1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
mod primitive_impls;

use super::{BoundingVolume, IntersectsVolume};
use crate::prelude::{Mat2, Rot2, Vec2};

#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;

/// Computes the geometric center of the given set of points.
#[inline(always)]
fn point_cloud_2d_center(points: &[Vec2]) -> Vec2 {
    assert!(
        !points.is_empty(),
        "cannot compute the center of an empty set of points"
    );

    let denom = 1.0 / points.len() as f32;
    points.iter().fold(Vec2::ZERO, |acc, point| acc + *point) * denom
}

/// A trait with methods that return 2D bounded volumes for a shape
pub trait Bounded2d {
    /// Get an axis-aligned bounding box for the shape with the given translation and rotation.
    /// The rotation is in radians, counterclockwise, with 0 meaning no rotation.
    fn aabb_2d(&self, translation: Vec2, rotation: impl Into<Rot2>) -> Aabb2d;
    /// Get a bounding circle for the shape
    /// The rotation is in radians, counterclockwise, with 0 meaning no rotation.
    fn bounding_circle(&self, translation: Vec2, rotation: impl Into<Rot2>) -> BoundingCircle;
}

/// A 2D axis-aligned bounding box, or bounding rectangle
#[doc(alias = "BoundingRectangle")]
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct Aabb2d {
    /// The minimum, conventionally bottom-left, point of the box
    pub min: Vec2,
    /// The maximum, conventionally top-right, point of the box
    pub max: Vec2,
}

impl Aabb2d {
    /// Constructs an AABB from its center and half-size.
    #[inline(always)]
    pub fn new(center: Vec2, half_size: Vec2) -> Self {
        debug_assert!(half_size.x >= 0.0 && half_size.y >= 0.0);
        Self {
            min: center - half_size,
            max: center + half_size,
        }
    }

    /// Computes the smallest [`Aabb2d`] containing the given set of points,
    /// transformed by `translation` and `rotation`.
    ///
    /// # Panics
    ///
    /// Panics if the given set of points is empty.
    #[inline(always)]
    pub fn from_point_cloud(
        translation: Vec2,
        rotation: impl Into<Rot2>,
        points: &[Vec2],
    ) -> Aabb2d {
        // Transform all points by rotation
        let rotation: Rot2 = rotation.into();
        let mut iter = points.iter().map(|point| rotation * *point);

        let first = iter
            .next()
            .expect("point cloud must contain at least one point for Aabb2d construction");

        let (min, max) = iter.fold((first, first), |(prev_min, prev_max), point| {
            (point.min(prev_min), point.max(prev_max))
        });

        Aabb2d {
            min: min + translation,
            max: max + translation,
        }
    }

    /// Computes the smallest [`BoundingCircle`] containing this [`Aabb2d`].
    #[inline(always)]
    pub fn bounding_circle(&self) -> BoundingCircle {
        let radius = self.min.distance(self.max) / 2.0;
        BoundingCircle::new(self.center(), radius)
    }

    /// Finds the point on the AABB that is closest to the given `point`.
    ///
    /// If the point is outside the AABB, the returned point will be on the perimeter of the AABB.
    /// Otherwise, it will be inside the AABB and returned as is.
    #[inline(always)]
    pub fn closest_point(&self, point: Vec2) -> Vec2 {
        // Clamp point coordinates to the AABB
        point.clamp(self.min, self.max)
    }
}

impl BoundingVolume for Aabb2d {
    type Translation = Vec2;
    type Rotation = Rot2;
    type HalfSize = Vec2;

    #[inline(always)]
    fn center(&self) -> Self::Translation {
        (self.min + self.max) / 2.
    }

    #[inline(always)]
    fn half_size(&self) -> Self::HalfSize {
        (self.max - self.min) / 2.
    }

    #[inline(always)]
    fn visible_area(&self) -> f32 {
        let b = self.max - self.min;
        b.x * b.y
    }

    #[inline(always)]
    fn contains(&self, other: &Self) -> bool {
        other.min.x >= self.min.x
            && other.min.y >= self.min.y
            && other.max.x <= self.max.x
            && other.max.y <= self.max.y
    }

    #[inline(always)]
    fn merge(&self, other: &Self) -> Self {
        Self {
            min: self.min.min(other.min),
            max: self.max.max(other.max),
        }
    }

