bevy_ecs/schedule/graph/graph_map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
//! `Graph<DIRECTED>` is a graph datastructure where node values are mapping
//! keys.
//! Based on the `GraphMap` datastructure from [`petgraph`].
//!
//! [`petgraph`]: https://docs.rs/petgraph/0.6.5/petgraph/
use alloc::vec::Vec;
use bevy_platform::{collections::HashSet, hash::FixedHasher};
use core::{
fmt,
hash::{BuildHasher, Hash},
};
use indexmap::IndexMap;
use smallvec::SmallVec;
use super::NodeId;
use Direction::{Incoming, Outgoing};
/// A `Graph` with undirected edges.
///
/// For example, an edge between *1* and *2* is equivalent to an edge between
/// *2* and *1*.
pub type UnGraph<S = FixedHasher> = Graph<false, S>;
/// A `Graph` with directed edges.
///
/// For example, an edge from *1* to *2* is distinct from an edge from *2* to
/// *1*.
pub type DiGraph<S = FixedHasher> = Graph<true, S>;
/// `Graph<DIRECTED>` is a graph datastructure using an associative array
/// of its node weights `NodeId`.
///
/// It uses a combined adjacency list and sparse adjacency matrix
/// representation, using **O(|N| + |E|)** space, and allows testing for edge
/// existence in constant time.
///
/// `Graph` is parameterized over:
///
/// - Constant generic bool `DIRECTED` determines whether the graph edges are directed or
/// undirected.
/// - The `BuildHasher` `S`.
///
/// You can use the type aliases `UnGraph` and `DiGraph` for convenience.
///
/// `Graph` does not allow parallel edges, but self loops are allowed.
#[derive(Clone)]
pub struct Graph<const DIRECTED: bool, S = FixedHasher>
where
S: BuildHasher,
{
nodes: IndexMap<NodeId, Vec<CompactNodeIdAndDirection>, S>,
edges: HashSet<CompactNodeIdPair, S>,
}
impl<const DIRECTED: bool, S: BuildHasher> fmt::Debug for Graph<DIRECTED, S> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.nodes.fmt(f)
}
}
impl<const DIRECTED: bool, S> Graph<DIRECTED, S>
where
S: BuildHasher,
{
/// Create a new `Graph` with estimated capacity.
pub fn with_capacity(nodes: usize, edges: usize) -> Self
where
S: Default,
{
Self {
nodes: IndexMap::with_capacity_and_hasher(nodes, S::default()),
edges: HashSet::with_capacity_and_hasher(edges, S::default()),
}
}
/// Use their natural order to map the node pair (a, b) to a canonical edge id.
#[inline]
fn edge_key(a: NodeId, b: NodeId) -> CompactNodeIdPair {
let (a, b) = if DIRECTED || a <= b { (a, b) } else { (b, a) };
CompactNodeIdPair::store(a, b)
}
/// Return the number of nodes in the graph.
pub fn node_count(&self) -> usize {
self.nodes.len()
}
/// Add node `n` to the graph.
pub fn add_node(&mut self, n: NodeId) {
self.nodes.entry(n).or_default();
}
/// Remove a node `n` from the graph.
///
/// Computes in **O(N)** time, due to the removal of edges with other nodes.
pub fn remove_node(&mut self, n: NodeId) {
let Some(links) = self.nodes.swap_remove(&n) else {
return;
};
let links = links.into_iter().map(CompactNodeIdAndDirection::load);
for (succ, dir) in links {
let edge = if dir == Outgoing {
Self::edge_key(n, succ)
} else {
Self::edge_key(succ, n)
};
// remove all successor links
self.remove_single_edge(succ, n, dir.opposite());
// Remove all edge values
self.edges.remove(&edge);
}
}
/// Return `true` if the node is contained in the graph.
pub fn contains_node(&self, n: NodeId) -> bool {
self.nodes.contains_key(&n)
}
/// Add an edge connecting `a` and `b` to the graph.
/// For a directed graph, the edge is directed from `a` to `b`.
