Corresponds to a conjunction operation (AND) for filters.
    ///
    /// Extending `Or<(With<A>, Without<B>)>` with `Or<(With<C>, Without<D>)>` will result in
    /// `Or<((With<A>, With<C>), (With<A>, Without<D>), (Without<B>, With<C>), (Without<B>, Without<D>))>`.
    pub fn extend(&mut self, other: &FilteredAccess<T>) {
        self.access.extend(&other.access);
        self.required.union_with(&other.required);

        // We can avoid allocating a new array of bitsets if `other` contains just a single set of filters:
        // in this case we can short-circuit by performing an in-place union for each bitset.
        if other.filter_sets.len() == 1 {
            for filter in &mut self.filter_sets {
                filter.with.union_with(&other.filter_sets[0].with);
                filter.without.union_with(&other.filter_sets[0].without);
            }
            return;
        }

        let mut new_filters = Vec::with_capacity(self.filter_sets.len() * other.filter_sets.len());
        for filter in &self.filter_sets {
            for other_filter in &other.filter_sets {
                let mut new_filter = filter.clone();
                new_filter.with.union_with(&other_filter.with);
                new_filter.without.union_with(&other_filter.without);
                new_filters.push(new_filter);
            }
        }
        self.filter_sets = new_filters;
    }

    /// Sets the underlying unfiltered access as having access to all indexed elements.
    pub fn read_all(&mut self) {
        self.access.read_all();
    }

    /// Sets the underlying unfiltered access as having mutable access to all indexed elements.
    pub fn write_all(&mut self) {
        self.access.write_all();
    }

    /// Returns `true` if the set is a subset of another, i.e. `other` contains
    /// at least all the values in `self`.
    pub fn is_subset(&self, other: &FilteredAccess<T>) -> bool {
        self.required.is_subset(&other.required) && self.access().is_subset(other.access())
    }

    /// Returns the indices of the elements that this access filters for.
    pub fn with_filters(&self) -> impl Iterator<Item = T> + '_ {
        self.filter_sets
            .iter()
            .flat_map(|f| f.with.ones().map(T::get_sparse_set_index))
    }

    /// Returns the indices of the elements that this access filters out.
    pub fn without_filters(&self) -> impl Iterator<Item = T> + '_ {
        self.filter_sets
            .iter()
            .flat_map(|f| f.without.ones().map(T::get_sparse_set_index))
    }
}

#[derive(Clone, Eq, PartialEq)]
pub(crate) struct AccessFilters<T> {
    pub(crate) with: FixedBitSet,
    pub(crate) without: FixedBitSet,
    _index_type: PhantomData<T>,
}

impl<T: SparseSetIndex + fmt::Debug> fmt::Debug for AccessFilters<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("AccessFilters")
            .field("with", &FormattedBitSet::<T>::new(&self.with))
            .field("without", &FormattedBitSet::<T>::new(&self.without))
            .finish()
    }
}

impl<T: SparseSetIndex> Default for AccessFilters<T> {
    fn default() -> Self {
        Self {
            with: FixedBitSet::default(),
            without: FixedBitSet::default(),
            _index_type: PhantomData,
        }
    }
}

impl<T: SparseSetIndex> AccessFilters<T> {
    fn is_ruled_out_by(&self, other: &Self) -> bool {
        // Although not technically complete, we don't consider the case when `AccessFilters`'s
        // `without` bitset contradicts its own `with` bitset (e.g. `(With<A>, Without<A>)`).
        // Such query would be considered compatible with any other query, but as it's almost
        // always an error, we ignore this case instead of treating such query as compatible
        // with others.
        !self.with.is_disjoint(&other.without) || !self.without.is_disjoint(&other.with)
    }
}

/// A collection of [`FilteredAccess`] instances.
///
/// Used internally to statically check if systems have conflicting access.
///
/// It stores multiple sets of accesses.
/// - A "combined" set, which is the access of all filters in this set combined.
/// - The set of access of each individual filters in this set.
#[derive(Debug, Clone)]
pub struct FilteredAccessSet<T: SparseSetIndex> {
    combined_access: Access<T>,
    filtered_accesses: Vec<FilteredAccess<T>>,
}

impl<T: SparseSetIndex> FilteredAccessSet<T> {
    /// Returns a reference to the unfiltered access of the entire set.
    #[inline]
    pub fn combined_access(&self) -> &Access<T> {
        &self.combined_access
    }

