bevy_heavy/dim3/angular_inertia.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
use std::ops::*;
use crate::MatExt;
use bevy_math::{Mat3, Quat, Vec3};
#[cfg(all(feature = "bevy_reflect", feature = "serialize"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
use super::SymmetricEigen3;
// TODO: Add errors for asymmetric and non-positive-semidefinite matrices.
/// An error returned for an invalid [`AngularInertiaTensor`] in 3D.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum AngularInertiaTensorError {
/// The mass is negative or NaN.
Negative,
/// The mass is NaN.
Nan,
}
// TODO: The matrix should be symmetric and positive-semidefinite.
// We could add a custom `SymmetricMat3` type to enforce symmetricity and reduce memory usage.
/// The 3x3 [angular inertia] tensor of a 3D object, representing resistance to angular acceleration.
///
/// The [inertia tensor] is a [symmetric], [positive-semidefinite] matrix that describes the moment of inertia
/// for rotations about the X, Y, and Z axes. By [diagonalizing] this matrix, it is possible to extract
/// the [principal axes of inertia] (a [`Vec3`]) and a local inertial frame (a [`Quat`]) that defines
/// the XYZ axes. This diagonalization can be performed using the [`principal_angular_inertia_with_local_frame`] method.
///
/// The diagonalized representation is more compact and often easier to work with,
/// but the full tensor can be more efficient for computations using the angular inertia.
///
/// [angular inertia]: crate#angular-inertia
/// [inertia tensor]: https://en.wikipedia.org/wiki/Moment_of_inertia#Inertia_tensor
/// [symmetric]: https://en.wikipedia.org/wiki/Symmetric_matrix
/// [positive-semidefinite]: https://en.wikipedia.org/wiki/Definite_matrix
/// [diagonalizing]: https://en.wikipedia.org/wiki/Diagonalizable_matrix#Diagonalization
/// [principal axes of inertia]: https://en.wikipedia.org/wiki/Moment_of_inertia#Principal_axes
/// [`principal_angular_inertia_with_local_frame`]: AngularInertiaTensor::principal_angular_inertia_with_local_frame
#[derive(Clone, Copy, Debug, Default, PartialEq)]
#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
#[cfg_attr(feature = "bevy_reflect", reflect(Debug, PartialEq))]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
all(feature = "bevy_reflect", feature = "serialize"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "MomentOfInertiaTensor")]
pub struct AngularInertiaTensor(Mat3);
impl Deref for AngularInertiaTensor {
type Target = Mat3;
#[inline]
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl AngularInertiaTensor {
/// Zero angular inertia.
pub const ZERO: Self = Self(Mat3::ZERO);
/// An angular inertia tensor with a principal angular inertia of `1.0` along the diagonal.
pub const IDENTITY: Self = Self(Mat3::IDENTITY);
/// Infinite angular inertia.
pub const INFINITY: Self = Self(Mat3::from_diagonal(Vec3::INFINITY));
/// Creates a new [`AngularInertiaTensor`] from the given principal angular inertia.
///
/// The principal angular inertia represents the torque needed for a desired angular acceleration
/// about the local coordinate axes. To specify the orientation of the local inertial frame,
/// consider using [`new_with_local_frame`](AngularInertiaTensor::new_with_local_frame).
///
/// # Panics
///
/// Panics if any component of the principal angular inertia is negative or NaN
/// when `debug_assertions` are enabled.
#[inline]
#[doc(alias = "from_principal_angular_inertia")]
pub fn new(principal_angular_inertia: Vec3) -> Self {
debug_assert!(
principal_angular_inertia.cmpge(Vec3::ZERO).all(),
"principal angular inertia must be positive or zero for all axes"
);
Self(Mat3::from_diagonal(principal_angular_inertia))
}
/// Tries to create a new [`AngularInertiaTensor`] from the given principal angular inertia.
///
/// The principal angular inertia represents the torque needed for a desired angular acceleration
/// about the local coordinate axes. To specify the orientation of the local inertial frame,
/// consider using [`try_new_with_local_frame`](AngularInertiaTensor::try_new_with_local_frame).
///
/// # Errors
///
/// Returns [`Err(AngularInertiaTensorError)`](AngularInertiaTensorError) if any component
/// of the principal angular inertia is negative or NaN.
#[inline]
pub fn try_new(principal_angular_inertia: Vec3) -> Result<Self, AngularInertiaTensorError> {
if !principal_angular_inertia.cmpge(Vec3::ZERO).all() {
Err(AngularInertiaTensorError::Negative)
} else if principal_angular_inertia.is_nan() {
Err(AngularInertiaTensorError::Nan)
} else {
Ok(Self(Mat3::from_diagonal(principal_angular_inertia)))
}
}
/// Creates a new [`AngularInertiaTensor`] from the given principal angular inertia
/// and the orientation of the local inertial frame.
