1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
use std::{borrow::Cow, cell::UnsafeCell, marker::PhantomData};
use bevy_ptr::UnsafeCellDeref;
use crate::{
archetype::ArchetypeComponentId,
component::{ComponentId, Tick},
prelude::World,
query::Access,
schedule::InternedSystemSet,
world::unsafe_world_cell::UnsafeWorldCell,
};
use super::{ReadOnlySystem, System};
/// Customizes the behavior of a [`CombinatorSystem`].
///
/// # Examples
///
/// ```
/// use bevy_ecs::prelude::*;
/// use bevy_ecs::system::{CombinatorSystem, Combine};
///
/// // A system combinator that performs an exclusive-or (XOR)
/// // operation on the output of two systems.
/// pub type Xor<A, B> = CombinatorSystem<XorMarker, A, B>;
///
/// // This struct is used to customize the behavior of our combinator.
/// pub struct XorMarker;
///
/// impl<A, B> Combine<A, B> for XorMarker
/// where
/// A: System<In = (), Out = bool>,
/// B: System<In = (), Out = bool>,
/// {
/// type In = ();
/// type Out = bool;
///
/// fn combine(
/// _input: Self::In,
/// a: impl FnOnce(A::In) -> A::Out,
/// b: impl FnOnce(B::In) -> B::Out,
/// ) -> Self::Out {
/// a(()) ^ b(())
/// }
/// }
///
/// # #[derive(Resource, PartialEq, Eq)] struct A(u32);
/// # #[derive(Resource, PartialEq, Eq)] struct B(u32);
/// # #[derive(Resource, Default)] struct RanFlag(bool);
/// # let mut world = World::new();
/// # world.init_resource::<RanFlag>();
/// #
/// # let mut app = Schedule::default();
/// app.add_systems(my_system.run_if(Xor::new(
/// IntoSystem::into_system(resource_equals(A(1))),
/// IntoSystem::into_system(resource_equals(B(1))),
/// // The name of the combined system.
/// std::borrow::Cow::Borrowed("a ^ b"),
/// )));
/// # fn my_system(mut flag: ResMut<RanFlag>) { flag.0 = true; }
/// #
/// # world.insert_resource(A(0));
/// # world.insert_resource(B(0));
/// # app.run(&mut world);
/// # // Neither condition passes, so the system does not run.
/// # assert!(!world.resource::<RanFlag>().0);
/// #
/// # world.insert_resource(A(1));
/// # app.run(&mut world);
/// # // Only the first condition passes, so the system runs.
/// # assert!(world.resource::<RanFlag>().0);
/// # world.resource_mut::<RanFlag>().0 = false;
/// #
/// # world.insert_resource(B(1));
/// # app.run(&mut world);
/// # // Both conditions pass, so the system does not run.
/// # assert!(!world.resource::<RanFlag>().0);
/// #
/// # world.insert_resource(A(0));
/// # app.run(&mut world);
/// # // Only the second condition passes, so the system runs.
/// # assert!(world.resource::<RanFlag>().0);
/// # world.resource_mut::<RanFlag>().0 = false;
/// ```
#[diagnostic::on_unimplemented(
message = "`{Self}` can not combine systems `{A}` and `{B}`",
label = "invalid system combination",
note = "the inputs and outputs of `{A}` and `{B}` are not compatible with this combiner"
)]
pub trait Combine<A: System, B: System> {
/// The [input](System::In) type for a [`CombinatorSystem`].
type In;
/// The [output](System::Out) type for a [`CombinatorSystem`].
type Out;
/// When used in a [`CombinatorSystem`], this function customizes how
/// the two composite systems are invoked and their outputs are combined.
///
/// See the trait-level docs for [`Combine`] for an example implementation.
fn combine(
input: Self::In,
a: impl FnOnce(A::In) -> A::Out,
b: impl FnOnce(B::In) -> B::Out,
) -> Self::Out;
}
/// A [`System`] defined by combining two other systems.
/// The behavior of this combinator is specified by implementing the [`Combine`] trait.
/// For a full usage example, see the docs for [`Combine`].
pub struct CombinatorSystem<Func, A, B> {
_marker: PhantomData<fn() -> Func>,
a: A,
b: B,
name: Cow<'static, str>,
component_access: Access<ComponentId>,
archetype_component_access: Access<ArchetypeComponentId>,
}
impl<Func, A, B> CombinatorSystem<Func, A, B> {
/// Creates a new system that combines two inner systems.
///
/// The returned system will only be usable if `Func` implements [`Combine<A, B>`].
pub const fn new(a: A, b: B, name: Cow<'static, str>) -> Self {
Self {
_marker: PhantomData,
a,
b,
name,
component_access: Access::new(),
archetype_component_access: Access::new(),
}
}
}
impl<A, B, Func> System for CombinatorSystem<Func, A, B>
where
Func: Combine<A, B> + 'static,
A: System,
B: System,
{
type In = Func::In;
type Out = Func::Out;
fn name(&self) -> Cow<'static, str> {
self.name.clone()
}
fn component_access(&self) -> &Access<ComponentId> {
&self.component_access
}
fn archetype_component_access(&self) -> &Access<ArchetypeComponentId> {
&self.archetype_component_access
}
fn is_send(&self) -> bool {
self.a.is_send() && self.b.is_send()
}
fn is_exclusive(&self) -> bool {
self.a.is_exclusive() || self.b.is_exclusive()
}
fn has_deferred(&self) -> bool {
self.a.has_deferred() || self.b.has_deferred()
}
unsafe fn run_unsafe(&mut self, input: Self::In, world: UnsafeWorldCell) -> Self::Out {
Func::combine(
input,
// SAFETY: The world accesses for both underlying systems have been registered,
// so the caller will guarantee that no other systems will conflict with `a` or `b`.
