bevy_heavy/dim3/
eigen3.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// The eigensolver is a Rust adaptation, with modifications, of the pseudocode and approach described in
// "A Robust Eigensolver for 3 x 3 Symmetric Matrices" by David Eberly, Geometric Tools, Redmond WA 98052.
// https://www.geometrictools.com/Documentation/RobustEigenSymmetric3x3.pdf

use bevy_math::{ops, FloatPow, Mat3, Vec3, Vec3Swizzles};

/// The [eigen decomposition] of a [symmetric] 3x3 matrix.
///
/// [eigen decomposition]: https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
/// [symmetric]: https://en.wikipedia.org/wiki/Symmetric_matrix
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "bevy_reflect", derive(bevy_reflect::Reflect))]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct SymmetricEigen3 {
    /// The eigenvalues of the symmetric 3x3 matrix.
    ///
    /// These should be in ascending order `eigen1 <= eigen2 <= eigen3`.
    pub eigenvalues: Vec3,
    /// The three eigenvectors of the symmetric 3x3 matrix.
    /// Each eigenvector should be unit length and orthogonal to the other eigenvectors.
    ///
    /// The eigenvectors are ordered to correspond to the eigenvalues. For example,
    /// `eigenvectors.x_axis` corresponds to `eigenvalues.x`.
    pub eigenvectors: Mat3,
}

impl SymmetricEigen3 {
    /// Computes the eigen decomposition of the given symmetric 3x3 matrix.
    ///
    /// The eigenvalues are returned in ascending order `eigen1 <= eigen2 <= eigen3`.
    /// This can be reversed with the [`reverse`](Self::reverse) method.
    pub fn new(mat: Mat3) -> Self {
        let (mut eigenvalues, is_diagonal) = Self::eigenvalues(mat);

        if is_diagonal {
            // The matrix is already diagonal. Sort the eigenvalues in ascending order,
            // ordering the eigenvectors accordingly, and return early.
            let mut eigenvectors = Mat3::IDENTITY;
            if eigenvalues[0] > eigenvalues[1] {
                std::mem::swap(&mut eigenvalues.x, &mut eigenvalues.y);
                std::mem::swap(&mut eigenvectors.x_axis, &mut eigenvectors.y_axis);
            }
            if eigenvalues[1] > eigenvalues[2] {
                std::mem::swap(&mut eigenvalues.y, &mut eigenvalues.z);
                std::mem::swap(&mut eigenvectors.y_axis, &mut eigenvectors.z_axis);
            }
            return Self {
                eigenvalues,
                eigenvectors,
            };
        }

        // Compute the eigenvectors corresponding to the eigenvalues.
        let eigenvector1 = Self::eigenvector1(mat, eigenvalues.x);
        let eigenvector2 = Self::eigenvector2(mat, eigenvector1, eigenvalues.y);
        let eigenvector3 = Self::eigenvector3(eigenvector1, eigenvector2);

        Self {
            eigenvalues,
            eigenvectors: Mat3::from_cols(eigenvector1, eigenvector2, eigenvector3),
        }
    }

    /// Reverses the order of the eigenvalues and their corresponding eigenvectors.
    pub fn reverse(&self) -> Self {
        Self {
            eigenvalues: self.eigenvalues.zyx(),
            eigenvectors: Mat3::from_cols(
                self.eigenvectors.z_axis,
                self.eigenvectors.y_axis,
                self.eigenvectors.x_axis,
            ),
        }
    }

    /// Computes the eigenvalues of a symmetric 3x3 matrix, also returning whether the input matrix is diagonal.
    ///
    /// If the matrix is already diagonal, the eigenvalues are returned as is without reordering.
    /// Otherwise, the eigenvalues are computed and returned in ascending order
    /// such that `eigen1 <= eigen2 <= eigen3`.
    pub fn eigenvalues(mat: Mat3) -> (Vec3, bool) {
        // Reference: https://en.wikipedia.org/wiki/Eigenvalue_algorithm#Symmetric_3%C3%973_matrices

        let p1 = mat.y_axis.x.squared() + mat.z_axis.x.squared() + mat.z_axis.y.squared();

        if p1 == 0.0 {
            // The matrix is diagonal.
            return (Vec3::new(mat.x_axis.x, mat.y_axis.y, mat.z_axis.z), true);
        }

        let q = (mat.x_axis.x + mat.y_axis.y + mat.z_axis.z) / 3.0;
        let p2 = (mat.x_axis.x - q).squared()
            + (mat.y_axis.y - q).squared()
            + (mat.z_axis.z - q).squared()
            + 2.0 * p1;
        let p = (p2 / 6.0).sqrt();
        let mat_b = 1.0 / p * (mat - q * Mat3::IDENTITY);
        let r = mat_b.determinant() / 2.0;