///
/// The principal angular inertia represents the torque needed for a desired angular acceleration
/// about the local coordinate axes defined by the given `orientation`.
///
/// # Panics
///
/// Panics if any component of the principal angular inertia is negative or NaN
/// when `debug_assertions` are enabled.
#[inline]
#[doc(alias = "from_principal_angular_inertia_with_local_frame")]
pub fn new_with_local_frame(principal_angular_inertia: Vec3, orientation: Quat) -> Self {
debug_assert!(
principal_angular_inertia.cmpge(Vec3::ZERO).all(),
"principal angular inertia must be positive or zero for all axes"
);
Self(
Mat3::from_quat(orientation)
* Mat3::from_diagonal(principal_angular_inertia)
* Mat3::from_quat(orientation.inverse()),
)
}
/// Tries to create a new [`AngularInertiaTensor`] from the given principal angular inertia
/// and the orientation of the local inertial frame.
///
/// The principal angular inertia represents the torque needed for a desired angular acceleration
/// about the local coordinate axes defined by the given `orientation`.
///
/// # Errors
///
/// Returns [`Err(AngularInertiaTensorError)`](AngularInertiaTensorError) if any component
/// of the principal angular inertia is negative or NaN.
#[inline]
pub fn try_new_with_local_frame(
principal_angular_inertia: Vec3,
orientation: Quat,
) -> Result<Self, AngularInertiaTensorError> {
if !principal_angular_inertia.cmpge(Vec3::ZERO).all() {
Err(AngularInertiaTensorError::Negative)
} else if principal_angular_inertia.is_nan() {
Err(AngularInertiaTensorError::Nan)
} else {
Ok(Self(
Mat3::from_quat(orientation)
* Mat3::from_diagonal(principal_angular_inertia)
* Mat3::from_quat(orientation.inverse()),
))
}
}
/// Creates a new [`AngularInertiaTensor`] from the given angular inertia [tensor].
///
/// The tensor should be [symmetric] and [positive-semidefinite], but this is *not* checked.
///
/// [tensor]: https://en.wikipedia.org/wiki/Moment_of_inertia#Inertia_tensor
/// [symmetric]: https://en.wikipedia.org/wiki/Symmetric_matrix
/// [positive-semidefinite]: https://en.wikipedia.org/wiki/Definite_matrix
#[inline]
#[doc(alias = "from_tensor")]
pub fn from_mat3(mat: Mat3) -> Self {
Self(mat)
}
/// Returns the angular inertia tensor as a [`Mat3`].
///
/// Equivalent to [`value`](AngularInertiaTensor::value).
#[doc(alias = "as_tensor")]
#[inline]
pub fn as_mat3(&self) -> Mat3 {
self.0
}
/// Returns a mutable reference to the [`Mat3`] stored in `self`.
///
/// Note that this allows making changes that could make the angular inertia tensor invalid
/// (non-symmetric or non-positive-semidefinite).
///
/// Equivalent to [`value_mut`](AngularInertiaTensor::value_mut).
#[doc(alias = "as_tensor_mut")]
#[inline]
pub fn as_mat3_mut(&mut self) -> &mut Mat3 {
&mut self.0
}
/// Returns the angular inertia tensor as a [`Mat3`].
///
/// Equivalent to [`as_mat3`](AngularInertiaTensor::as_mat3).
#[inline]
pub fn value(self) -> Mat3 {
self.0
}
/// Returns a mutable reference to the [`Mat3`] stored in `self`.
///
/// Note that this allows making changes that could make the angular inertia tensor invalid
/// (non-symmetric or non-positive-semidefinite).
///
/// Equivalent to [`as_mat3_mut`](AngularInertiaTensor::as_mat3_mut).
#[inline]
pub fn value_mut(&mut self) -> &mut Mat3 {
&mut self.0
}
/// Returns the inverse of the angular inertia tensor.
#[inline]
pub fn inverse(self) -> Self {
Self(self.inverse_or_zero())
}
/// Sets the angular inertia tensor to the given value.
#[inline]
pub fn set(&mut self, angular_inertia: impl Into<AngularInertiaTensor>) {
*self = angular_inertia.into();
}
/// Computes the principal angular inertia and local inertial frame
/// by diagonalizing the 3x3 tensor matrix.
///
/// The principal angular inertia represents the torque needed for a desired angular acceleration
/// about the local coordinate axes defined by the local inertial frame.
