bevy_math/primitives/dim2.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
use core::f32::consts::{FRAC_1_SQRT_2, FRAC_PI_2, FRAC_PI_3, PI};
use derive_more::derive::{Display, Error, From};
use super::{Measured2d, Primitive2d, WindingOrder};
use crate::{
ops::{self, FloatPow},
Dir2, Vec2,
};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
#[cfg(all(feature = "serialize", feature = "bevy_reflect"))]
use bevy_reflect::{ReflectDeserialize, ReflectSerialize};
/// A circle primitive, representing the set of points some distance from the origin
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Circle {
/// The radius of the circle
pub radius: f32,
}
impl Primitive2d for Circle {}
impl Default for Circle {
/// Returns the default [`Circle`] with a radius of `0.5`.
fn default() -> Self {
Self { radius: 0.5 }
}
}
impl Circle {
/// Create a new [`Circle`] from a `radius`
#[inline(always)]
pub const fn new(radius: f32) -> Self {
Self { radius }
}
/// Get the diameter of the circle
#[inline(always)]
pub fn diameter(&self) -> f32 {
2.0 * self.radius
}
/// Finds the point on the circle that is closest to the given `point`.
///
/// If the point is outside the circle, the returned point will be on the perimeter of the circle.
/// Otherwise, it will be inside the circle and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec2) -> Vec2 {
let distance_squared = point.length_squared();
if distance_squared <= self.radius.squared() {
// The point is inside the circle.
point
} else {
// The point is outside the circle.
// Find the closest point on the perimeter of the circle.
let dir_to_point = point / distance_squared.sqrt();
self.radius * dir_to_point
}
}
}
impl Measured2d for Circle {
/// Get the area of the circle
#[inline(always)]
fn area(&self) -> f32 {
PI * self.radius.squared()
}
/// Get the perimeter or circumference of the circle
#[inline(always)]
#[doc(alias = "circumference")]
fn perimeter(&self) -> f32 {
2.0 * PI * self.radius
}
}
/// A primitive representing an arc between two points on a circle.
///
/// An arc has no area.
/// If you want to include the portion of a circle's area swept out by the arc,
/// use the pie-shaped [`CircularSector`].
/// If you want to include only the space inside the convex hull of the arc,
/// use the bowl-shaped [`CircularSegment`].
///
/// The arc is drawn starting from [`Vec2::Y`], extending by `half_angle` radians on
/// either side. The center of the circle is the origin [`Vec2::ZERO`]. Note that this
/// means that the origin may not be within the `Arc2d`'s convex hull.
///
/// **Warning:** Arcs with negative angle or radius, or with angle greater than an entire circle, are not officially supported.
/// It is recommended to normalize arcs to have an angle in [0, 2Ï€].
#[derive(Clone, Copy, Debug, PartialEq)]
#[doc(alias("CircularArc", "CircleArc"))]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Arc2d {
/// The radius of the circle
pub radius: f32,
/// Half the angle defining the arc
pub half_angle: f32,
}
impl Primitive2d for Arc2d {}
impl Default for Arc2d {
/// Returns the default [`Arc2d`] with radius `0.5`, covering one third of a circle
fn default() -> Self {
Self {
radius: 0.5,
half_angle: 2.0 * FRAC_PI_3,
}
}
}
impl Arc2d {
/// Create a new [`Arc2d`] from a `radius` and a `half_angle`
#[inline(always)]
pub fn new(radius: f32, half_angle: f32) -> Self {
Self { radius, half_angle }
}
/// Create a new [`Arc2d`] from a `radius` and an `angle` in radians
#[inline(always)]
pub fn from_radians(radius: f32, angle: f32) -> Self {
Self {
radius,
half_angle: angle / 2.0,
}
}
/// Create a new [`Arc2d`] from a `radius` and an `angle` in degrees.
#[inline(always)]
pub fn from_degrees(radius: f32, angle: f32) -> Self {
Self {
radius,
half_angle: angle.to_radians() / 2.0,
}
}
/// Create a new [`Arc2d`] from a `radius` and a `fraction` of a single turn.
///
/// For instance, `0.5` turns is a semicircle.
#[inline(always)]
pub fn from_turns(radius: f32, fraction: f32) -> Self {
Self {
radius,
half_angle: fraction * PI,
}
}
/// Get the angle of the arc
#[inline(always)]
pub fn angle(&self) -> f32 {
self.half_angle * 2.0
}
/// Get the length of the arc
#[inline(always)]
pub fn length(&self) -> f32 {
self.angle() * self.radius
}
/// Get the right-hand end point of the arc
#[inline(always)]
pub fn right_endpoint(&self) -> Vec2 {
self.radius * Vec2::from_angle(FRAC_PI_2 - self.half_angle)
}
/// Get the left-hand end point of the arc
#[inline(always)]
pub fn left_endpoint(&self) -> Vec2 {
self.radius * Vec2::from_angle(FRAC_PI_2 + self.half_angle)
}
/// Get the endpoints of the arc
#[inline(always)]
pub fn endpoints(&self) -> [Vec2; 2] {
[self.left_endpoint(), self.right_endpoint()]
}
/// Get the midpoint of the arc
#[inline]
pub fn midpoint(&self) -> Vec2 {
self.radius * Vec2::Y
}
/// Get half the distance between the endpoints (half the length of the chord)
#[inline(always)]
pub fn half_chord_length(&self) -> f32 {
self.radius * ops::sin(self.half_angle)
}
/// Get the distance between the endpoints (the length of the chord)
#[inline(always)]
pub fn chord_length(&self) -> f32 {
2.0 * self.half_chord_length()
}
/// Get the midpoint of the two endpoints (the midpoint of the chord)
#[inline(always)]
pub fn chord_midpoint(&self) -> Vec2 {
self.apothem() * Vec2::Y
}
/// Get the length of the apothem of this arc, that is,
/// the distance from the center of the circle to the midpoint of the chord, in the direction of the midpoint of the arc.
/// Equivalently, the [`radius`](Self::radius) minus the [`sagitta`](Self::sagitta).
///
/// Note that for a [`major`](Self::is_major) arc, the apothem will be negative.
#[inline(always)]
// Naming note: Various sources are inconsistent as to whether the apothem is the segment between the center and the
// midpoint of a chord, or the length of that segment. Given this confusion, we've opted for the definition
// used by Wolfram MathWorld, which is the distance rather than the segment.
pub fn apothem(&self) -> f32 {
let sign = if self.is_minor() { 1.0 } else { -1.0 };
sign * f32::sqrt(self.radius.squared() - self.half_chord_length().squared())
}
/// Get the length of the sagitta of this arc, that is,
/// the length of the line between the midpoints of the arc and its chord.
/// Equivalently, the height of the triangle whose base is the chord and whose apex is the midpoint of the arc.
///
/// The sagitta is also the sum of the [`radius`](Self::radius) and the [`apothem`](Self::apothem).
pub fn sagitta(&self) -> f32 {
self.radius - self.apothem()
}
/// Produces true if the arc is at most half a circle.
///
/// **Note:** This is not the negation of [`is_major`](Self::is_major): an exact semicircle is both major and minor.
#[inline(always)]
pub fn is_minor(&self) -> bool {
self.half_angle <= FRAC_PI_2
}
/// Produces true if the arc is at least half a circle.
///
/// **Note:** This is not the negation of [`is_minor`](Self::is_minor): an exact semicircle is both major and minor.
#[inline(always)]
pub fn is_major(&self) -> bool {
self.half_angle >= FRAC_PI_2
}
}
/// A primitive representing a circular sector: a pie slice of a circle.
///
/// The segment is positioned so that it always includes [`Vec2::Y`] and is vertically symmetrical.
/// To orient the sector differently, apply a rotation.
/// The sector is drawn with the center of its circle at the origin [`Vec2::ZERO`].
///
/// **Warning:** Circular sectors with negative angle or radius, or with angle greater than an entire circle, are not officially supported.
/// We recommend normalizing circular sectors to have an angle in [0, 2Ï€].
