bevy_mesh/primitives/extrusion.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
use bevy_math::{
primitives::{Annulus, Capsule2d, Circle, Ellipse, Extrusion, Primitive2d},
Vec2, Vec3,
};
use super::{MeshBuilder, Meshable};
use crate::{Indices, Mesh, VertexAttributeValues};
/// A type representing a segment of the perimeter of an extrudable mesh.
pub enum PerimeterSegment {
/// This segment of the perimeter will be shaded smooth.
///
/// This has the effect of rendering the segment's faces with softened edges, so it is appropriate for curved shapes.
///
/// The normals for the vertices that are part of this segment will be calculated based on the positions of their neighbors.
/// Each normal is interpolated between the normals of the two line segments connecting it with its neighbors.
/// Closer vertices have a stronger effect on the normal than more distant ones.
///
/// Since the vertices corresponding to the first and last indices do not have two neighboring vertices, their normals must be provided manually.
Smooth {
/// The normal of the first vertex.
first_normal: Vec2,
/// The normal of the last vertex.
last_normal: Vec2,
/// A list of indices representing this segment of the perimeter of the mesh.
///
/// The indices must be ordered such that the *outside* of the mesh is to the right
/// when walking along the vertices of the mesh in the order provided by the indices.
///
/// For geometry to be rendered, you must provide at least two indices.
indices: Vec<u32>,
},
/// This segment of the perimeter will be shaded flat.
///
/// This has the effect of rendering the segment's faces with hard edges.
Flat {
/// A list of indices representing this segment of the perimeter of the mesh.
///
/// The indices must be ordered such that the *outside* of the mesh is to the right
/// when walking along the vertices of the mesh in the order provided by indices.
///
/// For geometry to be rendered, you must provide at least two indices.
indices: Vec<u32>,
},
}
impl PerimeterSegment {
/// Returns the amount of vertices each 'layer' of the extrusion should include for this perimeter segment.
///
/// A layer is the set of vertices sharing a common Z value or depth.
fn vertices_per_layer(&self) -> u32 {
match self {
PerimeterSegment::Smooth { indices, .. } => indices.len() as u32,
PerimeterSegment::Flat { indices } => 2 * (indices.len() as u32 - 1),
}
}
/// Returns the amount of indices each 'segment' of the extrusion should include for this perimeter segment.
///
/// A segment is the set of faces on the mantel of the extrusion between two layers of vertices.
fn indices_per_segment(&self) -> usize {
match self {
PerimeterSegment::Smooth { indices, .. } | PerimeterSegment::Flat { indices } => {
6 * (indices.len() - 1)
}
}
}
}
/// A trait required for implementing `Meshable` for `Extrusion<T>`.
///
/// ## Warning
///
/// By implementing this trait you guarantee that the `primitive_topology` of the mesh returned by
/// this builder is [`PrimitiveTopology::TriangleList`](wgpu::PrimitiveTopology::TriangleList)
/// and that your mesh has a [`Mesh::ATTRIBUTE_POSITION`] attribute.
pub trait Extrudable: MeshBuilder {
/// A list of the indices each representing a part of the perimeter of the mesh.
fn perimeter(&self) -> Vec<PerimeterSegment>;
}
impl<P> Meshable for Extrusion<P>
where
P: Primitive2d + Meshable,
P::Output: Extrudable,
{
type Output = ExtrusionBuilder<P>;
fn mesh(&self) -> Self::Output {
ExtrusionBuilder {
base_builder: self.base_shape.mesh(),
half_depth: self.half_depth,
segments: 1,
}
}
}
/// A builder used for creating a [`Mesh`] with an [`Extrusion`] shape.
pub struct ExtrusionBuilder<P>
where
P: Primitive2d + Meshable,
P::Output: Extrudable,
{
pub base_builder: P::Output,
pub half_depth: f32,
pub segments: usize,
}
impl<P> ExtrusionBuilder<P>
where
P: Primitive2d + Meshable,
P::Output: Extrudable,
{
/// Create a new `ExtrusionBuilder<P>` from a given `base_shape` and the full `depth` of the extrusion.
pub fn new(base_shape: &P, depth: f32) -> Self {
Self {
base_builder: base_shape.mesh(),
half_depth: depth / 2.,
segments: 1,
}
}
/// Sets the number of segments along the depth of the extrusion.
