bevy_rapier2d/geometry/collider_impl.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
#[cfg(feature = "dim2")]
use na::DVector;
#[cfg(all(feature = "dim3", feature = "async-collider"))]
use {
bevy::prelude::*,
bevy::render::mesh::{Indices, VertexAttributeValues},
};
use rapier::prelude::{FeatureId, Point, Ray, SharedShape, Vector, DIM};
use super::{get_snapped_scale, shape_views::*};
#[cfg(all(feature = "dim3", feature = "async-collider"))]
use crate::geometry::ComputedColliderShape;
use crate::geometry::{Collider, PointProjection, RayIntersection, TriMeshFlags, VHACDParameters};
use crate::math::{Real, Rot, Vect};
impl Collider {
/// The scaling factor that was applied to this collider.
pub fn scale(&self) -> Vect {
self.scale
}
/// This replaces the unscaled version of this collider by its scaled version,
/// and resets `self.scale()` to `1.0`.
pub fn promote_scaled_shape(&mut self) {
self.unscaled = self.raw.clone();
self.scale = Vect::ONE;
}
/// Initialize a new collider with a compound shape.
pub fn compound(shapes: Vec<(Vect, Rot, Collider)>) -> Self {
let shapes = shapes
.into_iter()
.map(|(t, r, s)| ((t, r).into(), s.raw))
.collect();
SharedShape::compound(shapes).into()
}
/// Initialize a new collider with a ball shape defined by its radius.
pub fn ball(radius: Real) -> Self {
SharedShape::ball(radius).into()
}
/// Initialize a new collider build with a half-space shape defined by the outward normal
/// of its planar boundary.
pub fn halfspace(outward_normal: Vect) -> Option<Self> {
use rapier::na::Unit;
let normal = Vector::from(outward_normal);
Unit::try_new(normal, 1.0e-6).map(|n| SharedShape::halfspace(n).into())
}
/// Initialize a new collider with a cylindrical shape defined by its half-height
/// (along the y axis) and its radius.
#[cfg(feature = "dim3")]
pub fn cylinder(half_height: Real, radius: Real) -> Self {
SharedShape::cylinder(half_height, radius).into()
}
/// Initialize a new collider with a rounded cylindrical shape defined by its half-height
/// (along the y axis), its radius, and its roundedness (the
/// radius of the sphere used for dilating the cylinder).
#[cfg(feature = "dim3")]
pub fn round_cylinder(half_height: Real, radius: Real, border_radius: Real) -> Self {
SharedShape::round_cylinder(half_height, radius, border_radius).into()
}
/// Initialize a new collider with a cone shape defined by its half-height
/// (along the y axis) and its basis radius.
#[cfg(feature = "dim3")]
pub fn cone(half_height: Real, radius: Real) -> Self {
SharedShape::cone(half_height, radius).into()
}
/// Initialize a new collider with a rounded cone shape defined by its half-height
/// (along the y axis), its radius, and its roundedness (the
/// radius of the sphere used for dilating the cylinder).
#[cfg(feature = "dim3")]
pub fn round_cone(half_height: Real, radius: Real, border_radius: Real) -> Self {
SharedShape::round_cone(half_height, radius, border_radius).into()
}
/// Initialize a new collider with a cuboid shape defined by its half-extents.
#[cfg(feature = "dim2")]
pub fn cuboid(half_x: Real, half_y: Real) -> Self {
SharedShape::cuboid(half_x, half_y).into()
}
/// Initialize a new collider with a round cuboid shape defined by its half-extents
/// and border radius.
#[cfg(feature = "dim2")]
pub fn round_cuboid(half_x: Real, half_y: Real, border_radius: Real) -> Self {
SharedShape::round_cuboid(half_x, half_y, border_radius).into()
}
/// Initialize a new collider with a capsule shape.
pub fn capsule(start: Vect, end: Vect, radius: Real) -> Self {
SharedShape::capsule(start.into(), end.into(), radius).into()
}
/// Initialize a new collider with a capsule shape aligned with the `x` axis.
pub fn capsule_x(half_height: Real, radius: Real) -> Self {
let p = Point::from(Vector::x() * half_height);
SharedShape::capsule(-p, p, radius).into()
}
/// Initialize a new collider with a capsule shape aligned with the `y` axis.
pub fn capsule_y(half_height: Real, radius: Real) -> Self {
let p = Point::from(Vector::y() * half_height);
SharedShape::capsule(-p, p, radius).into()
}
/// Initialize a new collider with a capsule shape aligned with the `z` axis.
#[cfg(feature = "dim3")]
pub fn capsule_z(half_height: Real, radius: Real) -> Self {
let p = Point::from(Vector::z() * half_height);
SharedShape::capsule(-p, p, radius).into()
}
/// Initialize a new collider with a cuboid shape defined by its half-extents.