#[derive(Clone, Copy, Debug, PartialEq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct CircularSector {
/// The arc defining the sector
#[cfg_attr(feature = "serialize", serde(flatten))]
pub arc: Arc2d,
}
impl Primitive2d for CircularSector {}
impl Default for CircularSector {
/// Returns the default [`CircularSector`] with radius `0.5` and covering a third of a circle
fn default() -> Self {
Self::from(Arc2d::default())
}
}
impl Measured2d for CircularSector {
#[inline(always)]
fn area(&self) -> f32 {
self.arc.radius.squared() * self.arc.half_angle
}
#[inline(always)]
fn perimeter(&self) -> f32 {
if self.half_angle() >= PI {
self.arc.radius * 2.0 * PI
} else {
2.0 * self.radius() + self.arc_length()
}
}
}
impl CircularSector {
/// Create a new [`CircularSector`] from a `radius` and an `angle`
#[inline(always)]
pub fn new(radius: f32, angle: f32) -> Self {
Self::from(Arc2d::new(radius, angle))
}
/// Create a new [`CircularSector`] from a `radius` and an `angle` in radians.
#[inline(always)]
pub fn from_radians(radius: f32, angle: f32) -> Self {
Self::from(Arc2d::from_radians(radius, angle))
}
/// Create a new [`CircularSector`] from a `radius` and an `angle` in degrees.
#[inline(always)]
pub fn from_degrees(radius: f32, angle: f32) -> Self {
Self::from(Arc2d::from_degrees(radius, angle))
}
/// Create a new [`CircularSector`] from a `radius` and a number of `turns` of a circle.
///
/// For instance, `0.5` turns is a semicircle.
#[inline(always)]
pub fn from_turns(radius: f32, fraction: f32) -> Self {
Self::from(Arc2d::from_turns(radius, fraction))
}
/// Get half the angle of the sector
#[inline(always)]
pub fn half_angle(&self) -> f32 {
self.arc.half_angle
}
/// Get the angle of the sector
#[inline(always)]
pub fn angle(&self) -> f32 {
self.arc.angle()
}
/// Get the radius of the sector
#[inline(always)]
pub fn radius(&self) -> f32 {
self.arc.radius
}
/// Get the length of the arc defining the sector
#[inline(always)]
pub fn arc_length(&self) -> f32 {
self.arc.length()
}
/// Get half the length of the chord defined by the sector
///
/// See [`Arc2d::half_chord_length`]
#[inline(always)]
pub fn half_chord_length(&self) -> f32 {
self.arc.half_chord_length()
}
/// Get the length of the chord defined by the sector
///
/// See [`Arc2d::chord_length`]
#[inline(always)]
pub fn chord_length(&self) -> f32 {
self.arc.chord_length()
}
/// Get the midpoint of the chord defined by the sector
///
/// See [`Arc2d::chord_midpoint`]
#[inline(always)]
pub fn chord_midpoint(&self) -> Vec2 {
self.arc.chord_midpoint()
}
/// Get the length of the apothem of this sector
///
/// See [`Arc2d::apothem`]
#[inline(always)]
pub fn apothem(&self) -> f32 {
self.arc.apothem()
}
/// Get the length of the sagitta of this sector
///
/// See [`Arc2d::sagitta`]
#[inline(always)]
pub fn sagitta(&self) -> f32 {
self.arc.sagitta()
}
}
/// A primitive representing a circular segment:
/// the area enclosed by the arc of a circle and its chord (the line between its endpoints).
///
/// The segment is drawn starting from [`Vec2::Y`], extending equally on either side.
/// To orient the segment differently, apply a rotation.
/// The segment is drawn with the center of its circle at the origin [`Vec2::ZERO`].
/// When positioning a segment, the [`apothem`](Self::apothem) function may be particularly useful.
///
/// **Warning:** Circular segments with negative angle or radius, or with angle greater than an entire circle, are not officially supported.
/// We recommend normalizing circular segments to have an angle in [0, 2Ï€].
#[derive(Clone, Copy, Debug, PartialEq, From)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct CircularSegment {
/// The arc defining the segment
#[cfg_attr(feature = "serialize", serde(flatten))]
pub arc: Arc2d,
}
impl Primitive2d for CircularSegment {}
impl Default for CircularSegment {
/// Returns the default [`CircularSegment`] with radius `0.5` and covering a third of a circle
fn default() -> Self {
Self::from(Arc2d::default())
}
}
impl Measured2d for CircularSegment {
#[inline(always)]
fn area(&self) -> f32 {
0.5 * self.arc.radius.squared() * (self.arc.angle() - ops::sin(self.arc.angle()))
}
#[inline(always)]
fn perimeter(&self) -> f32 {
self.chord_length() + self.arc_length()
}
}
impl CircularSegment {
/// Create a new [`CircularSegment`] from a `radius`, and an `angle`
#[inline(always)]
pub fn new(radius: f32, angle: f32) -> Self {
Self::from(Arc2d::new(radius, angle))
}
/// Create a new [`CircularSegment`] from a `radius` and an `angle` in radians.
#[inline(always)]
pub fn from_radians(radius: f32, angle: f32) -> Self {
Self::from(Arc2d::from_radians(radius, angle))
}
/// Create a new [`CircularSegment`] from a `radius` and an `angle` in degrees.
#[inline(always)]
pub fn from_degrees(radius: f32, angle: f32) -> Self {
Self::from(Arc2d::from_degrees(radius, angle))
}
/// Create a new [`CircularSegment`] from a `radius` and a number of `turns` of a circle.
///
/// For instance, `0.5` turns is a semicircle.
#[inline(always)]
pub fn from_turns(radius: f32, fraction: f32) -> Self {
Self::from(Arc2d::from_turns(radius, fraction))
}
/// Get the half-angle of the segment
#[inline(always)]
pub fn half_angle(&self) -> f32 {
self.arc.half_angle
}
/// Get the angle of the segment
#[inline(always)]
pub fn angle(&self) -> f32 {
self.arc.angle()
}
/// Get the radius of the segment
#[inline(always)]
pub fn radius(&self) -> f32 {
self.arc.radius
}
/// Get the length of the arc defining the segment
#[inline(always)]
pub fn arc_length(&self) -> f32 {
self.arc.length()
}
/// Get half the length of the segment's base, also known as its chord
#[inline(always)]
#[doc(alias = "half_base_length")]
pub fn half_chord_length(&self) -> f32 {
self.arc.half_chord_length()
}
/// Get the length of the segment's base, also known as its chord
#[inline(always)]
#[doc(alias = "base_length")]
#[doc(alias = "base")]
pub fn chord_length(&self) -> f32 {
self.arc.chord_length()
}
/// Get the midpoint of the segment's base, also known as its chord
#[inline(always)]
#[doc(alias = "base_midpoint")]
pub fn chord_midpoint(&self) -> Vec2 {
self.arc.chord_midpoint()
}
/// Get the length of the apothem of this segment,
/// which is the signed distance between the segment and the center of its circle
///
/// See [`Arc2d::apothem`]
#[inline(always)]
pub fn apothem(&self) -> f32 {
self.arc.apothem()
}
/// Get the length of the sagitta of this segment, also known as its height
///
/// See [`Arc2d::sagitta`]
#[inline(always)]
#[doc(alias = "height")]
pub fn sagitta(&self) -> f32 {
self.arc.sagitta()
}
}
#[cfg(test)]
mod arc_tests {
use core::f32::consts::FRAC_PI_4;
