bevy_rapier2d/dynamics/revolute_joint.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
use crate::dynamics::{GenericJoint, GenericJointBuilder};
use crate::math::{Real, Vect};
use crate::plugin::context::RapierRigidBodySet;
use bevy::prelude::Entity;
use rapier::dynamics::{
JointAxesMask, JointAxis, JointLimits, JointMotor, MotorModel, RigidBodyHandle, RigidBodySet,
};
#[cfg(doc)]
use crate::prelude::RapierContext;
use super::TypedJoint;
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, PartialEq)]
#[repr(transparent)]
/// A revolute joint, locks all relative motion except for rotation along the joint’s principal axis.
pub struct RevoluteJoint {
/// The underlying joint data.
pub data: GenericJoint,
}
#[cfg(feature = "dim2")]
impl Default for RevoluteJoint {
fn default() -> Self {
Self::new()
}
}
impl RevoluteJoint {
/// Creates a new revolute joint allowing only relative rotations.
#[cfg(feature = "dim2")]
pub fn new() -> Self {
let data = GenericJointBuilder::new(JointAxesMask::LOCKED_REVOLUTE_AXES);
Self { data: data.build() }
}
/// Creates a new revolute joint allowing only relative rotations along the specified axis.
///
/// This axis is expressed in the local-space of both rigid-bodies.
#[cfg(feature = "dim3")]
pub fn new(axis: Vect) -> Self {
let data = GenericJointBuilder::new(JointAxesMask::LOCKED_REVOLUTE_AXES)
.local_axis1(axis)
.local_axis2(axis)
.build();
Self { data }
}
/// Are contacts between the attached rigid-bodies enabled?
pub fn contacts_enabled(&self) -> bool {
self.data.contacts_enabled()
}
/// Sets whether contacts between the attached rigid-bodies are enabled.
pub fn set_contacts_enabled(&mut self, enabled: bool) -> &mut Self {
self.data.set_contacts_enabled(enabled);
self
}
/// The joint’s anchor, expressed in the local-space of the first rigid-body.
#[must_use]
pub fn local_anchor1(&self) -> Vect {
self.data.local_anchor1()
}
/// Sets the joint’s anchor, expressed in the local-space of the first rigid-body.
pub fn set_local_anchor1(&mut self, anchor1: Vect) -> &mut Self {
self.data.set_local_anchor1(anchor1);
self
}
/// The joint’s anchor, expressed in the local-space of the second rigid-body.
#[must_use]
pub fn local_anchor2(&self) -> Vect {
self.data.local_anchor2()
}
/// Sets the joint’s anchor, expressed in the local-space of the second rigid-body.
pub fn set_local_anchor2(&mut self, anchor2: Vect) -> &mut Self {
self.data.set_local_anchor2(anchor2);
self
}
/// The motor affecting the joint’s rotational degree of freedom.
#[must_use]
pub fn motor(&self) -> Option<&JointMotor> {
self.data.motor(JointAxis::AngX)
}
/// Set the spring-like model used by the motor to reach the desired target velocity and position.
pub fn set_motor_model(&mut self, model: MotorModel) -> &mut Self {
self.data.set_motor_model(JointAxis::AngX, model);
self
}
/// Sets the target velocity this motor needs to reach.
pub fn set_motor_velocity(&mut self, target_vel: Real, factor: Real) -> &mut Self {
self.data
.set_motor_velocity(JointAxis::AngX, target_vel, factor);
self
}
/// Sets the target angle this motor needs to reach.
pub fn set_motor_position(
&mut self,
target_pos: Real,
stiffness: Real,
damping: Real,
) -> &mut Self {
self.data
.set_motor_position(JointAxis::AngX, target_pos, stiffness, damping);
self
}
/// Configure both the target angle and target velocity of the motor.
pub fn set_motor(
&mut self,
target_pos: Real,
target_vel: Real,
stiffness: Real,
damping: Real,
) -> &mut Self {
self.data
.set_motor(JointAxis::AngX, target_pos, target_vel, stiffness, damping);
self
}
/// Sets the maximum force the motor can deliver.
pub fn set_motor_max_force(&mut self, max_force: Real) -> &mut Self {
self.data.set_motor_max_force(JointAxis::AngX, max_force);
self
}
/// The limit angle attached bodies can translate along the joint’s principal axis.
#[must_use]
pub fn limits(&self) -> Option<&JointLimits<Real>> {
self.data.limits(JointAxis::AngX)
}
/// Sets the `[min,max]` limit angle attached bodies can translate along the joint’s principal axis.
pub fn set_limits(&mut self, limits: [Real; 2]) -> &mut Self {
self.data.set_limits(JointAxis::AngX, limits);
self
}
/// The angle along the free degree of freedom of this revolute joint in `[-π, π]`.
///
/// See also [`Self::angle`] for a version of this method taking entities instead of rigid-body handles.