        // r should be in the [-1, 1] range for a symmetric matrix,
        // but computation error can leave it slightly outside this range.
        let phi = if r <= -1.0 {
            std::f32::consts::FRAC_PI_3
        } else if r >= 1.0 {
            0.0
        } else {
            ops::acos(r) / 3.0
        };

        // The eigenvalues satisfy eigen3 <= eigen2 <= eigen1
        let eigen1 = q + 2.0 * p * ops::cos(phi);
        let eigen3 = q + 2.0 * p * ops::cos(phi + 2.0 * std::f32::consts::FRAC_PI_3);
        let eigen2 = 3.0 * q - eigen1 - eigen3; // trace(mat) = eigen1 + eigen2 + eigen3
        (Vec3::new(eigen3, eigen2, eigen1), false)
    }

    // TODO: Fall back to QL when the eigenvalue precision is poor.
    /// Computes the unit-length eigenvector corresponding to the `eigenvalue1` of `mat` that was
    /// computed from the root of a cubic polynomial with a multiplicity of 1.
    ///
    /// If the other two eigenvalues are well separated, this method can be used for computing
    /// all three eigenvectors. However, to avoid numerical issues when eigenvalues are close to
    /// each other, it's recommended to use the `eigenvector2` method for the second eigenvector.
    ///
    /// The third eigenvector can be computed as the cross product of the first two.
    pub fn eigenvector1(mat: Mat3, eigenvalue1: f32) -> Vec3 {
        let cols = mat - Mat3::from_diagonal(Vec3::splat(eigenvalue1));
        let c0xc1 = cols.x_axis.cross(cols.y_axis);
        let c0xc2 = cols.x_axis.cross(cols.z_axis);
        let c1xc2 = cols.y_axis.cross(cols.z_axis);
        let d0 = c0xc1.length_squared();
        let d1 = c0xc2.length_squared();
        let d2 = c1xc2.length_squared();

        let mut d_max = d0;
        let mut i_max = 0;

        if d1 > d_max {
            d_max = d1;
            i_max = 1;
        }
        if d2 > d_max {
            i_max = 2;
        }
        if i_max == 0 {
            c0xc1 / d0.sqrt()
        } else if i_max == 1 {
            c0xc2 / d1.sqrt()
        } else {
            c1xc2 / d2.sqrt()
        }
    }

    /// Computes the unit-length eigenvector corresponding to the `eigenvalue2` of `mat` that was
    /// computed from the root of a cubic polynomial with a potential multiplicity of 2.
    ///
    /// The third eigenvector can be computed as the cross product of the first two.
    pub fn eigenvector2(mat: Mat3, eigenvector1: Vec3, eigenvalue2: f32) -> Vec3 {
        // Compute right-handed orthonormal set { U, V, W }, where W is eigenvector1.
        let (u, v) = eigenvector1.any_orthonormal_pair();

        // The unit-length eigenvector is E = x0 * U + x1 * V. We need to compute x0 and x1.
        //
        // Define the symmetrix 2x2 matrix M = J^T * (mat - eigenvalue2 * I), where J = [U V]
        // and I is a 3x3 identity matrix. This means that E = J * X, where X is a column vector
        // with rows x0 and x1. The 3x3 linear system (mat - eigenvalue2 * I) * E = 0 reduces to
        // the 2x2 linear system M * X = 0.
        //
        // When eigenvalue2 != eigenvalue3, M has rank 1 and is not the zero matrix.
        // Otherwise, it has rank 0, and it is the zero matrix.

        let au = mat * u;
        let av = mat * v;

        let mut m00 = u.dot(au) - eigenvalue2;
        let mut m01 = u.dot(av);
        let mut m11 = v.dot(av) - eigenvalue2;
        let (abs_m00, abs_m01, abs_m11) = (m00.abs(), m01.abs(), m11.abs());

        if abs_m00 >= abs_m11 {
            let max_abs_component = abs_m00.max(abs_m01);
            if max_abs_component > 0.0 {
                if abs_m00 >= abs_m01 {
                    // m00 is the largest component of the row.
                    // Factor it out for normalization and discard to avoid underflow or overflow.
                    m01 /= m00;
                    m00 = 1.0 / (1.0 + m01 * m01).sqrt();
                    m01 *= m00;
                } else {
                    // m01 is the largest component of the row.
                    // Factor it out for normalization and discard to avoid underflow or overflow.
                    m00 /= m01;
                    m01 = 1.0 / (1.0 + m00 * m00).sqrt();
                    m00 *= m01;
                }
                return m01 * u - m00 * v;
            }
        } else {
            let max_abs_component = abs_m11.max(abs_m01);
            if max_abs_component > 0.0 {
                if abs_m11 >= abs_m01 {
                    // m11 is the largest component of the row.
                    // Factor it out for normalization and discard to avoid underflow or overflow.
                    m01 /= m11;
                    m11 = 1.0 / (1.0 + m01 * m01).sqrt();
                    m01 *= m11;
                } else {
                    // m01 is the largest component of the row.
                    // Factor it out for normalization and discard to avoid underflow or overflow.
                    m11 /= m01;
                    m01 = 1.0 / (1.0 + m11 * m11).sqrt();
                    m11 *= m01;
                }
                return m11 * u - m01 * v;
            }
        }