use core::f32::consts::SQRT_2;
use approx::assert_abs_diff_eq;
use super::*;
struct ArcTestCase {
radius: f32,
half_angle: f32,
angle: f32,
length: f32,
right_endpoint: Vec2,
left_endpoint: Vec2,
endpoints: [Vec2; 2],
midpoint: Vec2,
half_chord_length: f32,
chord_length: f32,
chord_midpoint: Vec2,
apothem: f32,
sagitta: f32,
is_minor: bool,
is_major: bool,
sector_area: f32,
sector_perimeter: f32,
segment_area: f32,
segment_perimeter: f32,
}
impl ArcTestCase {
fn check_arc(&self, arc: Arc2d) {
assert_abs_diff_eq!(self.radius, arc.radius);
assert_abs_diff_eq!(self.half_angle, arc.half_angle);
assert_abs_diff_eq!(self.angle, arc.angle());
assert_abs_diff_eq!(self.length, arc.length());
assert_abs_diff_eq!(self.right_endpoint, arc.right_endpoint());
assert_abs_diff_eq!(self.left_endpoint, arc.left_endpoint());
assert_abs_diff_eq!(self.endpoints[0], arc.endpoints()[0]);
assert_abs_diff_eq!(self.endpoints[1], arc.endpoints()[1]);
assert_abs_diff_eq!(self.midpoint, arc.midpoint());
assert_abs_diff_eq!(self.half_chord_length, arc.half_chord_length());
assert_abs_diff_eq!(self.chord_length, arc.chord_length(), epsilon = 0.00001);
assert_abs_diff_eq!(self.chord_midpoint, arc.chord_midpoint());
assert_abs_diff_eq!(self.apothem, arc.apothem());
assert_abs_diff_eq!(self.sagitta, arc.sagitta());
assert_eq!(self.is_minor, arc.is_minor());
assert_eq!(self.is_major, arc.is_major());
}
fn check_sector(&self, sector: CircularSector) {
assert_abs_diff_eq!(self.radius, sector.radius());
assert_abs_diff_eq!(self.half_angle, sector.half_angle());
assert_abs_diff_eq!(self.angle, sector.angle());
assert_abs_diff_eq!(self.half_chord_length, sector.half_chord_length());
assert_abs_diff_eq!(self.chord_length, sector.chord_length(), epsilon = 0.00001);
assert_abs_diff_eq!(self.chord_midpoint, sector.chord_midpoint());
assert_abs_diff_eq!(self.apothem, sector.apothem());
assert_abs_diff_eq!(self.sagitta, sector.sagitta());
assert_abs_diff_eq!(self.sector_area, sector.area());
assert_abs_diff_eq!(self.sector_perimeter, sector.perimeter());
}
fn check_segment(&self, segment: CircularSegment) {
assert_abs_diff_eq!(self.radius, segment.radius());
assert_abs_diff_eq!(self.half_angle, segment.half_angle());
assert_abs_diff_eq!(self.angle, segment.angle());
assert_abs_diff_eq!(self.half_chord_length, segment.half_chord_length());
assert_abs_diff_eq!(self.chord_length, segment.chord_length(), epsilon = 0.00001);
assert_abs_diff_eq!(self.chord_midpoint, segment.chord_midpoint());
assert_abs_diff_eq!(self.apothem, segment.apothem());
assert_abs_diff_eq!(self.sagitta, segment.sagitta());
assert_abs_diff_eq!(self.segment_area, segment.area());
assert_abs_diff_eq!(self.segment_perimeter, segment.perimeter());
}
}
#[test]
fn zero_angle() {
let tests = ArcTestCase {
radius: 1.0,
half_angle: 0.0,
angle: 0.0,
length: 0.0,
left_endpoint: Vec2::Y,
right_endpoint: Vec2::Y,
endpoints: [Vec2::Y, Vec2::Y],
midpoint: Vec2::Y,
half_chord_length: 0.0,
chord_length: 0.0,
chord_midpoint: Vec2::Y,
apothem: 1.0,
sagitta: 0.0,
is_minor: true,
is_major: false,
sector_area: 0.0,
sector_perimeter: 2.0,
segment_area: 0.0,
segment_perimeter: 0.0,
};
tests.check_arc(Arc2d::new(1.0, 0.0));
tests.check_sector(CircularSector::new(1.0, 0.0));
tests.check_segment(CircularSegment::new(1.0, 0.0));
}
#[test]
fn zero_radius() {
let tests = ArcTestCase {
radius: 0.0,
half_angle: FRAC_PI_4,
angle: FRAC_PI_2,
length: 0.0,
left_endpoint: Vec2::ZERO,
right_endpoint: Vec2::ZERO,
endpoints: [Vec2::ZERO, Vec2::ZERO],
midpoint: Vec2::ZERO,
half_chord_length: 0.0,
chord_length: 0.0,
chord_midpoint: Vec2::ZERO,
apothem: 0.0,
sagitta: 0.0,
is_minor: true,
is_major: false,
sector_area: 0.0,
sector_perimeter: 0.0,
segment_area: 0.0,
segment_perimeter: 0.0,
};
tests.check_arc(Arc2d::new(0.0, FRAC_PI_4));
tests.check_sector(CircularSector::new(0.0, FRAC_PI_4));
tests.check_segment(CircularSegment::new(0.0, FRAC_PI_4));
}
#[test]
fn quarter_circle() {
let sqrt_half: f32 = f32::sqrt(0.5);
let tests = ArcTestCase {
radius: 1.0,
half_angle: FRAC_PI_4,
angle: FRAC_PI_2,
length: FRAC_PI_2,
left_endpoint: Vec2::new(-sqrt_half, sqrt_half),
right_endpoint: Vec2::splat(sqrt_half),
endpoints: [Vec2::new(-sqrt_half, sqrt_half), Vec2::splat(sqrt_half)],
midpoint: Vec2::Y,
half_chord_length: sqrt_half,
chord_length: f32::sqrt(2.0),
chord_midpoint: Vec2::new(0.0, sqrt_half),
apothem: sqrt_half,
sagitta: 1.0 - sqrt_half,
is_minor: true,
is_major: false,
sector_area: FRAC_PI_4,
sector_perimeter: FRAC_PI_2 + 2.0,
segment_area: FRAC_PI_4 - 0.5,
segment_perimeter: FRAC_PI_2 + SQRT_2,
};
tests.check_arc(Arc2d::from_turns(1.0, 0.25));
tests.check_sector(CircularSector::from_turns(1.0, 0.25));
tests.check_segment(CircularSegment::from_turns(1.0, 0.25));
}
#[test]
fn half_circle() {
let tests = ArcTestCase {
radius: 1.0,
half_angle: FRAC_PI_2,
angle: PI,
length: PI,
left_endpoint: Vec2::NEG_X,
right_endpoint: Vec2::X,
endpoints: [Vec2::NEG_X, Vec2::X],
midpoint: Vec2::Y,
half_chord_length: 1.0,
chord_length: 2.0,
chord_midpoint: Vec2::ZERO,
apothem: 0.0,
sagitta: 1.0,
is_minor: true,
is_major: true,
sector_area: FRAC_PI_2,
sector_perimeter: PI + 2.0,
segment_area: FRAC_PI_2,
segment_perimeter: PI + 2.0,
};
tests.check_arc(Arc2d::from_radians(1.0, PI));
tests.check_sector(CircularSector::from_radians(1.0, PI));
tests.check_segment(CircularSegment::from_radians(1.0, PI));
}
#[test]
fn full_circle() {
let tests = ArcTestCase {
radius: 1.0,
half_angle: PI,
angle: 2.0 * PI,
length: 2.0 * PI,
left_endpoint: Vec2::NEG_Y,
right_endpoint: Vec2::NEG_Y,
endpoints: [Vec2::NEG_Y, Vec2::NEG_Y],
midpoint: Vec2::Y,
half_chord_length: 0.0,
chord_length: 0.0,
chord_midpoint: Vec2::NEG_Y,
apothem: -1.0,
sagitta: 2.0,
is_minor: false,
is_major: true,
sector_area: PI,
sector_perimeter: 2.0 * PI,
segment_area: PI,
segment_perimeter: 2.0 * PI,
};
tests.check_arc(Arc2d::from_degrees(1.0, 360.0));
tests.check_sector(CircularSector::from_degrees(1.0, 360.0));
tests.check_segment(CircularSegment::from_degrees(1.0, 360.0));
}
}
/// An ellipse primitive, which is like a circle, but the width and height can be different
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Ellipse {
/// Half of the width and height of the ellipse.
///
/// This corresponds to the two perpendicular radii defining the ellipse.
pub half_size: Vec2,
}
impl Primitive2d for Ellipse {}
impl Default for Ellipse {
/// Returns the default [`Ellipse`] with a half-width of `1.0` and a half-height of `0.5`.
fn default() -> Self {
Self {
half_size: Vec2::new(1.0, 0.5),
}
}
}
impl Ellipse {
/// Create a new `Ellipse` from half of its width and height.