    /// Returns `true` if this and `other` can be active at the same time.
    ///
    /// Access conflict resolution happen in two steps:
    /// 1. A "coarse" check, if there is no mutual unfiltered conflict between
    ///    `self` and `other`, we already know that the two access sets are
    ///    compatible.
    /// 2. A "fine grained" check, it kicks in when the "coarse" check fails.
    ///    the two access sets might still be compatible if some of the accesses
    ///    are restricted with the [`With`](super::With) or [`Without`](super::Without) filters so that access is
    ///    mutually exclusive. The fine grained phase iterates over all filters in
    ///    the `self` set and compares it to all the filters in the `other` set,
    ///    making sure they are all mutually compatible.
    pub fn is_compatible(&self, other: &FilteredAccessSet<T>) -> bool {
        if self.combined_access.is_compatible(other.combined_access()) {
            return true;
        }
        for filtered in &self.filtered_accesses {
            for other_filtered in &other.filtered_accesses {
                if !filtered.is_compatible(other_filtered) {
                    return false;
                }
            }
        }
        true
    }

    /// Returns a vector of elements that this set and `other` cannot access at the same time.
    pub fn get_conflicts(&self, other: &FilteredAccessSet<T>) -> Vec<T> {
        // if the unfiltered access is incompatible, must check each pair
        let mut conflicts = HashSet::new();
        if !self.combined_access.is_compatible(other.combined_access()) {
            for filtered in &self.filtered_accesses {
                for other_filtered in &other.filtered_accesses {
                    conflicts.extend(filtered.get_conflicts(other_filtered).into_iter());
                }
            }
        }
        conflicts.into_iter().collect()
    }

    /// Returns a vector of elements that this set and `other` cannot access at the same time.
    pub fn get_conflicts_single(&self, filtered_access: &FilteredAccess<T>) -> Vec<T> {
        // if the unfiltered access is incompatible, must check each pair
        let mut conflicts = HashSet::new();
        if !self.combined_access.is_compatible(filtered_access.access()) {
            for filtered in &self.filtered_accesses {
                conflicts.extend(filtered.get_conflicts(filtered_access).into_iter());
            }
        }
        conflicts.into_iter().collect()
    }

    /// Adds the filtered access to the set.
    pub fn add(&mut self, filtered_access: FilteredAccess<T>) {
        self.combined_access.extend(&filtered_access.access);
        self.filtered_accesses.push(filtered_access);
    }

    /// Adds a read access without filters to the set.
    pub(crate) fn add_unfiltered_read(&mut self, index: T) {
        let mut filter = FilteredAccess::default();
        filter.add_read(index);
        self.add(filter);
    }

    /// Adds a write access without filters to the set.
    pub(crate) fn add_unfiltered_write(&mut self, index: T) {
        let mut filter = FilteredAccess::default();
        filter.add_write(index);
        self.add(filter);
    }

    /// Adds all of the accesses from the passed set to `self`.
    pub fn extend(&mut self, filtered_access_set: FilteredAccessSet<T>) {
        self.combined_access
            .extend(&filtered_access_set.combined_access);
        self.filtered_accesses
            .extend(filtered_access_set.filtered_accesses);
    }

    /// Marks the set as reading all possible indices of type T.
    pub fn read_all(&mut self) {
        self.combined_access.read_all();
    }

    /// Marks the set as writing all T.
    pub fn write_all(&mut self) {
        self.combined_access.write_all();
    }

    /// Removes all accesses stored in this set.
    pub fn clear(&mut self) {
        self.combined_access.clear();
        self.filtered_accesses.clear();
    }
}

impl<T: SparseSetIndex> Default for FilteredAccessSet<T> {
    fn default() -> Self {
        Self {
            combined_access: Default::default(),
            filtered_accesses: Vec::new(),
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::query::access::AccessFilters;
    use crate::query::{Access, FilteredAccess, FilteredAccessSet};
    use fixedbitset::FixedBitSet;
    use std::marker::PhantomData;

    #[test]
    fn read_all_access_conflicts() {
        // read_all / single write
        let mut access_a = Access::<usize>::default();
        access_a.add_write(0);

        let mut access_b = Access::<usize>::default();
        access_b.read_all();

        assert!(!access_b.is_compatible(&access_a));