        // M is the zero matrix, any unit-length solution suffices.
        u
    }

    /// Computes the third eigenvector as the cross product of the first two.
    /// If the given eigenvectors are valid, the returned vector should be unit length.
    pub fn eigenvector3(eigenvector1: Vec3, eigenvector2: Vec3) -> Vec3 {
        eigenvector1.cross(eigenvector2)
    }
}

#[cfg(test)]
mod test {
    use super::SymmetricEigen3;
    use approx::assert_relative_eq;
    use bevy_math::{Mat3, Vec3};
    use rand::{Rng, SeedableRng};

    #[test]
    fn eigen_3x3() {
        let mat = Mat3::from_cols_array_2d(&[[2.0, 7.0, 8.0], [7.0, 6.0, 3.0], [8.0, 3.0, 0.0]]);
        let eigen = SymmetricEigen3::new(mat);

        assert_relative_eq!(
            eigen.eigenvalues,
            Vec3::new(-7.605, 0.577, 15.028),
            epsilon = 0.001
        );
        assert_relative_eq!(
            Mat3::from_cols(
                eigen.eigenvectors.x_axis.abs(),
                eigen.eigenvectors.y_axis.abs(),
                eigen.eigenvectors.z_axis.abs()
            ),
            Mat3::from_cols(
                Vec3::new(-1.075, 0.333, 1.0).normalize().abs(),
                Vec3::new(0.542, -1.253, 1.0).normalize().abs(),
                Vec3::new(1.359, 1.386, 1.0).normalize().abs()
            ),
            epsilon = 0.001
        );
    }

    #[test]
    fn eigen_3x3_diagonal() {
        let mat = Mat3::from_cols_array_2d(&[[2.0, 0.0, 0.0], [0.0, 5.0, 0.0], [0.0, 0.0, 3.0]]);
        let eigen = SymmetricEigen3::new(mat);

        assert_eq!(eigen.eigenvalues, Vec3::new(2.0, 3.0, 5.0));
        assert_eq!(
            Mat3::from_cols(
                eigen.eigenvectors.x_axis.normalize().abs(),
                eigen.eigenvectors.y_axis.normalize().abs(),
                eigen.eigenvectors.z_axis.normalize().abs()
            ),
            Mat3::from_cols_array_2d(&[[1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0]])
        );
    }

    #[test]
    fn eigen_3x3_reconstruction() {
        let mut rng = rand_chacha::ChaCha8Rng::from_seed(Default::default());

        // Generate random symmetric matrices and verify that the eigen decomposition is correct.
        for _ in 0..10_000 {
            let eigenvalues = Vec3::new(
                rng.gen_range(0.1..100.0),
                rng.gen_range(0.1..100.0),
                rng.gen_range(0.1..100.0),
            );
            let eigenvectors = Mat3::from_cols(
                Vec3::new(
                    rng.gen_range(-1.0..1.0),
                    rng.gen_range(-1.0..1.0),
                    rng.gen_range(-1.0..1.0),
                )
                .normalize(),
                Vec3::new(
                    rng.gen_range(-1.0..1.0),
                    rng.gen_range(-1.0..1.0),
                    rng.gen_range(-1.0..1.0),
                )
                .normalize(),
                Vec3::new(
                    rng.gen_range(-1.0..1.0),
                    rng.gen_range(-1.0..1.0),
                    rng.gen_range(-1.0..1.0),
                )
                .normalize(),
            );

            // Construct the symmetric matrix from the eigenvalues and eigenvectors.
            let mat1 = eigenvectors * Mat3::from_diagonal(eigenvalues) * eigenvectors.transpose();

            // Compute the eigen decomposition of the constructed matrix.
            let eigen = SymmetricEigen3::new(mat1);

            // Reconstruct the matrix from the computed eigenvalues and eigenvectors.
            let mat2 = eigen.eigenvectors
                * Mat3::from_diagonal(eigen.eigenvalues)
                * eigen.eigenvectors.transpose();

            // The reconstructed matrix should be close to the original matrix.
            // Note: The precision depends on how large the eigenvalues are.
            //       Larger eigenvalues can lead to larger absolute error.
            assert_relative_eq!(mat1, mat2, epsilon = 1e-2);
        }
    }
}