/// Must be greater than `0` for the geometry of the mantel to be generated.
pub fn segments(mut self, segments: usize) -> Self {
self.segments = segments;
self
}
}
impl ExtrusionBuilder<Circle> {
/// Sets the number of vertices used for the circle mesh at each end of the extrusion.
pub fn resolution(mut self, resolution: u32) -> Self {
self.base_builder.resolution = resolution;
self
}
}
impl ExtrusionBuilder<Ellipse> {
/// Sets the number of vertices used for the ellipse mesh at each end of the extrusion.
pub fn resolution(mut self, resolution: u32) -> Self {
self.base_builder.resolution = resolution;
self
}
}
impl ExtrusionBuilder<Annulus> {
/// Sets the number of vertices used in constructing the concentric circles of the annulus mesh at each end of the extrusion.
pub fn resolution(mut self, resolution: u32) -> Self {
self.base_builder.resolution = resolution;
self
}
}
impl ExtrusionBuilder<Capsule2d> {
/// Sets the number of vertices used for each hemicircle at the ends of the extrusion.
pub fn resolution(mut self, resolution: u32) -> Self {
self.base_builder.resolution = resolution;
self
}
}
impl<P> MeshBuilder for ExtrusionBuilder<P>
where
P: Primitive2d + Meshable,
P::Output: Extrudable,
{
fn build(&self) -> Mesh {
// Create and move the base mesh to the front
let mut front_face =
self.base_builder
.build()
.translated_by(Vec3::new(0., 0., self.half_depth));
// Move the uvs of the front face to be between (0., 0.) and (0.5, 0.5)
if let Some(VertexAttributeValues::Float32x2(uvs)) =
front_face.attribute_mut(Mesh::ATTRIBUTE_UV_0)
{
for uv in uvs {
*uv = uv.map(|coord| coord * 0.5);
}
}
let back_face = {
let topology = front_face.primitive_topology();
// Flip the normals, etc. and move mesh to the back
let mut back_face = front_face.clone().scaled_by(Vec3::new(1., 1., -1.));
// Move the uvs of the back face to be between (0.5, 0.) and (1., 0.5)
if let Some(VertexAttributeValues::Float32x2(uvs)) =
back_face.attribute_mut(Mesh::ATTRIBUTE_UV_0)
{
for uv in uvs {
*uv = [uv[0] + 0.5, uv[1]];
}
}
// By swapping the first and second indices of each triangle we invert the winding order thus making the mesh visible from the other side
if let Some(indices) = back_face.indices_mut() {
match topology {
wgpu::PrimitiveTopology::TriangleList => match indices {
Indices::U16(indices) => {
indices.chunks_exact_mut(3).for_each(|arr| arr.swap(1, 0));
}
Indices::U32(indices) => {
indices.chunks_exact_mut(3).for_each(|arr| arr.swap(1, 0));
}
},
_ => {
panic!("Meshes used with Extrusions must have a primitive topology of `PrimitiveTopology::TriangleList`");
}
};
}
back_face
};
// An extrusion of depth 0 does not need a mantel
if self.half_depth == 0. {
front_face.merge(&back_face);
return front_face;
}
let mantel = {
let Some(VertexAttributeValues::Float32x3(cap_verts)) =
front_face.attribute(Mesh::ATTRIBUTE_POSITION)
else {
panic!("The base mesh did not have vertex positions");
};
debug_assert!(self.segments > 0);
let layers = self.segments + 1;
let layer_depth_delta = self.half_depth * 2.0 / self.segments as f32;
let perimeter = self.base_builder.perimeter();
let (vert_count, index_count) =
perimeter
.iter()
.fold((0, 0), |(verts, indices), perimeter| {
(
verts + layers * perimeter.vertices_per_layer() as usize,
indices + self.segments * perimeter.indices_per_segment(),
)
});
let mut positions = Vec::with_capacity(vert_count);
let mut normals = Vec::with_capacity(vert_count);
let mut indices = Vec::with_capacity(index_count);
let mut uvs = Vec::with_capacity(vert_count);
// Compute the amount of horizontal space allocated to each segment of the perimeter.
let uv_segment_delta = 1. / perimeter.len() as f32;
for (i, segment) in perimeter.into_iter().enumerate() {
// The start of the x range of the area of the current perimeter-segment.
let uv_start = i as f32 * uv_segment_delta;
match segment {
PerimeterSegment::Flat {
indices: segment_indices,
} => {
let uv_delta = uv_segment_delta / (segment_indices.len() - 1) as f32;
for i in 0..(segment_indices.len() - 1) {
let uv_x = uv_start + uv_delta * i as f32;
// Get the positions for the current and the next index.
let a = cap_verts[segment_indices[i] as usize];
let b = cap_verts[segment_indices[i + 1] as usize];
// Get the index of the next vertex added to the mantel.
let index = positions.len() as u32;
// Push the positions of the two indices and their equivalent points on each layer.
for i in 0..layers {
let i = i as f32;
let z = a[2] - layer_depth_delta * i;
positions.push([a[0], a[1], z]);
positions.push([b[0], b[1], z]);
// UVs for the mantel are between (0, 0.5) and (1, 1).
let uv_y = 0.5 + 0.5 * i / self.segments as f32;
uvs.push([uv_x, uv_y]);
uvs.push([uv_x + uv_delta, uv_y]);
}
// The normal is calculated to be the normal of the line segment connecting a and b.
let n = Vec3::from_array([b[1] - a[1], a[0] - b[0], 0.])