    #[inline(always)]
    fn grow(&self, amount: impl Into<Self::HalfSize>) -> Self {
        let amount = amount.into();
        let b = Self {
            min: self.min - amount,
            max: self.max + amount,
        };
        debug_assert!(b.min.x <= b.max.x && b.min.y <= b.max.y);
        b
    }

    #[inline(always)]
    fn shrink(&self, amount: impl Into<Self::HalfSize>) -> Self {
        let amount = amount.into();
        let b = Self {
            min: self.min + amount,
            max: self.max - amount,
        };
        debug_assert!(b.min.x <= b.max.x && b.min.y <= b.max.y);
        b
    }

    #[inline(always)]
    fn scale_around_center(&self, scale: impl Into<Self::HalfSize>) -> Self {
        let scale = scale.into();
        let b = Self {
            min: self.center() - (self.half_size() * scale),
            max: self.center() + (self.half_size() * scale),
        };
        debug_assert!(b.min.x <= b.max.x && b.min.y <= b.max.y);
        b
    }

    /// Transforms the bounding volume by first rotating it around the origin and then applying a translation.
    ///
    /// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
    ///
    /// Note that the result may not be as tightly fitting as the original, and repeated rotations
    /// can cause the AABB to grow indefinitely. Avoid applying multiple rotations to the same AABB,
    /// and consider storing the original AABB and rotating that every time instead.
    #[inline(always)]
    fn transformed_by(
        mut self,
        translation: impl Into<Self::Translation>,
        rotation: impl Into<Self::Rotation>,
    ) -> Self {
        self.transform_by(translation, rotation);
        self
    }

    /// Transforms the bounding volume by first rotating it around the origin and then applying a translation.
    ///
    /// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
    ///
    /// Note that the result may not be as tightly fitting as the original, and repeated rotations
    /// can cause the AABB to grow indefinitely. Avoid applying multiple rotations to the same AABB,
    /// and consider storing the original AABB and rotating that every time instead.
    #[inline(always)]
    fn transform_by(
        &mut self,
        translation: impl Into<Self::Translation>,
        rotation: impl Into<Self::Rotation>,
    ) {
        self.rotate_by(rotation);
        self.translate_by(translation);
    }

    #[inline(always)]
    fn translate_by(&mut self, translation: impl Into<Self::Translation>) {
        let translation = translation.into();
        self.min += translation;
        self.max += translation;
    }

    /// Rotates the bounding volume around the origin by the given rotation.
    ///
    /// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
    ///
    /// Note that the result may not be as tightly fitting as the original, and repeated rotations
    /// can cause the AABB to grow indefinitely. Avoid applying multiple rotations to the same AABB,
    /// and consider storing the original AABB and rotating that every time instead.
    #[inline(always)]
    fn rotated_by(mut self, rotation: impl Into<Self::Rotation>) -> Self {
        self.rotate_by(rotation);
        self
    }

    /// Rotates the bounding volume around the origin by the given rotation.
    ///
    /// The result is an Axis-Aligned Bounding Box that encompasses the rotated shape.
    ///
    /// Note that the result may not be as tightly fitting as the original, and repeated rotations
    /// can cause the AABB to grow indefinitely. Avoid applying multiple rotations to the same AABB,
    /// and consider storing the original AABB and rotating that every time instead.
    #[inline(always)]
    fn rotate_by(&mut self, rotation: impl Into<Self::Rotation>) {
        let rotation: Rot2 = rotation.into();
        let abs_rot_mat = Mat2::from_cols(
            Vec2::new(rotation.cos, rotation.sin),
            Vec2::new(rotation.sin, rotation.cos),
        );
        let half_size = abs_rot_mat * self.half_size();
        *self = Self::new(rotation * self.center(), half_size);
    }
}

impl IntersectsVolume<Self> for Aabb2d {
    #[inline(always)]
    fn intersects(&self, other: &Self) -> bool {
        let x_overlaps = self.min.x <= other.max.x && self.max.x >= other.min.x;
        let y_overlaps = self.min.y <= other.max.y && self.max.y >= other.min.y;
        x_overlaps && y_overlaps
    }
}

impl IntersectsVolume<BoundingCircle> for Aabb2d {
    #[inline(always)]
    fn intersects(&self, circle: &BoundingCircle) -> bool {
        let closest_point = self.closest_point(circle.center);
        let distance_squared = circle.center.distance_squared(closest_point);
        let radius_squared = circle.radius().powi(2);
        distance_squared <= radius_squared
    }
}

