bevy_heavy/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
//! `bevy_heavy` is a crate for computing mass properties ([mass], [angular inertia], and [center of mass])
//! for the [geometric primitives] in the [Bevy game engine][Bevy]. This is typically required
//! for things like physics simulations.
//!
//! [mass]: #mass
//! [angular inertia]: #angular-inertia
//! [center of mass]: #center-of-mass
//! [geometric primitives]: bevy_math::primitives
//! [Bevy]: https://bevyengine.org
//!
//! # Usage
//!
//! Mass properties can be computed individually for shapes using the [`mass`], [`angular_inertia`],
//! and [`center_of_mass`] methods:
//!
//! [`mass`]: ComputeMassProperties2d::mass
//! [`angular_inertia`]: ComputeMassProperties2d::angular_inertia
//! [`center_of_mass`]: ComputeMassProperties2d::center_of_mass
//!
//! ```
//! use bevy_heavy::{ComputeMassProperties2d, MassProperties2d};
//! use bevy_math::{primitives::Rectangle, Vec2};
//!
//! let rectangle = Rectangle::new(2.0, 1.0);
//! let density = 2.0;
//!
//! let mass = rectangle.mass(density);
//! let angular_inertia = rectangle.angular_inertia(mass);
//! let center_of_mass = rectangle.center_of_mass();
//! ```
//!
//! You can also compute all mass properties at once, returning [`MassProperties2d`] for 2D shapes,
//! or [`MassProperties3d`] for 3D shapes. This can be more efficient when more than one property is needed.
//!
//! ```
//! # use bevy_heavy::{ComputeMassProperties2d, MassProperties2d};
//! # use bevy_math::{primitives::Rectangle, Vec2};
//! #
//! # let rectangle = Rectangle::new(2.0, 1.0);
//! # let density = 2.0;
//! #
//! let mass_props = rectangle.mass_properties(density);
//! ```
//!
//! The mass property types have several helper methods for various transformations and operations:
//!
//! ```
//! # use bevy_heavy::{ComputeMassProperties2d, MassProperties2d};
//! # use bevy_math::{primitives::Rectangle, Vec2};
//! #
//! # let rectangle = Rectangle::new(2.0, 1.0);
//! # let density = 2.0;
//! #
//! # let mass_props = rectangle.mass_properties(density);
//! #
//! let shifted_inertia = mass_props.shifted_angular_inertia(Vec2::new(-3.5, 1.0));
//! let global_center_of_mass = mass_props.global_center_of_mass(Vec2::new(5.0, 7.5));
//! ```
//!
//! You can also add and subtract mass properties:
//!
//! ```
//! # use bevy_heavy::{ComputeMassProperties2d, MassProperties2d};
//! # use bevy_math::{primitives::Rectangle, Vec2};
//! #
//! # let rectangle = Rectangle::new(2.0, 1.0);
//! # let density = 2.0;
//! #
//! # let mass = rectangle.mass(density);
//! # let angular_inertia = rectangle.angular_inertia(mass);
//! #
//! # let mass_props = rectangle.mass_properties(density);
//! #
//! let mass_props_2 = MassProperties2d::new(mass, angular_inertia, Vec2::new(0.0, 1.0));
//! let sum = mass_props + mass_props_2;
//! approx::assert_relative_eq!(sum - mass_props_2, mass_props);
//! ```
//!
//! To support mass property computation for custom shapes, implement [`ComputeMassProperties2d`]
//! or [`ComputeMassProperties3d`] for them.
//!
//! # Terminology
//!
//! ## Mass
//!
//! **[Mass](https://en.wikipedia.org/wiki/Mass)** is a scalar value representing resistance
//! to linear acceleration when a force is applied.
//!
//! Mass is commonly measured in kilograms (kg).
//!
//! ## Angular Inertia
//!
//! **[Angular inertia](https://en.wikipedia.org/wiki/Moment_of_inertia)**, also known as
//! the **moment of inertia** or **rotational inertia**, is the rotational analog of mass.
//! It represents resistance to angular acceleration when a torque is applied.
//!
//! An object's angular inertia depends on its mass, shape, and how the mass is distributed
//! relative to a rotational axis. It increases with mass and distance from the axis.
//!
//! In 2D, angular inertia can be treated as a scalar value, as it is only defined
//! relative to the Z axis.
//!
//! In 3D, angular inertia can be represented with a [symmetric], [positive-semidefinite] 3x3 [tensor]
//! ([`AngularInertiaTensor`]) that describes the moment of inertia for rotations about the X, Y, and Z axes.
//! By [diagonalizing] this matrix, it is possible to extract the [principal axes of inertia] (a [`Vec3`])
//! and a local inertial frame (a [`Quat`]) that defines the XYZ axes.
//!
//! The latter diagonalized representation is more compact and often easier to work with,
//! but the full tensor can be more efficient for computations using the angular inertia.
//!
//! Angular inertia is commonly measured in kilograms times meters squared (kg⋅m²).
//!
//! [symmetric]: https://en.wikipedia.org/wiki/Symmetric_matrix
//! [positive-semidefinite]: https://en.wikipedia.org/wiki/Definite_matrix
//! [tensor]: https://en.wikipedia.org/wiki/Moment_of_inertia#Inertia_tensor
//! [diagonalizing]: https://en.wikipedia.org/wiki/Diagonalizable_matrix#Diagonalization
//! [principal axes of inertia]: https://en.wikipedia.org/wiki/Moment_of_inertia#Principal_axes
//! [`Vec3`]: bevy_math::Vec3
//! [`Quat`]: bevy_math::Quat
//!
//! ## Center of Mass
//!
//! The **[center of mass](https://en.wikipedia.org/wiki/Center_of_mass)** is the average position
//! of mass in an object. Applying a force at the center of mass causes linear acceleration
//! without angular acceleration.
//!
//! If an object has uniform density, mass is evenly distributed,
//! and the center of mass is at the [geometric center], also known as the [centroid].
//!
//! The center of mass is commonly measured in meters (m).
//!
//! [geometric center]: https://en.wikipedia.org/wiki/Centroid
//! [centroid]: https://en.wikipedia.org/wiki/Centroid
#![warn(missing_docs)]
#[cfg(feature = "2d")]
mod dim2;
#[cfg(feature = "3d")]
mod dim3;
mod math_ext;
#[cfg(feature = "2d")]
pub use dim2::{ComputeMassProperties2d, MassProperties2d};
#[cfg(feature = "3d")]
pub use dim3::{
AngularInertiaTensor, AngularInertiaTensorError, ComputeMassProperties3d, MassProperties3d,
SymmetricEigen3,
};
pub use math_ext::{MatExt, RecipOrZero};