///
/// This corresponds to the two perpendicular radii defining the ellipse.
#[inline(always)]
pub const fn new(half_width: f32, half_height: f32) -> Self {
Self {
half_size: Vec2::new(half_width, half_height),
}
}
/// Create a new `Ellipse` from a given full size.
///
/// `size.x` is the diameter along the X axis, and `size.y` is the diameter along the Y axis.
#[inline(always)]
pub fn from_size(size: Vec2) -> Self {
Self {
half_size: size / 2.0,
}
}
#[inline(always)]
/// Returns the [eccentricity](https://en.wikipedia.org/wiki/Eccentricity_(mathematics)) of the ellipse.
/// It can be thought of as a measure of how "stretched" or elongated the ellipse is.
///
/// The value should be in the range [0, 1), where 0 represents a circle, and 1 represents a parabola.
pub fn eccentricity(&self) -> f32 {
let a = self.semi_major();
let b = self.semi_minor();
(a * a - b * b).sqrt() / a
}
#[inline(always)]
/// Get the focal length of the ellipse. This corresponds to the distance between one of the foci and the center of the ellipse.
///
/// The focal length of an ellipse is related to its eccentricity by `eccentricity = focal_length / semi_major`
pub fn focal_length(&self) -> f32 {
let a = self.semi_major();
let b = self.semi_minor();
(a * a - b * b).sqrt()
}
/// Returns the length of the semi-major axis. This corresponds to the longest radius of the ellipse.
#[inline(always)]
pub fn semi_major(&self) -> f32 {
self.half_size.max_element()
}
/// Returns the length of the semi-minor axis. This corresponds to the shortest radius of the ellipse.
#[inline(always)]
pub fn semi_minor(&self) -> f32 {
self.half_size.min_element()
}
}
impl Measured2d for Ellipse {
/// Get the area of the ellipse
#[inline(always)]
fn area(&self) -> f32 {
PI * self.half_size.x * self.half_size.y
}
#[inline(always)]
/// Get an approximation for the perimeter or circumference of the ellipse.
///
/// The approximation is reasonably precise with a relative error less than 0.007%, getting more precise as the eccentricity of the ellipse decreases.
fn perimeter(&self) -> f32 {
let a = self.semi_major();
let b = self.semi_minor();
// In the case that `a == b`, the ellipse is a circle
if a / b - 1. < 1e-5 {
return PI * (a + b);
};
// In the case that `a` is much larger than `b`, the ellipse is a line
if a / b > 1e4 {
return 4. * a;
};
// These values are the result of (0.5 choose n)^2 where n is the index in the array
// They could be calculated on the fly but hardcoding them yields more accurate and faster results
// because the actual calculation for these values involves factorials and numbers > 10^23
const BINOMIAL_COEFFICIENTS: [f32; 21] = [
1.,
0.25,
0.015625,
0.00390625,
0.0015258789,
0.00074768066,
0.00042057037,
0.00025963783,
0.00017140154,
0.000119028846,
0.00008599834,
0.00006414339,
0.000049109784,
0.000038430585,
0.000030636627,
0.000024815668,
0.000020380836,
0.000016942893,
0.000014236736,
0.000012077564,
0.000010333865,
];
// The algorithm used here is the Gauss-Kummer infinite series expansion of the elliptic integral expression for the perimeter of ellipses
// For more information see https://www.wolframalpha.com/input/?i=gauss-kummer+series
// We only use the terms up to `i == 20` for this approximation
let h = ((a - b) / (a + b)).squared();
PI * (a + b)
* (0..=20)
.map(|i| BINOMIAL_COEFFICIENTS[i] * ops::powf(h, i as f32))
.sum::<f32>()
}
}
/// A primitive shape formed by the region between two circles, also known as a ring.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "Ring")]
pub struct Annulus {
/// The inner circle of the annulus
pub inner_circle: Circle,
/// The outer circle of the annulus
pub outer_circle: Circle,
}
impl Primitive2d for Annulus {}
impl Default for Annulus {
/// Returns the default [`Annulus`] with radii of `0.5` and `1.0`.
fn default() -> Self {
Self {
inner_circle: Circle::new(0.5),
outer_circle: Circle::new(1.0),
}
}
}
impl Annulus {
/// Create a new [`Annulus`] from the radii of the inner and outer circle
#[inline(always)]
pub const fn new(inner_radius: f32, outer_radius: f32) -> Self {
Self {
inner_circle: Circle::new(inner_radius),
outer_circle: Circle::new(outer_radius),
}
}
/// Get the diameter of the annulus
#[inline(always)]
pub fn diameter(&self) -> f32 {
self.outer_circle.diameter()
}
/// Get the thickness of the annulus
#[inline(always)]
pub fn thickness(&self) -> f32 {
self.outer_circle.radius - self.inner_circle.radius
}
/// Finds the point on the annulus that is closest to the given `point`:
///
/// - If the point is outside of the annulus completely, the returned point will be on the outer perimeter.
/// - If the point is inside of the inner circle (hole) of the annulus, the returned point will be on the inner perimeter.
/// - Otherwise, the returned point is overlapping the annulus and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec2) -> Vec2 {
let distance_squared = point.length_squared();
if self.inner_circle.radius.squared() <= distance_squared {
if distance_squared <= self.outer_circle.radius.squared() {
// The point is inside the annulus.
point
} else {
// The point is outside the annulus and closer to the outer perimeter.
// Find the closest point on the perimeter of the annulus.
let dir_to_point = point / distance_squared.sqrt();
self.outer_circle.radius * dir_to_point
}
} else {
// The point is outside the annulus and closer to the inner perimeter.
// Find the closest point on the perimeter of the annulus.
let dir_to_point = point / distance_squared.sqrt();
self.inner_circle.radius * dir_to_point
}
}
}
impl Measured2d for Annulus {
/// Get the area of the annulus
#[inline(always)]
fn area(&self) -> f32 {
PI * (self.outer_circle.radius.squared() - self.inner_circle.radius.squared())
}
/// Get the perimeter or circumference of the annulus,
/// which is the sum of the perimeters of the inner and outer circles.
#[inline(always)]
#[doc(alias = "circumference")]
fn perimeter(&self) -> f32 {
2.0 * PI * (self.outer_circle.radius + self.inner_circle.radius)
}
}
/// A rhombus primitive, also known as a diamond shape.
/// A four sided polygon, centered on the origin, where opposite sides are parallel but without
/// requiring right angles.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "Diamond")]
pub struct Rhombus {
/// Size of the horizontal and vertical diagonals of the rhombus
pub half_diagonals: Vec2,
}
impl Primitive2d for Rhombus {}
impl Default for Rhombus {
/// Returns the default [`Rhombus`] with a half-horizontal and half-vertical diagonal of `0.5`.
fn default() -> Self {
Self {
half_diagonals: Vec2::splat(0.5),
}
}
}
impl Rhombus {
/// Create a new `Rhombus` from a vertical and horizontal diagonal sizes.
#[inline(always)]
pub fn new(horizontal_diagonal: f32, vertical_diagonal: f32) -> Self {
Self {
half_diagonals: Vec2::new(horizontal_diagonal / 2.0, vertical_diagonal / 2.0),
}
}
/// Create a new `Rhombus` from a side length with all inner angles equal.
#[inline(always)]
pub fn from_side(side: f32) -> Self {
Self {
half_diagonals: Vec2::splat(side * FRAC_1_SQRT_2),
}
}
/// Create a new `Rhombus` from a given inradius with all inner angles equal.
#[inline(always)]
pub fn from_inradius(inradius: f32) -> Self {
let half_diagonal = inradius * 2.0 / core::f32::consts::SQRT_2;
Self {
half_diagonals: Vec2::new(half_diagonal, half_diagonal),
}
}
/// Get the length of each side of the rhombus
#[inline(always)]
pub fn side(&self) -> f32 {
self.half_diagonals.length()
}
/// Get the radius of the circumcircle on which all vertices
/// of the rhombus lie
#[inline(always)]
pub fn circumradius(&self) -> f32 {
self.half_diagonals.x.max(self.half_diagonals.y)
}
/// Get the radius of the largest circle that can
/// be drawn within the rhombus
#[inline(always)]
#[doc(alias = "apothem")]
pub fn inradius(&self) -> f32 {
let side = self.side();
if side == 0.0 {
0.0
} else {
(self.half_diagonals.x * self.half_diagonals.y) / side
}
}
/// Finds the point on the rhombus that is closest to the given `point`.