#[cfg(test)]
mod aabb2d_tests {
    use super::Aabb2d;
    use crate::{
        bounding::{BoundingCircle, BoundingVolume, IntersectsVolume},
        Vec2,
    };

    #[test]
    fn center() {
        let aabb = Aabb2d {
            min: Vec2::new(-0.5, -1.),
            max: Vec2::new(1., 1.),
        };
        assert!((aabb.center() - Vec2::new(0.25, 0.)).length() < f32::EPSILON);
        let aabb = Aabb2d {
            min: Vec2::new(5., -10.),
            max: Vec2::new(10., -5.),
        };
        assert!((aabb.center() - Vec2::new(7.5, -7.5)).length() < f32::EPSILON);
    }

    #[test]
    fn half_size() {
        let aabb = Aabb2d {
            min: Vec2::new(-0.5, -1.),
            max: Vec2::new(1., 1.),
        };
        let half_size = aabb.half_size();
        assert!((half_size - Vec2::new(0.75, 1.)).length() < f32::EPSILON);
    }

    #[test]
    fn area() {
        let aabb = Aabb2d {
            min: Vec2::new(-1., -1.),
            max: Vec2::new(1., 1.),
        };
        assert!((aabb.visible_area() - 4.).abs() < f32::EPSILON);
        let aabb = Aabb2d {
            min: Vec2::new(0., 0.),
            max: Vec2::new(1., 0.5),
        };
        assert!((aabb.visible_area() - 0.5).abs() < f32::EPSILON);
    }

    #[test]
    fn contains() {
        let a = Aabb2d {
            min: Vec2::new(-1., -1.),
            max: Vec2::new(1., 1.),
        };
        let b = Aabb2d {
            min: Vec2::new(-2., -1.),
            max: Vec2::new(1., 1.),
        };
        assert!(!a.contains(&b));
        let b = Aabb2d {
            min: Vec2::new(-0.25, -0.8),
            max: Vec2::new(1., 1.),
        };
        assert!(a.contains(&b));
    }

    #[test]
    fn merge() {
        let a = Aabb2d {
            min: Vec2::new(-1., -1.),
            max: Vec2::new(1., 0.5),
        };
        let b = Aabb2d {
            min: Vec2::new(-2., -0.5),
            max: Vec2::new(0.75, 1.),
        };
        let merged = a.merge(&b);
        assert!((merged.min - Vec2::new(-2., -1.)).length() < f32::EPSILON);
        assert!((merged.max - Vec2::new(1., 1.)).length() < f32::EPSILON);
        assert!(merged.contains(&a));
        assert!(merged.contains(&b));
        assert!(!a.contains(&merged));
        assert!(!b.contains(&merged));
    }

    #[test]
    fn grow() {
        let a = Aabb2d {
            min: Vec2::new(-1., -1.),
            max: Vec2::new(1., 1.),
        };
        let padded = a.grow(Vec2::ONE);
        assert!((padded.min - Vec2::new(-2., -2.)).length() < f32::EPSILON);
        assert!((padded.max - Vec2::new(2., 2.)).length() < f32::EPSILON);
        assert!(padded.contains(&a));
        assert!(!a.contains(&padded));
    }

    #[test]
    fn shrink() {
        let a = Aabb2d {
            min: Vec2::new(-2., -2.),
            max: Vec2::new(2., 2.),
        };
        let shrunk = a.shrink(Vec2::ONE);
        assert!((shrunk.min - Vec2::new(-1., -1.)).length() < f32::EPSILON);
        assert!((shrunk.max - Vec2::new(1., 1.)).length() < f32::EPSILON);
        assert!(a.contains(&shrunk));
        assert!(!shrunk.contains(&a));
    }