        // read_all / read_all
        let mut access_a = Access::<usize>::default();
        access_a.read_all();

        let mut access_b = Access::<usize>::default();
        access_b.read_all();

        assert!(access_b.is_compatible(&access_a));
    }

    #[test]
    fn access_get_conflicts() {
        let mut access_a = Access::<usize>::default();
        access_a.add_read(0);
        access_a.add_read(1);

        let mut access_b = Access::<usize>::default();
        access_b.add_read(0);
        access_b.add_write(1);

        assert_eq!(access_a.get_conflicts(&access_b), vec![1]);

        let mut access_c = Access::<usize>::default();
        access_c.add_write(0);
        access_c.add_write(1);

        assert_eq!(access_a.get_conflicts(&access_c), vec![0, 1]);
        assert_eq!(access_b.get_conflicts(&access_c), vec![0, 1]);

        let mut access_d = Access::<usize>::default();
        access_d.add_read(0);

        assert_eq!(access_d.get_conflicts(&access_a), vec![]);
        assert_eq!(access_d.get_conflicts(&access_b), vec![]);
        assert_eq!(access_d.get_conflicts(&access_c), vec![0]);
    }

    #[test]
    fn filtered_combined_access() {
        let mut access_a = FilteredAccessSet::<usize>::default();
        access_a.add_unfiltered_read(1);

        let mut filter_b = FilteredAccess::<usize>::default();
        filter_b.add_write(1);

        let conflicts = access_a.get_conflicts_single(&filter_b);
        assert_eq!(
            &conflicts,
            &[1_usize],
            "access_a: {access_a:?}, filter_b: {filter_b:?}"
        );
    }

    #[test]
    fn filtered_access_extend() {
        let mut access_a = FilteredAccess::<usize>::default();
        access_a.add_read(0);
        access_a.add_read(1);
        access_a.and_with(2);

        let mut access_b = FilteredAccess::<usize>::default();
        access_b.add_read(0);
        access_b.add_write(3);
        access_b.and_without(4);

        access_a.extend(&access_b);

        let mut expected = FilteredAccess::<usize>::default();
        expected.add_read(0);
        expected.add_read(1);
        expected.and_with(2);
        expected.add_write(3);
        expected.and_without(4);

        assert!(access_a.eq(&expected));
    }

    #[test]
    fn filtered_access_extend_or() {
        let mut access_a = FilteredAccess::<usize>::default();
        // Exclusive access to `(&mut A, &mut B)`.
        access_a.add_write(0);
        access_a.add_write(1);

        // Filter by `With<C>`.
        let mut access_b = FilteredAccess::<usize>::default();
        access_b.and_with(2);

        // Filter by `(With<D>, Without<E>)`.
        let mut access_c = FilteredAccess::<usize>::default();
        access_c.and_with(3);
        access_c.and_without(4);

        // Turns `access_b` into `Or<(With<C>, (With<D>, Without<D>))>`.
        access_b.append_or(&access_c);
        // Applies the filters to the initial query, which corresponds to the FilteredAccess'
        // representation of `Query<(&mut A, &mut B), Or<(With<C>, (With<D>, Without<E>))>>`.
        access_a.extend(&access_b);

        // Construct the expected `FilteredAccess` struct.
        // The intention here is to test that exclusive access implied by `add_write`
        // forms correct normalized access structs when extended with `Or` filters.
        let mut expected = FilteredAccess::<usize>::default();
        expected.add_write(0);
        expected.add_write(1);
        // The resulted access is expected to represent `Or<((With<A>, With<B>, With<C>), (With<A>, With<B>, With<D>, Without<E>))>`.
        expected.filter_sets = vec![
            AccessFilters {
                with: FixedBitSet::with_capacity_and_blocks(3, [0b111]),
                without: FixedBitSet::default(),
                _index_type: PhantomData,
            },
            AccessFilters {
                with: FixedBitSet::with_capacity_and_blocks(4, [0b1011]),
                without: FixedBitSet::with_capacity_and_blocks(5, [0b10000]),
                _index_type: PhantomData,
            },
        ];

        assert_eq!(access_a, expected);
    }
}