///
/// If the point is outside the rhombus, the returned point will be on the perimeter of the rhombus.
/// Otherwise, it will be inside the rhombus and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec2) -> Vec2 {
// Fold the problem into the positive quadrant
let point_abs = point.abs();
let half_diagonals = self.half_diagonals.abs(); // to ensure correct sign
// The unnormalised normal vector perpendicular to the side of the rhombus
let normal = Vec2::new(half_diagonals.y, half_diagonals.x);
let normal_magnitude_squared = normal.length_squared();
if normal_magnitude_squared == 0.0 {
return Vec2::ZERO; // A null Rhombus has only one point anyway.
}
// The last term corresponds to normal.dot(rhombus_vertex)
let distance_unnormalised = normal.dot(point_abs) - half_diagonals.x * half_diagonals.y;
// The point is already inside so we simply return it.
if distance_unnormalised <= 0.0 {
return point;
}
// Clamp the point to the edge
let mut result = point_abs - normal * distance_unnormalised / normal_magnitude_squared;
// Clamp the point back to the positive quadrant
// if it's outside, it needs to be clamped to either vertex
if result.x <= 0.0 {
result = Vec2::new(0.0, half_diagonals.y);
} else if result.y <= 0.0 {
result = Vec2::new(half_diagonals.x, 0.0);
}
// Finally, we restore the signs of the original vector
result.copysign(point)
}
}
impl Measured2d for Rhombus {
/// Get the area of the rhombus
#[inline(always)]
fn area(&self) -> f32 {
2.0 * self.half_diagonals.x * self.half_diagonals.y
}
/// Get the perimeter of the rhombus
#[inline(always)]
fn perimeter(&self) -> f32 {
4.0 * self.side()
}
}
/// An unbounded plane in 2D space. It forms a separating surface through the origin,
/// stretching infinitely far
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Plane2d {
/// The normal of the plane. The plane will be placed perpendicular to this direction
pub normal: Dir2,
}
impl Primitive2d for Plane2d {}
impl Default for Plane2d {
/// Returns the default [`Plane2d`] with a normal pointing in the `+Y` direction.
fn default() -> Self {
Self { normal: Dir2::Y }
}
}
impl Plane2d {
/// Create a new `Plane2d` from a normal
///
/// # Panics
///
/// Panics if the given `normal` is zero (or very close to zero), or non-finite.
#[inline(always)]
pub fn new(normal: Vec2) -> Self {
Self {
normal: Dir2::new(normal).expect("normal must be nonzero and finite"),
}
}
}
/// An infinite line going through the origin along a direction in 2D space.
///
/// For a finite line: [`Segment2d`]
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Line2d {
/// The direction of the line. The line extends infinitely in both the given direction
/// and its opposite direction
pub direction: Dir2,
}
impl Primitive2d for Line2d {}
/// A segment of a line going through the origin along a direction in 2D space.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "LineSegment2d")]
pub struct Segment2d {
/// The direction of the line segment
pub direction: Dir2,
/// Half the length of the line segment. The segment extends by this amount in both
/// the given direction and its opposite direction
pub half_length: f32,
}
impl Primitive2d for Segment2d {}
impl Segment2d {
/// Create a new `Segment2d` from a direction and full length of the segment
#[inline(always)]
pub fn new(direction: Dir2, length: f32) -> Self {
Self {
direction,
half_length: length / 2.0,
}
}
/// Create a new `Segment2d` from its endpoints and compute its geometric center
///
/// # Panics
///
/// Panics if `point1 == point2`
#[inline(always)]
pub fn from_points(point1: Vec2, point2: Vec2) -> (Self, Vec2) {
let diff = point2 - point1;
let length = diff.length();
(
// We are dividing by the length here, so the vector is normalized.
Self::new(Dir2::new_unchecked(diff / length), length),
(point1 + point2) / 2.,
)
}
/// Get the position of the first point on the line segment
#[inline(always)]
pub fn point1(&self) -> Vec2 {
*self.direction * -self.half_length
}
/// Get the position of the second point on the line segment
#[inline(always)]
pub fn point2(&self) -> Vec2 {
*self.direction * self.half_length
}
}
/// A series of connected line segments in 2D space.
///
/// For a version without generics: [`BoxedPolyline2d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Polyline2d<const N: usize> {
/// The vertices of the polyline
#[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
pub vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for Polyline2d<N> {}
impl<const N: usize> FromIterator<Vec2> for Polyline2d<N> {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let mut vertices: [Vec2; N] = [Vec2::ZERO; N];
for (index, i) in iter.into_iter().take(N).enumerate() {
vertices[index] = i;
}
Self { vertices }
}
}
impl<const N: usize> Polyline2d<N> {
/// Create a new `Polyline2d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A series of connected line segments in 2D space, allocated on the heap
/// in a `Box<[Vec2]>`.
///
/// For a version without alloc: [`Polyline2d`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct BoxedPolyline2d {
/// The vertices of the polyline
pub vertices: Box<[Vec2]>,
}
impl Primitive2d for BoxedPolyline2d {}
impl FromIterator<Vec2> for BoxedPolyline2d {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let vertices: Vec<Vec2> = iter.into_iter().collect();
Self {
vertices: vertices.into_boxed_slice(),
}
}
}
impl BoxedPolyline2d {
/// Create a new `BoxedPolyline2d` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A triangle in 2D space
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Triangle2d {
/// The vertices of the triangle
pub vertices: [Vec2; 3],
}
impl Primitive2d for Triangle2d {}
impl Default for Triangle2d {
/// Returns the default [`Triangle2d`] with the vertices `[0.0, 0.5]`, `[-0.5, -0.5]`, and `[0.5, -0.5]`.
fn default() -> Self {
Self {
vertices: [Vec2::Y * 0.5, Vec2::new(-0.5, -0.5), Vec2::new(0.5, -0.5)],
}
}
}
impl Triangle2d {
/// Create a new `Triangle2d` from points `a`, `b`, and `c`
#[inline(always)]
pub const fn new(a: Vec2, b: Vec2, c: Vec2) -> Self {
Self {
vertices: [a, b, c],
}
}
/// Get the [`WindingOrder`] of the triangle
#[inline(always)]
#[doc(alias = "orientation")]
pub fn winding_order(&self) -> WindingOrder {
let [a, b, c] = self.vertices;
let area = (b - a).perp_dot(c - a);
if area > f32::EPSILON {
WindingOrder::CounterClockwise
} else if area < -f32::EPSILON {
WindingOrder::Clockwise
} else {
WindingOrder::Invalid
}
}
/// Compute the circle passing through all three vertices of the triangle.
/// The vector in the returned tuple is the circumcenter.
pub fn circumcircle(&self) -> (Circle, Vec2) {
// We treat the triangle as translated so that vertex A is at the origin. This simplifies calculations.
//
// A = (0, 0)
// *
// / \
// / \
// / \
// / \
// / U \
// / \
// *-------------*
// B C
let a = self.vertices[0];
let (b, c) = (self.vertices[1] - a, self.vertices[2] - a);
let b_length_sq = b.length_squared();
let c_length_sq = c.length_squared();
// Reference: https://en.wikipedia.org/wiki/Circumcircle#Cartesian_coordinates_2
let inv_d = (2.0 * (b.x * c.y - b.y * c.x)).recip();
let ux = inv_d * (c.y * b_length_sq - b.y * c_length_sq);
let uy = inv_d * (b.x * c_length_sq - c.x * b_length_sq);
let u = Vec2::new(ux, uy);
// Compute true circumcenter and circumradius, adding the tip coordinate so that
// A is translated back to its actual coordinate.
let center = u + a;
let radius = u.length();
(Circle { radius }, center)
}
/// Checks if the triangle is degenerate, meaning it has zero area.