    #[test]
    fn scale_around_center() {
        let a = Aabb2d {
            min: Vec2::NEG_ONE,
            max: Vec2::ONE,
        };
        let scaled = a.scale_around_center(Vec2::splat(2.));
        assert!((scaled.min - Vec2::splat(-2.)).length() < f32::EPSILON);
        assert!((scaled.max - Vec2::splat(2.)).length() < f32::EPSILON);
        assert!(!a.contains(&scaled));
        assert!(scaled.contains(&a));
    }

    #[test]
    fn transform() {
        let a = Aabb2d {
            min: Vec2::new(-2.0, -2.0),
            max: Vec2::new(2.0, 2.0),
        };
        let transformed = a.transformed_by(Vec2::new(2.0, -2.0), std::f32::consts::FRAC_PI_4);
        let half_length = 2_f32.hypot(2.0);
        assert_eq!(
            transformed.min,
            Vec2::new(2.0 - half_length, -half_length - 2.0)
        );
        assert_eq!(
            transformed.max,
            Vec2::new(2.0 + half_length, half_length - 2.0)
        );
    }

    #[test]
    fn closest_point() {
        let aabb = Aabb2d {
            min: Vec2::NEG_ONE,
            max: Vec2::ONE,
        };
        assert_eq!(aabb.closest_point(Vec2::X * 10.0), Vec2::X);
        assert_eq!(aabb.closest_point(Vec2::NEG_ONE * 10.0), Vec2::NEG_ONE);
        assert_eq!(
            aabb.closest_point(Vec2::new(0.25, 0.1)),
            Vec2::new(0.25, 0.1)
        );
    }

    #[test]
    fn intersect_aabb() {
        let aabb = Aabb2d {
            min: Vec2::NEG_ONE,
            max: Vec2::ONE,
        };
        assert!(aabb.intersects(&aabb));
        assert!(aabb.intersects(&Aabb2d {
            min: Vec2::new(0.5, 0.5),
            max: Vec2::new(2.0, 2.0),
        }));
        assert!(aabb.intersects(&Aabb2d {
            min: Vec2::new(-2.0, -2.0),
            max: Vec2::new(-0.5, -0.5),
        }));
        assert!(!aabb.intersects(&Aabb2d {
            min: Vec2::new(1.1, 0.0),
            max: Vec2::new(2.0, 0.5),
        }));
    }

    #[test]
    fn intersect_bounding_circle() {
        let aabb = Aabb2d {
            min: Vec2::NEG_ONE,
            max: Vec2::ONE,
        };
        assert!(aabb.intersects(&BoundingCircle::new(Vec2::ZERO, 1.0)));
        assert!(aabb.intersects(&BoundingCircle::new(Vec2::ONE * 1.5, 1.0)));
        assert!(aabb.intersects(&BoundingCircle::new(Vec2::NEG_ONE * 1.5, 1.0)));
        assert!(!aabb.intersects(&BoundingCircle::new(Vec2::ONE * 1.75, 1.0)));
    }
}

use crate::primitives::Circle;

/// A bounding circle
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug))]
pub struct BoundingCircle {
    /// The center of the bounding circle
    pub center: Vec2,
    /// The circle
    pub circle: Circle,
}

impl BoundingCircle {
    /// Constructs a bounding circle from its center and radius.
    #[inline(always)]
    pub fn new(center: Vec2, radius: f32) -> Self {
        debug_assert!(radius >= 0.);
        Self {
            center,
            circle: Circle { radius },
        }
    }

    /// Computes a [`BoundingCircle`] containing the given set of points,
    /// transformed by `translation` and `rotation`.
    ///
    /// The bounding circle is not guaranteed to be the smallest possible.
    #[inline(always)]
    pub fn from_point_cloud(
        translation: Vec2,
        rotation: impl Into<Rot2>,
        points: &[Vec2],
    ) -> BoundingCircle {
        let rotation: Rot2 = rotation.into();
        let center = point_cloud_2d_center(points);
        let mut radius_squared = 0.0;

        for point in points {
            // Get squared version to avoid unnecessary sqrt calls
            let distance_squared = point.distance_squared(center);
            if distance_squared > radius_squared {
                radius_squared = distance_squared;
            }
        }

        BoundingCircle::new(rotation * center + translation, radius_squared.sqrt())
    }

    /// Get the radius of the bounding circle
    #[inline(always)]
    pub fn radius(&self) -> f32 {
        self.circle.radius
    }