///
/// Inserts nodes `a` and/or `b` if they aren't already part of the graph.
pub fn add_edge(&mut self, a: NodeId, b: NodeId) {
if self.edges.insert(Self::edge_key(a, b)) {
// insert in the adjacency list if it's a new edge
self.nodes
.entry(a)
.or_insert_with(|| Vec::with_capacity(1))
.push(CompactNodeIdAndDirection::store(b, Outgoing));
if a != b {
// self loops don't have the Incoming entry
self.nodes
.entry(b)
.or_insert_with(|| Vec::with_capacity(1))
.push(CompactNodeIdAndDirection::store(a, Incoming));
}
}
}
/// Remove edge relation from a to b
///
/// Return `true` if it did exist.
fn remove_single_edge(&mut self, a: NodeId, b: NodeId, dir: Direction) -> bool {
let Some(sus) = self.nodes.get_mut(&a) else {
return false;
};
let Some(index) = sus
.iter()
.copied()
.map(CompactNodeIdAndDirection::load)
.position(|elt| (DIRECTED && elt == (b, dir)) || (!DIRECTED && elt.0 == b))
else {
return false;
};
sus.swap_remove(index);
true
}
/// Remove edge from `a` to `b` from the graph.
///
/// Return `false` if the edge didn't exist.
pub fn remove_edge(&mut self, a: NodeId, b: NodeId) -> bool {
let exist1 = self.remove_single_edge(a, b, Outgoing);
let exist2 = if a != b {
self.remove_single_edge(b, a, Incoming)
} else {
exist1
};
let weight = self.edges.remove(&Self::edge_key(a, b));
debug_assert!(exist1 == exist2 && exist1 == weight);
weight
}
/// Return `true` if the edge connecting `a` with `b` is contained in the graph.
pub fn contains_edge(&self, a: NodeId, b: NodeId) -> bool {
self.edges.contains(&Self::edge_key(a, b))
}
/// Return an iterator over the nodes of the graph.
pub fn nodes(
&self,
) -> impl DoubleEndedIterator<Item = NodeId> + ExactSizeIterator<Item = NodeId> + '_ {
self.nodes.keys().copied()
}
/// Return an iterator of all nodes with an edge starting from `a`.
pub fn neighbors(&self, a: NodeId) -> impl DoubleEndedIterator<Item = NodeId> + '_ {
let iter = match self.nodes.get(&a) {
Some(neigh) => neigh.iter(),
None => [].iter(),
};
iter.copied()
.map(CompactNodeIdAndDirection::load)
.filter_map(|(n, dir)| (!DIRECTED || dir == Outgoing).then_some(n))
}
/// Return an iterator of all neighbors that have an edge between them and
/// `a`, in the specified direction.
/// If the graph's edges are undirected, this is equivalent to *.neighbors(a)*.
pub fn neighbors_directed(
&self,
a: NodeId,
dir: Direction,
) -> impl DoubleEndedIterator<Item = NodeId> + '_ {
let iter = match self.nodes.get(&a) {
Some(neigh) => neigh.iter(),
None => [].iter(),
};
iter.copied()
.map(CompactNodeIdAndDirection::load)
.filter_map(move |(n, d)| (!DIRECTED || d == dir || n == a).then_some(n))
}
/// Return an iterator of target nodes with an edge starting from `a`,
/// paired with their respective edge weights.
pub fn edges(&self, a: NodeId) -> impl DoubleEndedIterator<Item = (NodeId, NodeId)> + '_ {
self.neighbors(a)
.map(move |b| match self.edges.get(&Self::edge_key(a, b)) {
None => unreachable!(),
Some(_) => (a, b),
})
}
/// Return an iterator of target nodes with an edge starting from `a`,
/// paired with their respective edge weights.
pub fn edges_directed(
&self,
a: NodeId,
dir: Direction,
) -> impl DoubleEndedIterator<Item = (NodeId, NodeId)> + '_ {
self.neighbors_directed(a, dir).map(move |b| {
let (a, b) = if dir == Incoming { (b, a) } else { (a, b) };
match self.edges.get(&Self::edge_key(a, b)) {
None => unreachable!(),
Some(_) => (a, b),
}
})
}
/// Return an iterator over all edges of the graph with their weight in arbitrary order.
pub fn all_edges(&self) -> impl ExactSizeIterator<Item = (NodeId, NodeId)> + '_ {
self.edges.iter().copied().map(CompactNodeIdPair::load)
}
pub(crate) fn to_index(&self, ix: NodeId) -> usize {
self.nodes.get_index_of(&ix).unwrap()
}
}
/// Create a new empty `Graph`.
impl<const DIRECTED: bool, S> Default for Graph<DIRECTED, S>
where
S: BuildHasher + Default,
{
fn default() -> Self {
Self::with_capacity(0, 0)
}
}
impl<S: BuildHasher> DiGraph<S> {
/// Iterate over all *Strongly Connected Components* in this graph.
pub(crate) fn iter_sccs(&self) -> impl Iterator<Item = SmallVec<[NodeId; 4]>> + '_ {
super::tarjan_scc::new_tarjan_scc(self)
}
}
/// Edge direction.