#[doc(alias = "diagonalize")]
pub fn principal_angular_inertia_with_local_frame(&self) -> (Vec3, Quat) {
let mut eigen = SymmetricEigen3::new(self.0).reverse();
if eigen.eigenvectors.determinant() < 0.0 {
std::mem::swap(
&mut eigen.eigenvectors.y_axis,
&mut eigen.eigenvectors.z_axis,
);
std::mem::swap(&mut eigen.eigenvalues.y, &mut eigen.eigenvalues.z);
}
let mut local_inertial_frame = Quat::from_mat3(&eigen.eigenvectors).normalize();
if !local_inertial_frame.is_finite() {
local_inertial_frame = Quat::IDENTITY;
}
// Clamp eigenvalues to be non-negative.
let principal_angular_inertia = eigen.eigenvalues.max(Vec3::ZERO);
(principal_angular_inertia, local_inertial_frame)
}
/// Computes the angular inertia tensor with the given rotation.
///
/// This can be used to transform local angular inertia to world space.
#[inline]
pub fn rotated(self, rotation: Quat) -> Self {
let rot_mat3 = Mat3::from_quat(rotation);
Self::from_mat3((rot_mat3 * self.0) * rot_mat3.transpose())
}
/// Computes the angular inertia tensor shifted by the given offset, taking into account the given mass.
#[inline]
pub fn shifted(self, mass: f32, offset: Vec3) -> Self {
if offset != Vec3::ZERO {
let diagonal_element = offset.length_squared();
let diagonal_mat = Mat3::from_diagonal(Vec3::splat(diagonal_element));
let offset_outer_product =
Mat3::from_cols(offset * offset.x, offset * offset.y, offset * offset.z);
Self::from_mat3(self.0 + (diagonal_mat + offset_outer_product) * mass)
} else {
self
}
}
}
impl From<Mat3> for AngularInertiaTensor {
#[inline]
fn from(angular_inertia: Mat3) -> Self {
Self::from_mat3(angular_inertia)
}
}
impl From<AngularInertiaTensor> for Mat3 {
#[inline]
fn from(angular_inertia: AngularInertiaTensor) -> Self {
angular_inertia.0
}
}
impl TryFrom<Vec3> for AngularInertiaTensor {
type Error = AngularInertiaTensorError;
#[inline]
fn try_from(principal_angular_inertia: Vec3) -> Result<Self, Self::Error> {
Self::try_new(principal_angular_inertia)
}
}
impl Add<AngularInertiaTensor> for AngularInertiaTensor {
type Output = Self;
#[inline]
fn add(self, rhs: AngularInertiaTensor) -> Self {
Self(self.0 + rhs.0)
}
}
impl AddAssign<AngularInertiaTensor> for AngularInertiaTensor {
#[inline]
fn add_assign(&mut self, rhs: AngularInertiaTensor) {
self.0 += rhs.0;
}
}
impl Mul<AngularInertiaTensor> for f32 {
type Output = AngularInertiaTensor;
#[inline]
fn mul(self, rhs: AngularInertiaTensor) -> AngularInertiaTensor {
AngularInertiaTensor(self * rhs.0)
}
}
impl MulAssign<f32> for AngularInertiaTensor {
#[inline]
fn mul_assign(&mut self, rhs: f32) {
self.0 *= rhs;
}
}
impl Div<f32> for AngularInertiaTensor {
type Output = Self;
#[inline]
fn div(self, rhs: f32) -> Self {
Self(self.0 / rhs)
}
}
impl DivAssign<f32> for AngularInertiaTensor {
#[inline]
fn div_assign(&mut self, rhs: f32) {
self.0 /= rhs;
}
}
impl Mul<AngularInertiaTensor> for Quat {
type Output = AngularInertiaTensor;
#[inline]
fn mul(self, angular_inertia: AngularInertiaTensor) -> AngularInertiaTensor {
angular_inertia.rotated(self)
}
}
impl Mul<Vec3> for AngularInertiaTensor {
type Output = Vec3;
#[inline]
fn mul(self, rhs: Vec3) -> Vec3 {
self.0 * rhs
}
}
#[cfg(any(feature = "approx", test))]
impl approx::AbsDiffEq for AngularInertiaTensor {
type Epsilon = f32;
fn default_epsilon() -> f32 {
f32::EPSILON
}
fn abs_diff_eq(&self, other: &Self, epsilon: f32) -> bool {
self.0.abs_diff_eq(other.0, epsilon)
}
}
#[cfg(any(feature = "approx", test))]
impl approx::RelativeEq for AngularInertiaTensor {
fn default_max_relative() -> f32 {
f32::EPSILON
}
fn relative_eq(&self, other: &Self, epsilon: f32, max_relative: f32) -> bool {
self.0.relative_eq(&other.0, epsilon, max_relative)
}
}
#[cfg(any(feature = "approx", test))]
impl approx::UlpsEq for AngularInertiaTensor {
fn default_max_ulps() -> u32 {
4
}
fn ulps_eq(&self, other: &Self, epsilon: f32, max_ulps: u32) -> bool {
self.0.ulps_eq(&other.0, epsilon, max_ulps)
}
}