/// Similarly [`RapierContext::impulse_revolute_joint_angle`] only takes a single entity as argument to compute that angle.
///
/// # Parameters
/// - `bodies` : the rigid body set from [`RapierRigidBodySet`]
/// - `body1`: the first rigid-body attached to this revolute joint, obtained through [`rapier::dynamics::ImpulseJoint`] or [`rapier::dynamics::MultibodyJoint`].
/// - `body2`: the second rigid-body attached to this revolute joint, obtained through [`rapier::dynamics::ImpulseJoint`] or [`rapier::dynamics::MultibodyJoint`].
pub fn angle_from_handles(
&self,
bodies: &RigidBodySet,
body1: RigidBodyHandle,
body2: RigidBodyHandle,
) -> f32 {
// NOTE: unwrap will always succeed since `Self` is known to be a revolute joint.
let joint = self.data.raw.as_revolute().unwrap();
let rb1 = &bodies[body1];
let rb2 = &bodies[body2];
joint.angle(rb1.rotation(), rb2.rotation())
}
/// The angle along the free degree of freedom of this revolute joint in `[-π, π]`.
///
/// # Parameters
/// - `bodies` : the rigid body set from [`RapierRigidBodySet`]
/// - `body1`: the first rigid-body attached to this revolute joint.
/// - `body2`: the second rigid-body attached to this revolute joint.
pub fn angle(&self, rigidbody_set: &RapierRigidBodySet, body1: Entity, body2: Entity) -> f32 {
let rb1 = rigidbody_set.entity2body().get(&body1).unwrap();
let rb2 = rigidbody_set.entity2body().get(&body2).unwrap();
self.angle_from_handles(&rigidbody_set.bodies, *rb1, *rb2)
}
}
impl From<RevoluteJoint> for GenericJoint {
fn from(joint: RevoluteJoint) -> GenericJoint {
joint.data
}
}
/// Create revolute joints using the builder pattern.
///
/// A revolute joint locks all relative motion except for rotations along the joint’s principal axis.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct RevoluteJointBuilder(RevoluteJoint);
#[cfg(feature = "dim2")]
impl Default for RevoluteJointBuilder {
fn default() -> Self {
Self::new()
}
}
impl RevoluteJointBuilder {
/// Creates a new revolute joint builder.
#[cfg(feature = "dim2")]
pub fn new() -> Self {
Self(RevoluteJoint::new())
}
/// Creates a new revolute joint builder, allowing only relative rotations along the specified axis.
///
/// This axis is expressed in the local-space of both rigid-bodies.
#[cfg(feature = "dim3")]
pub fn new(axis: Vect) -> Self {
Self(RevoluteJoint::new(axis))
}
/// Sets the joint’s anchor, expressed in the local-space of the first rigid-body.
#[must_use]
pub fn local_anchor1(mut self, anchor1: Vect) -> Self {
self.0.set_local_anchor1(anchor1);
self
}
/// Sets the joint’s anchor, expressed in the local-space of the second rigid-body.
#[must_use]
pub fn local_anchor2(mut self, anchor2: Vect) -> Self {
self.0.set_local_anchor2(anchor2);
self
}
/// Set the spring-like model used by the motor to reach the desired target velocity and position.
#[must_use]
pub fn motor_model(mut self, model: MotorModel) -> Self {
self.0.set_motor_model(model);
self
}
/// Sets the target velocity this motor needs to reach.
#[must_use]
pub fn motor_velocity(mut self, target_vel: Real, factor: Real) -> Self {
self.0.set_motor_velocity(target_vel, factor);
self
}
/// Sets the target angle this motor needs to reach.
#[must_use]
pub fn motor_position(mut self, target_pos: Real, stiffness: Real, damping: Real) -> Self {
self.0.set_motor_position(target_pos, stiffness, damping);
self
}
/// Configure both the target angle and target velocity of the motor.
#[must_use]
pub fn motor(
mut self,
target_pos: Real,
target_vel: Real,
stiffness: Real,
damping: Real,
) -> Self {
self.0.set_motor(target_pos, target_vel, stiffness, damping);
self
}
/// Sets the maximum force the motor can deliver.
#[must_use]
pub fn motor_max_force(mut self, max_force: Real) -> Self {
self.0.set_motor_max_force(max_force);
self
}
/// Sets the `[min,max]` limit angles attached bodies can rotate along the joint’s principal axis.
#[must_use]
pub fn limits(mut self, limits: [Real; 2]) -> Self {
self.0.set_limits(limits);
self
}
/// Builds the revolute joint.
#[must_use]
pub fn build(self) -> RevoluteJoint {
self.0
}
}
impl From<RevoluteJointBuilder> for TypedJoint {
fn from(joint: RevoluteJointBuilder) -> TypedJoint {
joint.0.into()
}
}
impl From<RevoluteJoint> for TypedJoint {
fn from(joint: RevoluteJoint) -> TypedJoint {
TypedJoint::RevoluteJoint(joint)
}
}