bevy_heavy/dim2/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
use bevy_math::{DVec2, Isometry2d, Vec2};
use crate::RecipOrZero;
/// [`ComputeMassProperties2d`] implementations for 2D geometric primitives.
mod impls;
/// A trait for computing [`MassProperties2d`] for 2D objects.
///
/// For the 3D equivalent, see [`ComputeMassProperties3d`](crate::ComputeMassProperties3d).
pub trait ComputeMassProperties2d {
/// Computes the [mass] of the object with a given `density`.
///
/// [mass]: crate#mass
fn mass(&self, density: f32) -> f32;
/// Computes the [angular inertia] corresponding to a mass of `1.0`.
///
/// [angular inertia]: crate#angular-inertia
#[doc(alias = "unit_moment_of_inertia")]
fn unit_angular_inertia(&self) -> f32;
/// Computes the [angular inertia] corresponding to the given `mass`.
///
/// Equivalent to `mass * shape.unit_angular_inertia()`.
///
/// [angular inertia]: crate#angular-inertia
#[inline]
#[doc(alias = "moment_of_inertia")]
fn angular_inertia(&self, mass: f32) -> f32 {
mass * self.unit_angular_inertia()
}
/// Computes the local [center of mass] relative to the object's origin.
///
/// [center of mass]: crate#center-of-mass
fn center_of_mass(&self) -> Vec2;
/// Computes the [`MassProperties2d`] with a given `density`.
#[inline]
fn mass_properties(&self, density: f32) -> MassProperties2d {
let mass = self.mass(density);
MassProperties2d::new(mass, self.angular_inertia(mass), self.center_of_mass())
}
}
/// The [mass], [angular inertia], and local [center of mass] of an object in 2D space.
///
/// [mass]: crate#mass
/// [angular inertia]: crate#angular-inertia
/// [center of mass]: crate#center-of-mass
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct MassProperties2d {
/// The [mass].
///
/// [mass]: crate#mass
pub mass: f32,
/// The angular inertia along the principal axis.
///
/// [angular inertia]: crate#angular-inertia
pub angular_inertia: f32,
/// The local [center of mass] relative to the object's origin.
///
/// [center of mass]: crate#center-of-mass
pub center_of_mass: Vec2,
}
impl Default for MassProperties2d {
/// Returns the default [`MassProperties2d`], with zero mass and angular inertia.
fn default() -> Self {
Self::ZERO
}
}
impl MassProperties2d {
/// Zero mass and angular inertia.
pub const ZERO: Self = Self {
mass: 0.0,
angular_inertia: 0.0,
center_of_mass: Vec2::ZERO,
};
/// Creates a new [`MassProperties2d`] from a given mass, principal angular inertia,
/// and center of mass in local space.
#[inline]
pub fn new(mass: f32, angular_inertia: f32, center_of_mass: Vec2) -> Self {
Self {
mass,
angular_inertia,
center_of_mass,
}
}
/// Computes approximate mass properties from the given set of points representing a shape.
///
/// This can be used to estimate mass properties for arbitrary shapes
/// by providing a set of sample points from inside the shape.
///
/// The more points there are, and the more uniformly distributed they are,
/// the more accurate the estimation will be.
#[inline]
pub fn from_point_cloud(points: &[Vec2], mass: f32) -> Self {
let points_recip = 1.0 / points.len() as f64;
let center_of_mass =
(points.iter().fold(DVec2::ZERO, |acc, p| acc + p.as_dvec2()) * points_recip).as_vec2();
let unit_angular_inertia = points.iter().fold(0.0, |acc, p| {
let r = p.distance_squared(center_of_mass) as f64;
acc + r * points_recip
}) as f32;
Self::new(mass, mass * unit_angular_inertia, center_of_mass)
}
/// Returns the center of mass transformed into global space using the given [isometry].
///
/// [isometry]: Isometry2d
#[inline]
pub fn global_center_of_mass(&self, isometry: impl Into<Isometry2d>) -> Vec2 {
let isometry: Isometry2d = isometry.into();
isometry.transform_point(self.center_of_mass)
}
/// Computes the angular inertia corresponding to a mass of `1.0`.
///
/// If the mass is zero, zero is returned.
#[inline]
pub fn unit_angular_inertia(&self) -> f32 {
self.mass.recip_or_zero() * self.angular_inertia
}
/// Computes the principal angular inertia at a given `offset`.
///
/// The shifted angular inertia is computed as `angular_inertia + mass * offset.length_squared()`.
#[inline]
pub fn shifted_angular_inertia(&self, offset: Vec2) -> f32 {
self.angular_inertia + offset.length_squared() * self.mass
}
/// Returns the mass properties transformed by the given [isometry].
///
/// [isometry]: Isometry2d
#[inline]
pub fn transformed_by(mut self, isometry: impl Into<Isometry2d>) -> Self {
self.transform_by(isometry);
self
}
/// Transforms the mass properties by the given [isometry].
///
/// [isometry]: Isometry2d
#[inline]
pub fn transform_by(&mut self, isometry: impl Into<Isometry2d>) {
self.center_of_mass = self.global_center_of_mass(isometry);
}
/// Returns the mass propeorties with the inverse of mass and angular inertia.
///
/// The center of mass is left unchanged.
#[inline]
pub fn inverse(&self) -> Self {
Self {
mass: self.mass.recip_or_zero(),
angular_inertia: self.angular_inertia.recip_or_zero(),
center_of_mass: self.center_of_mass,
}
}
/// Sets the mass to the given `new_mass`.
