1use super::{ComputeMassProperties2d, MassProperties2d};
2use bevy_math::{
3 ops,
4 primitives::{
5 Annulus, Arc2d, Capsule2d, Circle, CircularSector, CircularSegment, ConvexPolygon, Ellipse,
6 Line2d, Measured2d, Plane2d, Polyline2d, Rectangle, RegularPolygon, Rhombus, Segment2d,
7 Triangle2d,
8 },
9 FloatPow, Vec2,
10};
11
12impl ComputeMassProperties2d for Circle {
13 #[inline]
14 fn mass(&self, density: f32) -> f32 {
15 self.area() * density
16 }
17
18 #[inline]
19 fn unit_angular_inertia(&self) -> f32 {
20 self.radius.squared() / 2.0
21 }
22
23 #[inline]
24 fn center_of_mass(&self) -> Vec2 {
25 Vec2::ZERO
26 }
27}
28
29impl ComputeMassProperties2d for CircularSector {
30 #[inline]
31 fn mass(&self, density: f32) -> f32 {
32 self.area() * density
33 }
34
35 #[inline]
36 fn unit_angular_inertia(&self) -> f32 {
37 0.5 * ops::powf(self.radius(), 4.0) * self.angle()
38 }
39
40 #[inline]
41 fn center_of_mass(&self) -> Vec2 {
42 let angle = self.angle();
43 let y = 2.0 * self.radius() * ops::sin(angle) / (3.0 * angle);
44 Vec2::new(0.0, y)
45 }
46}
47
48impl ComputeMassProperties2d for CircularSegment {
49 #[inline]
50 fn mass(&self, density: f32) -> f32 {
51 self.area() * density
52 }
53
54 #[inline]
55 fn unit_angular_inertia(&self) -> f32 {
56 let angle = self.angle();
57 let (sin, cos) = ops::sin_cos(angle);
58 ops::powf(self.radius(), 4.0) / 4.0 * (angle - sin + 2.0 / 3.0 * sin * (1.0 - cos) / 2.0)
59 }
60
61 #[inline]
62 fn center_of_mass(&self) -> Vec2 {
63 let y = self.radius() * ops::sin(self.half_angle()).cubed()
64 / (6.0 * self.half_angle() - ops::sin(self.angle()));
65 Vec2::new(0.0, y)
66 }
67}
68
69impl ComputeMassProperties2d for Ellipse {
70 #[inline]
71 fn mass(&self, density: f32) -> f32 {
72 self.area() * density
73 }
74
75 #[inline]
76 fn unit_angular_inertia(&self) -> f32 {
77 self.half_size.length_squared() / 4.0
78 }
79
80 #[inline]
81 fn center_of_mass(&self) -> Vec2 {
82 Vec2::ZERO
83 }
84}
85
86impl ComputeMassProperties2d for Annulus {
87 #[inline]
88 fn mass(&self, density: f32) -> f32 {
89 self.area() * density
90 }
91
92 #[inline]
93 fn unit_angular_inertia(&self) -> f32 {
94 0.5 * (self.outer_circle.radius.squared() + self.inner_circle.radius.squared())
95 }
96
97 #[inline]
98 fn center_of_mass(&self) -> Vec2 {
99 Vec2::ZERO
100 }
101}
102
103impl ComputeMassProperties2d for Triangle2d {
104 #[inline]
105 fn mass(&self, density: f32) -> f32 {
106 self.area() * density
107 }
108
109 #[inline]
110 fn unit_angular_inertia(&self) -> f32 {
111 let center_of_mass = self.center_of_mass();
115 let com_a = self.vertices[1] - center_of_mass;
116 let com_c = self.vertices[2] - center_of_mass;
117
118 (com_a.length_squared() + com_a.dot(com_c) + com_c.length_squared()) / 6.0
119 }
120
121 #[inline]
122 fn center_of_mass(&self) -> Vec2 {
123 (self.vertices[0] + self.vertices[1] + self.vertices[2]) / 3.0
124 }
125
126 #[inline]
127 fn mass_properties(&self, density: f32) -> MassProperties2d {
128 let area = self.area();
129 let center_of_mass = self.center_of_mass();
130
131 if area < f32::EPSILON {