///
/// A triangle is degenerate if the cross product of the vectors `ab` and `ac` has a length less than `10e-7`.
/// This indicates that the three vertices are collinear or nearly collinear.
#[inline(always)]
pub fn is_degenerate(&self) -> bool {
let [a, b, c] = self.vertices;
let ab = (b - a).extend(0.);
let ac = (c - a).extend(0.);
ab.cross(ac).length() < 10e-7
}
/// Checks if the triangle is acute, meaning all angles are less than 90 degrees
#[inline(always)]
pub fn is_acute(&self) -> bool {
let [a, b, c] = self.vertices;
let ab = b - a;
let bc = c - b;
let ca = a - c;
// a^2 + b^2 < c^2 for an acute triangle
let mut side_lengths = [
ab.length_squared(),
bc.length_squared(),
ca.length_squared(),
];
side_lengths.sort_by(|a, b| a.partial_cmp(b).unwrap());
side_lengths[0] + side_lengths[1] > side_lengths[2]
}
/// Checks if the triangle is obtuse, meaning one angle is greater than 90 degrees
#[inline(always)]
pub fn is_obtuse(&self) -> bool {
let [a, b, c] = self.vertices;
let ab = b - a;
let bc = c - b;
let ca = a - c;
// a^2 + b^2 > c^2 for an obtuse triangle
let mut side_lengths = [
ab.length_squared(),
bc.length_squared(),
ca.length_squared(),
];
side_lengths.sort_by(|a, b| a.partial_cmp(b).unwrap());
side_lengths[0] + side_lengths[1] < side_lengths[2]
}
/// Reverse the [`WindingOrder`] of the triangle
/// by swapping the first and last vertices.
#[inline(always)]
pub fn reverse(&mut self) {
self.vertices.swap(0, 2);
}
/// This triangle but reversed.
#[inline(always)]
#[must_use]
pub fn reversed(mut self) -> Self {
self.reverse();
self
}
}
impl Measured2d for Triangle2d {
/// Get the area of the triangle
#[inline(always)]
fn area(&self) -> f32 {
let [a, b, c] = self.vertices;
(a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y)).abs() / 2.0
}
/// Get the perimeter of the triangle
#[inline(always)]
fn perimeter(&self) -> f32 {
let [a, b, c] = self.vertices;
let ab = a.distance(b);
let bc = b.distance(c);
let ca = c.distance(a);
ab + bc + ca
}
}
/// A rectangle primitive, which is like a square, except that the width and height can be different
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "Quad")]
pub struct Rectangle {
/// Half of the width and height of the rectangle
pub half_size: Vec2,
}
impl Primitive2d for Rectangle {}
impl Default for Rectangle {
/// Returns the default [`Rectangle`] with a half-width and half-height of `0.5`.
fn default() -> Self {
Self {
half_size: Vec2::splat(0.5),
}
}
}
impl Rectangle {
/// Create a new `Rectangle` from a full width and height
#[inline(always)]
pub fn new(width: f32, height: f32) -> Self {
Self::from_size(Vec2::new(width, height))
}
/// Create a new `Rectangle` from a given full size
#[inline(always)]
pub fn from_size(size: Vec2) -> Self {
Self {
half_size: size / 2.0,
}
}
/// Create a new `Rectangle` from two corner points
#[inline(always)]
pub fn from_corners(point1: Vec2, point2: Vec2) -> Self {
Self {
half_size: (point2 - point1).abs() / 2.0,
}
}
/// Create a `Rectangle` from a single length.
/// The resulting `Rectangle` will be the same size in every direction.
#[inline(always)]
pub fn from_length(length: f32) -> Self {
Self {
half_size: Vec2::splat(length / 2.0),
}
}
/// Get the size of the rectangle
#[inline(always)]
pub fn size(&self) -> Vec2 {
2.0 * self.half_size
}
/// Finds the point on the rectangle that is closest to the given `point`.
///
/// If the point is outside the rectangle, the returned point will be on the perimeter of the rectangle.
/// Otherwise, it will be inside the rectangle and returned as is.
#[inline(always)]
pub fn closest_point(&self, point: Vec2) -> Vec2 {
// Clamp point coordinates to the rectangle
point.clamp(-self.half_size, self.half_size)
}
}
impl Measured2d for Rectangle {
/// Get the area of the rectangle
#[inline(always)]
fn area(&self) -> f32 {
4.0 * self.half_size.x * self.half_size.y
}
/// Get the perimeter of the rectangle
#[inline(always)]
fn perimeter(&self) -> f32 {
4.0 * (self.half_size.x + self.half_size.y)
}
}
/// A polygon with N vertices.
///
/// For a version without generics: [`BoxedPolygon`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct Polygon<const N: usize> {
/// The vertices of the `Polygon`
#[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
pub vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for Polygon<N> {}
impl<const N: usize> FromIterator<Vec2> for Polygon<N> {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let mut vertices: [Vec2; N] = [Vec2::ZERO; N];
for (index, i) in iter.into_iter().take(N).enumerate() {
vertices[index] = i;
}
Self { vertices }
}
}
impl<const N: usize> Polygon<N> {
/// Create a new `Polygon` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
impl<const N: usize> From<ConvexPolygon<N>> for Polygon<N> {
fn from(val: ConvexPolygon<N>) -> Self {
Polygon {
vertices: val.vertices,
}
}
}
/// A convex polygon with `N` vertices.
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect), reflect(Debug, PartialEq))]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct ConvexPolygon<const N: usize> {
/// The vertices of the [`ConvexPolygon`].
#[cfg_attr(feature = "serialize", serde(with = "super::serde::array"))]
vertices: [Vec2; N],
}
impl<const N: usize> Primitive2d for ConvexPolygon<N> {}
/// An error that happens when creating a [`ConvexPolygon`].
#[derive(Error, Display, Debug, Clone)]
pub enum ConvexPolygonError {
/// The created polygon is not convex.
#[display("The created polygon is not convex")]
Concave,
}
impl<const N: usize> ConvexPolygon<N> {
fn triangle_winding_order(
&self,
a_index: usize,
b_index: usize,
c_index: usize,
) -> WindingOrder {
let a = self.vertices[a_index];
let b = self.vertices[b_index];
let c = self.vertices[c_index];
Triangle2d::new(a, b, c).winding_order()
}
/// Create a [`ConvexPolygon`] from its `vertices`.
///
/// # Errors
///
/// Returns [`ConvexPolygonError::Concave`] if the `vertices` do not form a convex polygon.
pub fn new(vertices: [Vec2; N]) -> Result<Self, ConvexPolygonError> {
let polygon = Self::new_unchecked(vertices);
let ref_winding_order = polygon.triangle_winding_order(N - 1, 0, 1);
for i in 1..N {
let winding_order = polygon.triangle_winding_order(i - 1, i, (i + 1) % N);
if winding_order != ref_winding_order {
return Err(ConvexPolygonError::Concave);
}
}
Ok(polygon)
}
/// Create a [`ConvexPolygon`] from its `vertices`, without checks.
/// Use this version only if you know that the `vertices` make up a convex polygon.
#[inline(always)]
pub fn new_unchecked(vertices: [Vec2; N]) -> Self {
Self { vertices }
}
/// Get the vertices of this polygon
#[inline(always)]
pub fn vertices(&self) -> &[Vec2; N] {
&self.vertices
}
}
impl<const N: usize> TryFrom<Polygon<N>> for ConvexPolygon<N> {
type Error = ConvexPolygonError;
fn try_from(val: Polygon<N>) -> Result<Self, Self::Error> {
ConvexPolygon::new(val.vertices)
}
}
/// A polygon with a variable number of vertices, allocated on the heap
/// in a `Box<[Vec2]>`.