///
/// If `update_angular_inertia` is `true`, the angular inertia will be scaled accordingly.
#[inline]
pub fn set_mass(&mut self, new_mass: f32, update_angular_inertia: bool) {
if update_angular_inertia {
// Adjust angular inertia to match the new mass.
self.angular_inertia *= new_mass * self.mass.recip_or_zero();
}
self.mass = new_mass;
}
}
impl std::ops::Add for MassProperties2d {
type Output = Self;
#[inline]
fn add(self, other: Self) -> Self::Output {
if self == Self::ZERO {
return other;
} else if other == Self::ZERO {
return self;
}
let mass1 = self.mass;
let mass2 = other.mass;
let new_mass = mass1 + mass2;
// The new center of mass is the weighted average of the centers of masses of `self` and `other`.
let new_center_of_mass =
(self.center_of_mass * mass1 + other.center_of_mass * mass2) * new_mass.recip_or_zero();
// Compute the new principal angular inertia, taking the new center of mass into account.
let i1 = self.shifted_angular_inertia(new_center_of_mass - self.center_of_mass);
let i2 = other.shifted_angular_inertia(new_center_of_mass - other.center_of_mass);
let new_angular_inertia = i1 + i2;
Self {
mass: new_mass,
angular_inertia: new_angular_inertia,
center_of_mass: new_center_of_mass,
}
}
}
impl std::ops::AddAssign for MassProperties2d {
#[inline]
fn add_assign(&mut self, other: Self) {
*self = *self + other;
}
}
impl std::ops::Sub for MassProperties2d {
type Output = Self;
#[inline]
fn sub(self, other: Self) -> Self::Output {
if self == Self::ZERO || other == Self::ZERO {
return self;
}
let mass1 = self.mass;
let mass2 = other.mass;
if mass1 <= mass2 {
// The result would have non-positive mass.
return Self {
center_of_mass: self.center_of_mass,
..Self::ZERO
};
}
let new_mass = mass1 - mass2;
// The new center of mass is the negated weighted average of the centers of masses of `self` and `other`.
let new_center_of_mass =
(self.center_of_mass * mass1 - other.center_of_mass * mass2) * new_mass.recip_or_zero();
// Compute the new principal angular inertia, taking the new center of mass into account.
let i1 = self.shifted_angular_inertia(new_center_of_mass - self.center_of_mass);
let i2 = other.shifted_angular_inertia(new_center_of_mass - other.center_of_mass);
let new_angular_inertia = (i1 - i2).max(0.0);
Self {
mass: new_mass,
angular_inertia: new_angular_inertia,
center_of_mass: new_center_of_mass,
}
}
}
impl std::ops::SubAssign for MassProperties2d {
#[inline]
fn sub_assign(&mut self, other: Self) {
*self = *self - other;
}
}
impl std::iter::Sum for MassProperties2d {
#[inline]
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
let mut total_mass = 0.0;
let mut total_angular_inertia = 0.0;
let mut total_center_of_mass = Vec2::ZERO;
// TODO: Avoid this allocation if possible. This is currently needed because we iterate twice.
let mut all_properties = Vec::with_capacity(iter.size_hint().1.unwrap_or_default());
for props in iter {
total_mass += props.mass;
total_center_of_mass += props.center_of_mass * props.mass;
all_properties.push(props);
}
if total_mass > 0.0 {
total_center_of_mass /= total_mass;
}
for props in all_properties {
total_angular_inertia +=
props.shifted_angular_inertia(total_center_of_mass - props.center_of_mass);
}
Self::new(total_mass, total_angular_inertia, total_center_of_mass)
}
}
#[cfg(any(feature = "approx", test))]
impl approx::AbsDiffEq for MassProperties2d {
type Epsilon = f32;
fn default_epsilon() -> f32 {
f32::EPSILON
}
fn abs_diff_eq(&self, other: &Self, epsilon: f32) -> bool {
self.mass.abs_diff_eq(&other.mass, epsilon)
&& self
.angular_inertia
.abs_diff_eq(&other.angular_inertia, epsilon)
&& self
.center_of_mass
.abs_diff_eq(other.center_of_mass, epsilon)
}
}
#[cfg(any(feature = "approx", test))]
impl approx::RelativeEq for MassProperties2d {
fn default_max_relative() -> f32 {
f32::EPSILON
}
fn relative_eq(&self, other: &Self, epsilon: f32, max_relative: f32) -> bool {
self.mass.relative_eq(&other.mass, epsilon, max_relative)
&& self
.angular_inertia
.relative_eq(&other.angular_inertia, epsilon, max_relative)
&& self
.center_of_mass
.relative_eq(&other.center_of_mass, epsilon, max_relative)
}
}
#[cfg(any(feature = "approx", test))]
impl approx::UlpsEq for MassProperties2d {
fn default_max_ulps() -> u32 {
4
}
fn ulps_eq(&self, other: &Self, epsilon: f32, max_ulps: u32) -> bool {
self.mass.ulps_eq(&other.mass, epsilon, max_ulps)
&& self
.angular_inertia
.ulps_eq(&other.angular_inertia, epsilon, max_ulps)
&& self
.center_of_mass
.ulps_eq(&other.center_of_mass, epsilon, max_ulps)
}
}
// TODO: Tests