132 return MassProperties2d::new(0.0, 0.0, center_of_mass);
133 }
134
135 let mass = area * density;
136
137 MassProperties2d::new(mass, self.angular_inertia(mass), center_of_mass)
138 }
139}
140
141impl ComputeMassProperties2d for Rectangle {
142 #[inline]
143 fn mass(&self, density: f32) -> f32 {
144 self.area() * density
145 }
146
147 #[inline]
148 fn unit_angular_inertia(&self) -> f32 {
149 self.half_size.length_squared() / 3.0
150 }
151
152 #[inline]
153 fn center_of_mass(&self) -> Vec2 {
154 Vec2::ZERO
155 }
156}
157
158impl ComputeMassProperties2d for Rhombus {
159 #[inline]
160 fn mass(&self, density: f32) -> f32 {
161 self.area() * density
162 }
163
164 #[inline]
165 fn unit_angular_inertia(&self) -> f32 {
166 self.half_diagonals.length_squared() / 12.0
167 }
168
169 #[inline]
170 fn center_of_mass(&self) -> Vec2 {
171 Vec2::ZERO
172 }
173}
174
175impl ComputeMassProperties2d for RegularPolygon {
176 #[inline]
177 fn mass(&self, density: f32) -> f32 {
178 self.area() * density
179 }
180
181 #[inline]
182 fn unit_angular_inertia(&self) -> f32 {
183 let half_external_angle = core::f32::consts::PI / self.sides as f32;
184 self.circumradius().squared() / 6.0 * (1.0 + 2.0 * ops::cos(half_external_angle).squared())
185 }
186
187 #[inline]
188 fn center_of_mass(&self) -> Vec2 {
189 Vec2::ZERO
190 }
191}
192
193impl ComputeMassProperties2d for Capsule2d {
194 #[inline]
195 fn mass(&self, density: f32) -> f32 {
196 let area = self.radius * (core::f32::consts::PI * self.radius + 4.0 * self.half_length);
197 area * density
198 }
199
200 #[inline]
201 fn unit_angular_inertia(&self) -> f32 {
202 let rectangle = Rectangle {
204 half_size: Vec2::new(self.radius, self.half_length),
205 };
206 let rectangle_height = rectangle.half_size.y * 2.0;
207 let circle = Circle::new(self.radius);
208
209 let rectangle_area = rectangle.area();
211 let circle_area = circle.area();
212
213 let density = 1.0 / (rectangle_area + circle_area);
215 let rectangle_mass = rectangle_area * density;
216 let circle_mass = circle_area * density;
217
218 let rectangle_inertia = rectangle.angular_inertia(rectangle_mass);
220 let circle_inertia = circle.angular_inertia(circle_mass);
221
222 let mut capsule_inertia = rectangle_inertia + circle_inertia;
224
225 capsule_inertia += (rectangle_height.squared() * 0.25
227 + rectangle_height * self.radius * 3.0 / 8.0)
228 * circle_mass;
229
230 capsule_inertia
231 }
232
233 #[inline]
234 fn center_of_mass(&self) -> Vec2 {
235 Vec2::ZERO
236 }
237
238 #[inline]
239 fn mass_properties(&self, density: f32) -> MassProperties2d {
240 let rectangle = Rectangle {
242 half_size: Vec2::new(self.radius, self.half_length),
243 };
244 let rectangle_height = rectangle.half_size.y * 2.0;
245 let circle = Circle::new(self.radius);
246
247 let rectangle_area = rectangle.area();
249 let circle_area = circle.area();
250
251 let rectangle_mass = rectangle_area * density;
253 let circle_mass = circle_area * density;
254
255 let rectangle_inertia = rectangle.angular_inertia(rectangle_mass);