///
/// For a version without alloc: [`Polygon`]
#[derive(Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
pub struct BoxedPolygon {
/// The vertices of the `BoxedPolygon`
pub vertices: Box<[Vec2]>,
}
impl Primitive2d for BoxedPolygon {}
impl FromIterator<Vec2> for BoxedPolygon {
fn from_iter<I: IntoIterator<Item = Vec2>>(iter: I) -> Self {
let vertices: Vec<Vec2> = iter.into_iter().collect();
Self {
vertices: vertices.into_boxed_slice(),
}
}
}
impl BoxedPolygon {
/// Create a new `BoxedPolygon` from its vertices
pub fn new(vertices: impl IntoIterator<Item = Vec2>) -> Self {
Self::from_iter(vertices)
}
}
/// A polygon centered on the origin where all vertices lie on a circle, equally far apart.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
pub struct RegularPolygon {
/// The circumcircle on which all vertices lie
pub circumcircle: Circle,
/// The number of sides
pub sides: u32,
}
impl Primitive2d for RegularPolygon {}
impl Default for RegularPolygon {
/// Returns the default [`RegularPolygon`] with six sides (a hexagon) and a circumradius of `0.5`.
fn default() -> Self {
Self {
circumcircle: Circle { radius: 0.5 },
sides: 6,
}
}
}
impl RegularPolygon {
/// Create a new `RegularPolygon`
/// from the radius of the circumcircle and a number of sides
///
/// # Panics
///
/// Panics if `circumradius` is negative
#[inline(always)]
pub fn new(circumradius: f32, sides: u32) -> Self {
assert!(
circumradius.is_sign_positive(),
"polygon has a negative radius"
);
assert!(sides > 2, "polygon has less than 3 sides");
Self {
circumcircle: Circle {
radius: circumradius,
},
sides,
}
}
/// Get the radius of the circumcircle on which all vertices
/// of the regular polygon lie
#[inline(always)]
pub fn circumradius(&self) -> f32 {
self.circumcircle.radius
}
/// Get the inradius or apothem of the regular polygon.
/// This is the radius of the largest circle that can
/// be drawn within the polygon
#[inline(always)]
#[doc(alias = "apothem")]
pub fn inradius(&self) -> f32 {
self.circumradius() * ops::cos(PI / self.sides as f32)
}
/// Get the length of one side of the regular polygon
#[inline(always)]
pub fn side_length(&self) -> f32 {
2.0 * self.circumradius() * ops::sin(PI / self.sides as f32)
}
/// Get the internal angle of the regular polygon in degrees.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the interior of the polygon
#[inline(always)]
pub fn internal_angle_degrees(&self) -> f32 {
(self.sides - 2) as f32 / self.sides as f32 * 180.0
}
/// Get the internal angle of the regular polygon in radians.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the interior of the polygon
#[inline(always)]
pub fn internal_angle_radians(&self) -> f32 {
(self.sides - 2) as f32 * PI / self.sides as f32
}
/// Get the external angle of the regular polygon in degrees.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the exterior of the polygon
#[inline(always)]
pub fn external_angle_degrees(&self) -> f32 {
360.0 / self.sides as f32
}
/// Get the external angle of the regular polygon in radians.
///
/// This is the angle formed by two adjacent sides with points
/// within the angle being in the exterior of the polygon
#[inline(always)]
pub fn external_angle_radians(&self) -> f32 {
2.0 * PI / self.sides as f32
}
/// Returns an iterator over the vertices of the regular polygon,
/// rotated counterclockwise by the given angle in radians.
///
/// With a rotation of 0, a vertex will be placed at the top `(0.0, circumradius)`.
pub fn vertices(self, rotation: f32) -> impl IntoIterator<Item = Vec2> {
// Add pi/2 so that the polygon has a vertex at the top (sin is 1.0 and cos is 0.0)
let start_angle = rotation + FRAC_PI_2;
let step = core::f32::consts::TAU / self.sides as f32;
(0..self.sides).map(move |i| {
let theta = start_angle + i as f32 * step;
let (sin, cos) = ops::sin_cos(theta);
Vec2::new(cos, sin) * self.circumcircle.radius
})
}
}
impl Measured2d for RegularPolygon {
/// Get the area of the regular polygon
#[inline(always)]
fn area(&self) -> f32 {
let angle: f32 = 2.0 * PI / (self.sides as f32);
(self.sides as f32) * self.circumradius().squared() * ops::sin(angle) / 2.0
}
/// Get the perimeter of the regular polygon.
/// This is the sum of its sides
#[inline(always)]
fn perimeter(&self) -> f32 {
self.sides as f32 * self.side_length()
}
}
/// A 2D capsule primitive, also known as a stadium or pill shape.
///
/// A two-dimensional capsule is defined as a neighborhood of points at a distance (radius) from a line
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serialize", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
feature = "bevy_reflect",
derive(Reflect),
reflect(Debug, PartialEq, Default)
)]
#[cfg_attr(
all(feature = "serialize", feature = "bevy_reflect"),
reflect(Serialize, Deserialize)
)]
#[doc(alias = "stadium", alias = "pill")]
pub struct Capsule2d {
/// The radius of the capsule
pub radius: f32,
/// Half the height of the capsule, excluding the hemicircles
pub half_length: f32,
}
impl Primitive2d for Capsule2d {}
impl Default for Capsule2d {
/// Returns the default [`Capsule2d`] with a radius of `0.5` and a half-height of `0.5`,
/// excluding the hemicircles.
fn default() -> Self {
Self {
radius: 0.5,
half_length: 0.5,
}
}
}
impl Capsule2d {
/// Create a new `Capsule2d` from a radius and length
pub fn new(radius: f32, length: f32) -> Self {
Self {
radius,
half_length: length / 2.0,
}
}
/// Get the part connecting the semicircular ends of the capsule as a [`Rectangle`]
#[inline]
pub fn to_inner_rectangle(&self) -> Rectangle {
Rectangle::new(self.radius * 2.0, self.half_length * 2.0)
}
}
impl Measured2d for Capsule2d {
/// Get the area of the capsule
#[inline]
fn area(&self) -> f32 {
// pi*r^2 + (2r)*l
PI * self.radius.squared() + self.to_inner_rectangle().area()
}
/// Get the perimeter of the capsule
#[inline]
fn perimeter(&self) -> f32 {
// 2pi*r + 2l
2.0 * PI * self.radius + 4.0 * self.half_length
}
}
#[cfg(test)]
mod tests {
// Reference values were computed by hand and/or with external tools
use super::*;
use approx::{assert_abs_diff_eq, assert_relative_eq};
#[test]
fn rectangle_closest_point() {
let rectangle = Rectangle::new(2.0, 2.0);
assert_eq!(rectangle.closest_point(Vec2::X * 10.0), Vec2::X);
assert_eq!(rectangle.closest_point(Vec2::NEG_ONE * 10.0), Vec2::NEG_ONE);
assert_eq!(
rectangle.closest_point(Vec2::new(0.25, 0.1)),
Vec2::new(0.25, 0.1)
);
}
#[test]
fn circle_closest_point() {
let circle = Circle { radius: 1.0 };
assert_eq!(circle.closest_point(Vec2::X * 10.0), Vec2::X);
assert_eq!(
circle.closest_point(Vec2::NEG_ONE * 10.0),
Vec2::NEG_ONE.normalize()
);
assert_eq!(
circle.closest_point(Vec2::new(0.25, 0.1)),
Vec2::new(0.25, 0.1)
);
}
#[test]
fn annulus_closest_point() {
let annulus = Annulus::new(1.5, 2.0);