    /// Computes the smallest [`Aabb2d`] containing this [`BoundingCircle`].
    #[inline(always)]
    pub fn aabb_2d(&self) -> Aabb2d {
        Aabb2d {
            min: self.center - Vec2::splat(self.radius()),
            max: self.center + Vec2::splat(self.radius()),
        }
    }

    /// Finds the point on the bounding circle that is closest to the given `point`.
    ///
    /// If the point is outside the circle, the returned point will be on the perimeter of the circle.
    /// Otherwise, it will be inside the circle and returned as is.
    #[inline(always)]
    pub fn closest_point(&self, point: Vec2) -> Vec2 {
        self.circle.closest_point(point - self.center) + self.center
    }
}

impl BoundingVolume for BoundingCircle {
    type Translation = Vec2;
    type Rotation = Rot2;
    type HalfSize = f32;

    #[inline(always)]
    fn center(&self) -> Self::Translation {
        self.center
    }

    #[inline(always)]
    fn half_size(&self) -> Self::HalfSize {
        self.radius()
    }

    #[inline(always)]
    fn visible_area(&self) -> f32 {
        std::f32::consts::PI * self.radius() * self.radius()
    }

    #[inline(always)]
    fn contains(&self, other: &Self) -> bool {
        let diff = self.radius() - other.radius();
        self.center.distance_squared(other.center) <= diff.powi(2).copysign(diff)
    }

    #[inline(always)]
    fn merge(&self, other: &Self) -> Self {
        let diff = other.center - self.center;
        let length = diff.length();
        if self.radius() >= length + other.radius() {
            return *self;
        }
        if other.radius() >= length + self.radius() {
            return *other;
        }
        let dir = diff / length;
        Self::new(
            (self.center + other.center) / 2. + dir * ((other.radius() - self.radius()) / 2.),
            (length + self.radius() + other.radius()) / 2.,
        )
    }

    #[inline(always)]
    fn grow(&self, amount: impl Into<Self::HalfSize>) -> Self {
        let amount = amount.into();
        debug_assert!(amount >= 0.);
        Self::new(self.center, self.radius() + amount)
    }

    #[inline(always)]
    fn shrink(&self, amount: impl Into<Self::HalfSize>) -> Self {
        let amount = amount.into();
        debug_assert!(amount >= 0.);
        debug_assert!(self.radius() >= amount);
        Self::new(self.center, self.radius() - amount)
    }

    #[inline(always)]
    fn scale_around_center(&self, scale: impl Into<Self::HalfSize>) -> Self {
        let scale = scale.into();
        debug_assert!(scale >= 0.);
        Self::new(self.center, self.radius() * scale)
    }

    #[inline(always)]
    fn translate_by(&mut self, translation: impl Into<Self::Translation>) {
        self.center += translation.into();
    }

    #[inline(always)]
    fn rotate_by(&mut self, rotation: impl Into<Self::Rotation>) {
        let rotation: Rot2 = rotation.into();
        self.center = rotation * self.center;
    }
}

impl IntersectsVolume<Self> for BoundingCircle {
    #[inline(always)]
    fn intersects(&self, other: &Self) -> bool {
        let center_distance_squared = self.center.distance_squared(other.center);
        let radius_sum_squared = (self.radius() + other.radius()).powi(2);
        center_distance_squared <= radius_sum_squared
    }
}

impl IntersectsVolume<Aabb2d> for BoundingCircle {
    #[inline(always)]
    fn intersects(&self, aabb: &Aabb2d) -> bool {
        aabb.intersects(self)
    }
}

#[cfg(test)]
mod bounding_circle_tests {
    use super::BoundingCircle;
    use crate::{
        bounding::{BoundingVolume, IntersectsVolume},
        Vec2,
    };

    #[test]
    fn area() {
        let circle = BoundingCircle::new(Vec2::ONE, 5.);
        // Since this number is messy we check it with a higher threshold
        assert!((circle.visible_area() - 78.5398).abs() < 0.001);
    }

    #[test]
    fn contains() {
        let a = BoundingCircle::new(Vec2::ONE, 5.);
        let b = BoundingCircle::new(Vec2::new(5.5, 1.), 1.);
        assert!(!a.contains(&b));
        let b = BoundingCircle::new(Vec2::new(1., -3.5), 0.5);
        assert!(a.contains(&b));
    }