257 let circle_inertia = circle.angular_inertia(circle_mass);
258
259 let mut capsule_inertia = rectangle_inertia + circle_inertia;
261
262 capsule_inertia += (rectangle_height.squared() * 0.25
264 + rectangle_height * self.radius * 3.0 / 8.0)
265 * circle_mass;
266
267 MassProperties2d::new(rectangle_mass + circle_mass, capsule_inertia, Vec2::ZERO)
268 }
269}
270
271impl ComputeMassProperties2d for ConvexPolygon {
272 #[inline]
273 fn mass(&self, density: f32) -> f32 {
274 convex_polygon_mass(self.vertices(), density)
275 }
276
277 #[inline]
278 fn unit_angular_inertia(&self) -> f32 {
279 convex_polygon_unit_angular_inertia(self.vertices())
280 }
281
282 #[inline]
283 fn center_of_mass(&self) -> Vec2 {
284 convex_polygon_area_and_center_of_mass(self.vertices()).1
285 }
286
287 #[inline]
288 fn mass_properties(&self, density: f32) -> MassProperties2d {
289 convex_polygon_mass_properties(self.vertices(), density)
290 }
291}
292
293#[inline]
297pub fn convex_polygon_mass(vertices: &[Vec2], density: f32) -> f32 {
298 let geometric_center =
299 vertices.iter().fold(Vec2::ZERO, |acc, vtx| acc + *vtx) / vertices.len() as f32;
300
301 let mut area = 0.0;
303
304 let mut iter = vertices.iter().peekable();
306 let Some(first) = iter.peek().copied().copied() else {
307 return 0.0;
308 };
309
310 while let Some(vertex) = iter.next() {
313 let (a, b, c) = (
314 *vertex,
315 iter.peek().copied().copied().unwrap_or(first),
316 geometric_center,
317 );
318 let tri_area = Triangle2d::new(a, b, c).area();
319 area += tri_area;
320 }
321
322 area * density
323}
324
325#[inline]
329pub fn convex_polygon_unit_angular_inertia(vertices: &[Vec2]) -> f32 {
330 let (area, center_of_mass) = convex_polygon_area_and_center_of_mass(vertices);
332
333 if area < f32::EPSILON {
334 return 0.0;
335 }
336
337 let mut inertia = 0.0;
339
340 let mut iter = vertices.iter().peekable();
342 let first = **iter.peek().unwrap();
343
344 while let Some(vertex) = iter.next() {
347 let triangle = Triangle2d::new(
348 *vertex,
349 iter.peek().copied().copied().unwrap_or(first),
350 center_of_mass,
351 );
352 inertia += triangle.unit_angular_inertia() * triangle.area();
353 }
354
355 inertia / area
356}
357
358#[inline]
362pub fn convex_polygon_mass_properties(vertices: &[Vec2], density: f32) -> MassProperties2d {
363 let (area, center_of_mass) = convex_polygon_area_and_center_of_mass(vertices);
365
366 if area < f32::EPSILON {
367 return MassProperties2d::new(0.0, 0.0, center_of_mass);
368 }
369
370 let mut inertia = 0.0;
372
373 let mut iter = vertices.iter().peekable();
375 let first = **iter.peek().unwrap();
376
377 while let Some(vertex) = iter.next() {
380 let triangle = Triangle2d::new(
381 *vertex,
382 iter.peek().copied().copied().unwrap_or(first),
383 center_of_mass,
384 );
385 inertia += triangle.unit_angular_inertia() * triangle.area();
386 }
387
388 MassProperties2d::new(area * density, inertia * density, center_of_mass)
389}
390
391#[inline]
395pub fn convex_polygon_area_and_center_of_mass(vertices: &[Vec2]) -> (f32, Vec2) {
396 let geometric_center =