assert_eq!(annulus.closest_point(Vec2::X * 10.0), Vec2::X * 2.0);
assert_eq!(
annulus.closest_point(Vec2::NEG_ONE),
Vec2::NEG_ONE.normalize() * 1.5
);
assert_eq!(
annulus.closest_point(Vec2::new(1.55, 0.85)),
Vec2::new(1.55, 0.85)
);
}
#[test]
fn rhombus_closest_point() {
let rhombus = Rhombus::new(2.0, 1.0);
assert_eq!(rhombus.closest_point(Vec2::X * 10.0), Vec2::X);
assert_eq!(
rhombus.closest_point(Vec2::NEG_ONE * 0.2),
Vec2::NEG_ONE * 0.2
);
assert_eq!(
rhombus.closest_point(Vec2::new(-0.55, 0.35)),
Vec2::new(-0.5, 0.25)
);
let rhombus = Rhombus::new(0.0, 0.0);
assert_eq!(rhombus.closest_point(Vec2::X * 10.0), Vec2::ZERO);
assert_eq!(rhombus.closest_point(Vec2::NEG_ONE * 0.2), Vec2::ZERO);
assert_eq!(rhombus.closest_point(Vec2::new(-0.55, 0.35)), Vec2::ZERO);
}
#[test]
fn circle_math() {
let circle = Circle { radius: 3.0 };
assert_eq!(circle.diameter(), 6.0, "incorrect diameter");
assert_eq!(circle.area(), 28.274334, "incorrect area");
assert_eq!(circle.perimeter(), 18.849556, "incorrect perimeter");
}
#[test]
fn capsule_math() {
let capsule = Capsule2d::new(2.0, 9.0);
assert_eq!(
capsule.to_inner_rectangle(),
Rectangle::new(4.0, 9.0),
"rectangle wasn't created correctly from a capsule"
);
assert_eq!(capsule.area(), 48.566371, "incorrect area");
assert_eq!(capsule.perimeter(), 30.566371, "incorrect perimeter");
}
#[test]
fn annulus_math() {
let annulus = Annulus::new(2.5, 3.5);
assert_eq!(annulus.diameter(), 7.0, "incorrect diameter");
assert_eq!(annulus.thickness(), 1.0, "incorrect thickness");
assert_eq!(annulus.area(), 18.849556, "incorrect area");
assert_eq!(annulus.perimeter(), 37.699112, "incorrect perimeter");
}
#[test]
fn rhombus_math() {
let rhombus = Rhombus::new(3.0, 4.0);
assert_eq!(rhombus.area(), 6.0, "incorrect area");
assert_eq!(rhombus.perimeter(), 10.0, "incorrect perimeter");
assert_eq!(rhombus.side(), 2.5, "incorrect side");
assert_eq!(rhombus.inradius(), 1.2, "incorrect inradius");
assert_eq!(rhombus.circumradius(), 2.0, "incorrect circumradius");
let rhombus = Rhombus::new(0.0, 0.0);
assert_eq!(rhombus.area(), 0.0, "incorrect area");
assert_eq!(rhombus.perimeter(), 0.0, "incorrect perimeter");
assert_eq!(rhombus.side(), 0.0, "incorrect side");
assert_eq!(rhombus.inradius(), 0.0, "incorrect inradius");
assert_eq!(rhombus.circumradius(), 0.0, "incorrect circumradius");
let rhombus = Rhombus::from_side(core::f32::consts::SQRT_2);
assert_abs_diff_eq!(rhombus.half_diagonals, Vec2::new(1.0, 1.0));
assert_abs_diff_eq!(
rhombus.half_diagonals,
Rhombus::from_inradius(FRAC_1_SQRT_2).half_diagonals
);
}
#[test]
fn ellipse_math() {
let ellipse = Ellipse::new(3.0, 1.0);
assert_eq!(ellipse.area(), 9.424778, "incorrect area");
assert_eq!(ellipse.eccentricity(), 0.94280905, "incorrect eccentricity");
let line = Ellipse::new(1., 0.);
assert_eq!(line.eccentricity(), 1., "incorrect line eccentricity");
let circle = Ellipse::new(2., 2.);
assert_eq!(circle.eccentricity(), 0., "incorrect circle eccentricity");
}
#[test]
fn ellipse_perimeter() {
let circle = Ellipse::new(1., 1.);
assert_relative_eq!(circle.perimeter(), 6.2831855);
let line = Ellipse::new(75_000., 0.5);
assert_relative_eq!(line.perimeter(), 300_000.);
let ellipse = Ellipse::new(0.5, 2.);
assert_relative_eq!(ellipse.perimeter(), 8.578423);
let ellipse = Ellipse::new(5., 3.);
assert_relative_eq!(ellipse.perimeter(), 25.526999);
}
#[test]
fn triangle_math() {
let triangle = Triangle2d::new(
Vec2::new(-2.0, -1.0),
Vec2::new(1.0, 4.0),
Vec2::new(7.0, 0.0),
);
assert_eq!(triangle.area(), 21.0, "incorrect area");
assert_eq!(triangle.perimeter(), 22.097439, "incorrect perimeter");
let degenerate_triangle =
Triangle2d::new(Vec2::new(-1., 0.), Vec2::new(0., 0.), Vec2::new(1., 0.));
assert!(degenerate_triangle.is_degenerate());
let acute_triangle =
Triangle2d::new(Vec2::new(-1., 0.), Vec2::new(1., 0.), Vec2::new(0., 5.));
let obtuse_triangle =
Triangle2d::new(Vec2::new(-1., 0.), Vec2::new(1., 0.), Vec2::new(0., 0.5));
assert!(acute_triangle.is_acute());
assert!(!acute_triangle.is_obtuse());
assert!(!obtuse_triangle.is_acute());
assert!(obtuse_triangle.is_obtuse());
}
#[test]
fn triangle_winding_order() {
let mut cw_triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(-0.5, -1.2),
Vec2::new(-1.0, -1.0),
);
assert_eq!(cw_triangle.winding_order(), WindingOrder::Clockwise);
let ccw_triangle = Triangle2d::new(
Vec2::new(-1.0, -1.0),
Vec2::new(-0.5, -1.2),
Vec2::new(0.0, 2.0),
);
assert_eq!(ccw_triangle.winding_order(), WindingOrder::CounterClockwise);
// The clockwise triangle should be the same as the counterclockwise
// triangle when reversed
cw_triangle.reverse();
assert_eq!(cw_triangle, ccw_triangle);
let invalid_triangle = Triangle2d::new(
Vec2::new(0.0, 2.0),
Vec2::new(0.0, -1.0),
Vec2::new(0.0, -1.2),
);
assert_eq!(invalid_triangle.winding_order(), WindingOrder::Invalid);
}
#[test]
fn rectangle_math() {
let rectangle = Rectangle::new(3.0, 7.0);
assert_eq!(
rectangle,
Rectangle::from_corners(Vec2::new(-1.5, -3.5), Vec2::new(1.5, 3.5))
);
assert_eq!(rectangle.area(), 21.0, "incorrect area");
assert_eq!(rectangle.perimeter(), 20.0, "incorrect perimeter");
}
#[test]
fn regular_polygon_math() {
let polygon = RegularPolygon::new(3.0, 6);
assert_eq!(polygon.inradius(), 2.598076, "incorrect inradius");
assert_eq!(polygon.side_length(), 3.0, "incorrect side length");
assert_relative_eq!(polygon.area(), 23.38268, epsilon = 0.00001);
assert_eq!(polygon.perimeter(), 18.0, "incorrect perimeter");
assert_eq!(
polygon.internal_angle_degrees(),
120.0,
"incorrect internal angle"
);
assert_eq!(
polygon.internal_angle_radians(),
120_f32.to_radians(),
"incorrect internal angle"
);
assert_eq!(
polygon.external_angle_degrees(),
60.0,
"incorrect external angle"
);
assert_eq!(
polygon.external_angle_radians(),
60_f32.to_radians(),
"incorrect external angle"
);
}
#[test]
fn triangle_circumcenter() {
let triangle = Triangle2d::new(
Vec2::new(10.0, 2.0),
Vec2::new(-5.0, -3.0),
Vec2::new(2.0, -1.0),
);
let (Circle { radius }, circumcenter) = triangle.circumcircle();
// Calculated with external calculator
assert_eq!(radius, 98.34887);
assert_eq!(circumcenter, Vec2::new(-28.5, 92.5));
}
#[test]
fn regular_polygon_vertices() {
let polygon = RegularPolygon::new(1.0, 4);
// Regular polygons have a vertex at the top by default
let mut vertices = polygon.vertices(0.0).into_iter();
assert!((vertices.next().unwrap() - Vec2::Y).length() < 1e-7);
// Rotate by 45 degrees, forming an axis-aligned square
let mut rotated_vertices = polygon.vertices(core::f32::consts::FRAC_PI_4).into_iter();
// Distance from the origin to the middle of a side, derived using Pythagorean theorem
let side_sistance = FRAC_1_SQRT_2;
assert!(
(rotated_vertices.next().unwrap() - Vec2::new(-side_sistance, side_sistance)).length()
< 1e-7,
);
}
}