// Since these closures are `!Send + !Sync + !'static`, they can never be called
// in parallel, so their world accesses will not conflict with each other.
// Additionally, `update_archetype_component_access` has been called,
// which forwards to the implementations for `self.a` and `self.b`.
|input| unsafe { self.a.run_unsafe(input, world) },
// SAFETY: See the comment above.
|input| unsafe { self.b.run_unsafe(input, world) },
)
}
fn run<'w>(&mut self, input: Self::In, world: &'w mut World) -> Self::Out {
// SAFETY: Converting `&mut T` -> `&UnsafeCell<T>`
// is explicitly allowed in the docs for `UnsafeCell`.
let world: &'w UnsafeCell<World> = unsafe { std::mem::transmute(world) };
Func::combine(
input,
// SAFETY: Since these closures are `!Send + !Sync + !'static`, they can never
// be called in parallel. Since mutable access to `world` only exists within
// the scope of either closure, we can be sure they will never alias one another.
|input| self.a.run(input, unsafe { world.deref_mut() }),
#[allow(clippy::undocumented_unsafe_blocks)]
|input| self.b.run(input, unsafe { world.deref_mut() }),
)
}
fn apply_deferred(&mut self, world: &mut World) {
self.a.apply_deferred(world);
self.b.apply_deferred(world);
}
#[inline]
fn queue_deferred(&mut self, mut world: crate::world::DeferredWorld) {
self.a.queue_deferred(world.reborrow());
self.b.queue_deferred(world);
}
fn initialize(&mut self, world: &mut World) {
self.a.initialize(world);
self.b.initialize(world);
self.component_access.extend(self.a.component_access());
self.component_access.extend(self.b.component_access());
}
fn update_archetype_component_access(&mut self, world: UnsafeWorldCell) {
self.a.update_archetype_component_access(world);
self.b.update_archetype_component_access(world);
self.archetype_component_access
.extend(self.a.archetype_component_access());
self.archetype_component_access
.extend(self.b.archetype_component_access());
}
fn check_change_tick(&mut self, change_tick: Tick) {
self.a.check_change_tick(change_tick);
self.b.check_change_tick(change_tick);
}
fn default_system_sets(&self) -> Vec<InternedSystemSet> {
let mut default_sets = self.a.default_system_sets();
default_sets.append(&mut self.b.default_system_sets());
default_sets
}
fn get_last_run(&self) -> Tick {
self.a.get_last_run()
}
fn set_last_run(&mut self, last_run: Tick) {
self.a.set_last_run(last_run);
self.b.set_last_run(last_run);
}
}
/// SAFETY: Both systems are read-only, so any system created by combining them will only read from the world.
unsafe impl<A, B, Func> ReadOnlySystem for CombinatorSystem<Func, A, B>
where
Func: Combine<A, B> + 'static,
A: ReadOnlySystem,
B: ReadOnlySystem,
{
}
impl<Func, A, B> Clone for CombinatorSystem<Func, A, B>
where
A: Clone,
B: Clone,
{
/// Clone the combined system. The cloned instance must be `.initialize()`d before it can run.
fn clone(&self) -> Self {
CombinatorSystem::new(self.a.clone(), self.b.clone(), self.name.clone())
}
}
/// A [`System`] created by piping the output of the first system into the input of the second.
///
/// This can be repeated indefinitely, but system pipes cannot branch: the output is consumed by the receiving system.
///
/// Given two systems `A` and `B`, A may be piped into `B` as `A.pipe(B)` if the output type of `A` is
/// equal to the input type of `B`.
///
/// Note that for [`FunctionSystem`](crate::system::FunctionSystem)s the output is the return value
/// of the function and the input is the first [`SystemParam`](crate::system::SystemParam) if it is
/// tagged with [`In`](crate::system::In) or `()` if the function has no designated input parameter.
///
/// # Examples
///
/// ```
/// use std::num::ParseIntError;
///
/// use bevy_ecs::prelude::*;
///
/// fn main() {
/// let mut world = World::default();
/// world.insert_resource(Message("42".to_string()));
///
/// // pipe the `parse_message_system`'s output into the `filter_system`s input
/// let mut piped_system = parse_message_system.pipe(filter_system);
/// piped_system.initialize(&mut world);
/// assert_eq!(piped_system.run((), &mut world), Some(42));
/// }
///
/// #[derive(Resource)]
/// struct Message(String);
///
/// fn parse_message_system(message: Res<Message>) -> Result<usize, ParseIntError> {
/// message.0.parse::<usize>()
/// }
///
/// fn filter_system(In(result): In<Result<usize, ParseIntError>>) -> Option<usize> {
/// result.ok().filter(|&n| n < 100)
/// }
/// ```
pub type PipeSystem<SystemA, SystemB> = CombinatorSystem<Pipe, SystemA, SystemB>;
#[doc(hidden)]
pub struct Pipe;
impl<A, B> Combine<A, B> for Pipe
where
A: System,
B: System<In = A::Out>,
{
type In = A::In;
type Out = B::Out;
fn combine(
input: Self::In,
a: impl FnOnce(A::In) -> A::Out,
b: impl FnOnce(B::In) -> B::Out,
) -> Self::Out {
let value = a(input);
b(value)
}
}