397 vertices.iter().fold(Vec2::ZERO, |acc, vtx| acc + *vtx) / vertices.len() as f32;
398
399 let mut area = 0.0;
401 let mut center = Vec2::ZERO;
402
403 let mut iter = vertices.iter().peekable();
405 let Some(first) = iter.peek().copied().copied() else {
406 return (0.0, Vec2::ZERO);
407 };
408
409 while let Some(vertex) = iter.next() {
412 let (a, b, c) = (
413 *vertex,
414 iter.peek().copied().copied().unwrap_or(first),
415 geometric_center,
416 );
417 let tri_area = Triangle2d::new(a, b, c).area();
418 let tri_center = (a + b + c) / 3.0;
419
420 area += tri_area;
421 center += tri_center * tri_area;
422 }
423
424 if area < f32::EPSILON {
425 (area, geometric_center)
426 } else {
427 (area, center / area)
428 }
429}
430
431macro_rules! impl_zero_mass_properties_2d {
432 ($($shape:ty),*) => {
433 $(
434 impl ComputeMassProperties2d for $shape {
435 #[inline]
436 fn mass(&self, _density: f32) -> f32 {
437 0.0
438 }
439
440 #[inline]
441 fn unit_angular_inertia(&self) -> f32 {
442 0.0
443 }
444
445 #[inline]
446 fn angular_inertia(&self, _mass: f32) -> f32 {
447 0.0
448 }
449
450 #[inline]
451 fn center_of_mass(&self) -> Vec2 {
452 Vec2::ZERO
453 }
454
455 #[inline]
456 fn mass_properties(&self, _density: f32) -> MassProperties2d {
457 MassProperties2d::ZERO
458 }
459 }
460 )*
461 };
462}
463
464impl_zero_mass_properties_2d!(Arc2d);
465impl_zero_mass_properties_2d!(Plane2d);
466impl_zero_mass_properties_2d!(Line2d);
467impl_zero_mass_properties_2d!(Segment2d);
468impl_zero_mass_properties_2d!(Polyline2d);
469
470#[cfg(test)]
471mod tests {
472 use alloc::vec::Vec;
473
474 use approx::assert_relative_eq;
475 use bevy_math::ShapeSample;
476 use rand::SeedableRng;
477
478 use super::*;
479
480 macro_rules! test_shape {
481 ($test_name:tt, $shape:expr) => {
482 #[test]
483 fn $test_name() {
484 let shape = $shape;
485
486 let mut rng = rand_chacha::ChaCha8Rng::from_seed(Default::default());
488 let points = (0..1_000_000)
489 .map(|_| shape.sample_interior(&mut rng))
490 .collect::<Vec<_>>();
491
492 let density = 2.0;
494 let mass = shape.mass(density);
495 let angular_inertia = shape.angular_inertia(mass);
496 let center_of_mass = shape.center_of_mass();
497
498 let mass_props = shape.mass_properties(density);
500 assert_relative_eq!(mass, mass_props.mass);
501 assert_relative_eq!(angular_inertia, mass_props.angular_inertia);
502 assert_relative_eq!(center_of_mass, mass_props.center_of_mass);
503
504 let expected = MassProperties2d::from_point_cloud(&points, mass);
508
509 assert_relative_eq!(mass, expected.mass);
510 assert_relative_eq!(angular_inertia, expected.angular_inertia, epsilon = 0.1);
511 assert_relative_eq!(center_of_mass, expected.center_of_mass, epsilon = 0.01);
512 }
513 };
514 }
515
516 test_shape!(circle, Circle::new(2.0));
519 test_shape!(annulus, Annulus::new(1.0, 2.0));
523 test_shape!(
524 triangle,
525 Triangle2d::new(
526 Vec2::new(8.0, 6.0),
527 Vec2::new(2.0, 0.0),
528 Vec2::new(6.0, 2.0)
529 )
530 );
531 test_shape!(rectangle, Rectangle::new(2.0, 1.0));
532 test_shape!(capsule, Capsule2d::new(1.0, 0.25));
536}