#[derive(Clone, Copy, Debug, PartialEq, PartialOrd, Ord, Eq, Hash)]
#[repr(u8)]
pub enum Direction {
/// An `Outgoing` edge is an outward edge *from* the current node.
Outgoing = 0,
/// An `Incoming` edge is an inbound edge *to* the current node.
Incoming = 1,
}
impl Direction {
/// Return the opposite `Direction`.
#[inline]
pub fn opposite(self) -> Self {
match self {
Self::Outgoing => Self::Incoming,
Self::Incoming => Self::Outgoing,
}
}
}
/// Compact storage of a [`NodeId`] and a [`Direction`].
#[derive(Clone, Copy)]
struct CompactNodeIdAndDirection {
index: usize,
is_system: bool,
direction: Direction,
}
impl fmt::Debug for CompactNodeIdAndDirection {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.load().fmt(f)
}
}
impl CompactNodeIdAndDirection {
const fn store(node: NodeId, direction: Direction) -> Self {
let index = node.index();
let is_system = node.is_system();
Self {
index,
is_system,
direction,
}
}
const fn load(self) -> (NodeId, Direction) {
let Self {
index,
is_system,
direction,
} = self;
let node = match is_system {
true => NodeId::System(index),
false => NodeId::Set(index),
};
(node, direction)
}
}
/// Compact storage of a [`NodeId`] pair.
#[derive(Clone, Copy, Hash, PartialEq, Eq)]
struct CompactNodeIdPair {
index_a: usize,
index_b: usize,
is_system_a: bool,
is_system_b: bool,
}
impl fmt::Debug for CompactNodeIdPair {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.load().fmt(f)
}
}
impl CompactNodeIdPair {
const fn store(a: NodeId, b: NodeId) -> Self {
let index_a = a.index();
let is_system_a = a.is_system();
let index_b = b.index();
let is_system_b = b.is_system();
Self {
index_a,
index_b,
is_system_a,
is_system_b,
}
}
const fn load(self) -> (NodeId, NodeId) {
let Self {
index_a,
index_b,
is_system_a,
is_system_b,
} = self;
let a = match is_system_a {
true => NodeId::System(index_a),
false => NodeId::Set(index_a),
};
let b = match is_system_b {
true => NodeId::System(index_b),
false => NodeId::Set(index_b),
};
(a, b)
}
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::vec;
/// The `Graph` type _must_ preserve the order that nodes are inserted in if
/// no removals occur. Removals are permitted to swap the latest node into the
/// location of the removed node.
#[test]
fn node_order_preservation() {
use NodeId::System;
let mut graph = <DiGraph>::default();
graph.add_node(System(1));
graph.add_node(System(2));
graph.add_node(System(3));
graph.add_node(System(4));
assert_eq!(
graph.nodes().collect::<Vec<_>>(),
vec![System(1), System(2), System(3), System(4)]
);
graph.remove_node(System(1));
assert_eq!(
graph.nodes().collect::<Vec<_>>(),
vec![System(4), System(2), System(3)]
);
graph.remove_node(System(4));
assert_eq!(
graph.nodes().collect::<Vec<_>>(),
vec![System(3), System(2)]
);
graph.remove_node(System(2));
assert_eq!(graph.nodes().collect::<Vec<_>>(), vec![System(3)]);
graph.remove_node(System(3));
assert_eq!(graph.nodes().collect::<Vec<_>>(), vec![]);
}
/// Nodes that have bidirectional edges (or any edge in the case of undirected graphs) are
/// considered strongly connected. A strongly connected component is a collection of
/// nodes where there exists a path from any node to any other node in the collection.
#[test]
fn strongly_connected_components() {
use NodeId::System;
let mut graph = <DiGraph>::default();
graph.add_edge(System(1), System(2));
graph.add_edge(System(2), System(1));
graph.add_edge(System(2), System(3));
graph.add_edge(System(3), System(2));
graph.add_edge(System(4), System(5));
graph.add_edge(System(5), System(4));
graph.add_edge(System(6), System(2));
let sccs = graph
.iter_sccs()
.map(|scc| scc.to_vec())
.collect::<Vec<_>>();
assert_eq!(
sccs,
vec![
vec![System(3), System(2), System(1)],
vec![System(5), System(4)],
vec![System(6)]
]
);
}
}