    #[test]
    fn contains_identical() {
        let a = BoundingCircle::new(Vec2::ONE, 5.);
        assert!(a.contains(&a));
    }

    #[test]
    fn merge() {
        // When merging two circles that don't contain each other, we find a center position that
        // contains both
        let a = BoundingCircle::new(Vec2::ONE, 5.);
        let b = BoundingCircle::new(Vec2::new(1., -4.), 1.);
        let merged = a.merge(&b);
        assert!((merged.center - Vec2::new(1., 0.5)).length() < f32::EPSILON);
        assert!((merged.radius() - 5.5).abs() < f32::EPSILON);
        assert!(merged.contains(&a));
        assert!(merged.contains(&b));
        assert!(!a.contains(&merged));
        assert!(!b.contains(&merged));

        // When one circle contains the other circle, we use the bigger circle
        let b = BoundingCircle::new(Vec2::ZERO, 3.);
        assert!(a.contains(&b));
        let merged = a.merge(&b);
        assert_eq!(merged.center, a.center);
        assert_eq!(merged.radius(), a.radius());

        // When two circles are at the same point, we use the bigger radius
        let b = BoundingCircle::new(Vec2::ONE, 6.);
        let merged = a.merge(&b);
        assert_eq!(merged.center, a.center);
        assert_eq!(merged.radius(), b.radius());
    }

    #[test]
    fn merge_identical() {
        let a = BoundingCircle::new(Vec2::ONE, 5.);
        let merged = a.merge(&a);
        assert_eq!(merged.center, a.center);
        assert_eq!(merged.radius(), a.radius());
    }

    #[test]
    fn grow() {
        let a = BoundingCircle::new(Vec2::ONE, 5.);
        let padded = a.grow(1.25);
        assert!((padded.radius() - 6.25).abs() < f32::EPSILON);
        assert!(padded.contains(&a));
        assert!(!a.contains(&padded));
    }

    #[test]
    fn shrink() {
        let a = BoundingCircle::new(Vec2::ONE, 5.);
        let shrunk = a.shrink(0.5);
        assert!((shrunk.radius() - 4.5).abs() < f32::EPSILON);
        assert!(a.contains(&shrunk));
        assert!(!shrunk.contains(&a));
    }

    #[test]
    fn scale_around_center() {
        let a = BoundingCircle::new(Vec2::ONE, 5.);
        let scaled = a.scale_around_center(2.);
        assert!((scaled.radius() - 10.).abs() < f32::EPSILON);
        assert!(!a.contains(&scaled));
        assert!(scaled.contains(&a));
    }

    #[test]
    fn transform() {
        let a = BoundingCircle::new(Vec2::ONE, 5.0);
        let transformed = a.transformed_by(Vec2::new(2.0, -2.0), std::f32::consts::FRAC_PI_4);
        assert_eq!(
            transformed.center,
            Vec2::new(2.0, std::f32::consts::SQRT_2 - 2.0)
        );
        assert_eq!(transformed.radius(), 5.0);
    }

    #[test]
    fn closest_point() {
        let circle = BoundingCircle::new(Vec2::ZERO, 1.0);
        assert_eq!(circle.closest_point(Vec2::X * 10.0), Vec2::X);
        assert_eq!(
            circle.closest_point(Vec2::NEG_ONE * 10.0),
            Vec2::NEG_ONE.normalize()
        );
        assert_eq!(
            circle.closest_point(Vec2::new(0.25, 0.1)),
            Vec2::new(0.25, 0.1)
        );
    }

    #[test]
    fn intersect_bounding_circle() {
        let circle = BoundingCircle::new(Vec2::ZERO, 1.0);
        assert!(circle.intersects(&BoundingCircle::new(Vec2::ZERO, 1.0)));
        assert!(circle.intersects(&BoundingCircle::new(Vec2::ONE * 1.25, 1.0)));
        assert!(circle.intersects(&BoundingCircle::new(Vec2::NEG_ONE * 1.25, 1.0)));
        assert!(!circle.intersects(&BoundingCircle::new(Vec2::ONE * 1.5, 1.0)));
    }
}