.normalize_or_zero()
.to_array();
normals.extend_from_slice(&vec![n; 2 * layers]);
// Add the indices for the vertices created above to the mesh.
for i in 0..self.segments as u32 {
let base_index = index + 2 * i;
indices.extend_from_slice(&[
base_index,
base_index + 2,
base_index + 1,
base_index + 1,
base_index + 2,
base_index + 3,
]);
}
}
}
PerimeterSegment::Smooth {
first_normal,
last_normal,
indices: segment_indices,
} => {
let uv_delta = uv_segment_delta / (segment_indices.len() - 1) as f32;
// Since the indices for this segment will be added after its vertices have been added,
// we need to store the index of the first vertex that is part of this segment.
let base_index = positions.len() as u32;
// If there is a first vertex, we need to add it and its counterparts on each layer.
// The normal is provided by `segment.first_normal`.
if let Some(i) = segment_indices.first() {
let p = cap_verts[*i as usize];
for i in 0..layers {
let i = i as f32;
let z = p[2] - layer_depth_delta * i;
positions.push([p[0], p[1], z]);
let uv_y = 0.5 + 0.5 * i / self.segments as f32;
uvs.push([uv_start, uv_y]);
}
normals.extend_from_slice(&vec![
first_normal.extend(0.).to_array();
layers
]);
}
// For all points inbetween the first and last vertices, we can automatically compute the normals.
for i in 1..(segment_indices.len() - 1) {
let uv_x = uv_start + uv_delta * i as f32;
// Get the positions for the last, current and the next index.
let a = cap_verts[segment_indices[i - 1] as usize];
let b = cap_verts[segment_indices[i] as usize];
let c = cap_verts[segment_indices[i + 1] as usize];
// Add the current vertex and its counterparts on each layer.
for i in 0..layers {
let i = i as f32;
let z = b[2] - layer_depth_delta * i;
positions.push([b[0], b[1], z]);
let uv_y = 0.5 + 0.5 * i / self.segments as f32;
uvs.push([uv_x, uv_y]);
}
// The normal for the current vertices can be calculated based on the two neighboring vertices.
// The normal is interpolated between the normals of the two line segments connecting the current vertex with its neighbors.
// Closer vertices have a stronger effect on the normal than more distant ones.
let n = {
let ab = Vec2::from_slice(&b) - Vec2::from_slice(&a);
let bc = Vec2::from_slice(&c) - Vec2::from_slice(&b);
let n = ab.normalize_or_zero() + bc.normalize_or_zero();
Vec2::new(n.y, -n.x)
.normalize_or_zero()
.extend(0.)
.to_array()
};
normals.extend_from_slice(&vec![n; layers]);
}
// If there is a last vertex, we need to add it and its counterparts on each layer.
// The normal is provided by `segment.last_normal`.
if let Some(i) = segment_indices.last() {
let p = cap_verts[*i as usize];
for i in 0..layers {
let i = i as f32;
let z = p[2] - layer_depth_delta * i;
positions.push([p[0], p[1], z]);
let uv_y = 0.5 + 0.5 * i / self.segments as f32;
uvs.push([uv_start + uv_segment_delta, uv_y]);
}
normals.extend_from_slice(&vec![
last_normal.extend(0.).to_array();
layers
]);
}
let columns = segment_indices.len() as u32;
let segments = self.segments as u32;
let layers = segments + 1;
for s in 0..segments {
for column in 0..(columns - 1) {
let index = base_index + s + column * layers;
indices.extend_from_slice(&[
index,
index + 1,
index + layers,
index + layers,
index + 1,
index + layers + 1,
]);
}
}
}
}
}
Mesh::new(
wgpu::PrimitiveTopology::TriangleList,
front_face.asset_usage,
)
.with_inserted_indices(Indices::U32(indices))
.with_inserted_attribute(Mesh::ATTRIBUTE_POSITION, positions)
.with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, normals)
.with_inserted_attribute(Mesh::ATTRIBUTE_UV_0, uvs)
};
front_face.merge(&back_face);
front_face.merge(&mantel);
front_face
}
}
impl<P> From<Extrusion<P>> for Mesh
where
P: Primitive2d + Meshable,
P::Output: Extrudable,
{
fn from(value: Extrusion<P>) -> Self {
value.mesh().build()
}
}