#[cfg(feature = "dim3")]
pub fn cuboid(hx: Real, hy: Real, hz: Real) -> Self {
SharedShape::cuboid(hx, hy, hz).into()
}
/// Initialize a new collider with a round cuboid shape defined by its half-extents
/// and border radius.
#[cfg(feature = "dim3")]
pub fn round_cuboid(half_x: Real, half_y: Real, half_z: Real, border_radius: Real) -> Self {
SharedShape::round_cuboid(half_x, half_y, half_z, border_radius).into()
}
/// Initializes a collider with a segment shape.
pub fn segment(a: Vect, b: Vect) -> Self {
SharedShape::segment(a.into(), b.into()).into()
}
/// Initializes a collider with a triangle shape.
pub fn triangle(a: Vect, b: Vect, c: Vect) -> Self {
SharedShape::triangle(a.into(), b.into(), c.into()).into()
}
/// Initializes a collider with a triangle shape with round corners.
pub fn round_triangle(a: Vect, b: Vect, c: Vect, border_radius: Real) -> Self {
SharedShape::round_triangle(a.into(), b.into(), c.into(), border_radius).into()
}
/// Initializes a collider with a polyline shape defined by its vertex and index buffers.
pub fn polyline(vertices: Vec<Vect>, indices: Option<Vec<[u32; 2]>>) -> Self {
let vertices = vertices.into_iter().map(|v| v.into()).collect();
SharedShape::polyline(vertices, indices).into()
}
/// Initializes a collider with a triangle mesh shape defined by its vertex and index buffers.
pub fn trimesh(
vertices: Vec<Vect>,
indices: Vec<[u32; 3]>,
) -> Result<Self, crate::rapier::prelude::TriMeshBuilderError> {
let vertices = vertices.into_iter().map(|v| v.into()).collect();
Ok(SharedShape::trimesh(vertices, indices)?.into())
}
/// Initializes a collider with a triangle mesh shape defined by its vertex and index buffers, and flags
/// controlling its pre-processing.
pub fn trimesh_with_flags(
vertices: Vec<Vect>,
indices: Vec<[u32; 3]>,
flags: TriMeshFlags,
) -> Result<Self, crate::rapier::prelude::TriMeshBuilderError> {
let vertices = vertices.into_iter().map(|v| v.into()).collect();
Ok(SharedShape::trimesh_with_flags(vertices, indices, flags)?.into())
}
/// Initializes a collider with a Bevy Mesh.
///
/// Returns `None` if the index buffer or vertex buffer of the mesh are in an incompatible format.
#[cfg(all(feature = "dim3", feature = "async-collider"))]
pub fn from_bevy_mesh(mesh: &Mesh, collider_shape: &ComputedColliderShape) -> Option<Self> {
let (vtx, idx) = extract_mesh_vertices_indices(mesh)?;
match collider_shape {
ComputedColliderShape::TriMesh(flags) => Some(
SharedShape::trimesh_with_flags(vtx, idx, *flags)
.ok()?
.into(),
),
ComputedColliderShape::ConvexHull => {
SharedShape::convex_hull(&vtx).map(|shape| shape.into())
}
ComputedColliderShape::ConvexDecomposition(params) => {
Some(SharedShape::convex_decomposition_with_params(&vtx, &idx, params).into())
}
}
}
/// Initializes a collider with a compound shape obtained from the decomposition of
/// the given trimesh (in 3D) or polyline (in 2D) into convex parts.
pub fn convex_decomposition(vertices: &[Vect], indices: &[[u32; DIM]]) -> Self {
let vertices: Vec<_> = vertices.iter().map(|v| (*v).into()).collect();
SharedShape::convex_decomposition(&vertices, indices).into()
}
/// Initializes a collider with a compound shape obtained from the decomposition of
/// the given trimesh (in 3D) or polyline (in 2D) into convex parts dilated with round corners.
pub fn round_convex_decomposition(
vertices: &[Vect],
indices: &[[u32; DIM]],
border_radius: Real,
) -> Self {
let vertices: Vec<_> = vertices.iter().map(|v| (*v).into()).collect();
SharedShape::round_convex_decomposition(&vertices, indices, border_radius).into()
}
/// Initializes a collider with a compound shape obtained from the decomposition of
/// the given trimesh (in 3D) or polyline (in 2D) into convex parts.
pub fn convex_decomposition_with_params(
vertices: &[Vect],
indices: &[[u32; DIM]],
params: &VHACDParameters,
) -> Self {
let vertices: Vec<_> = vertices.iter().map(|v| (*v).into()).collect();
SharedShape::convex_decomposition_with_params(&vertices, indices, params).into()
}
/// Initializes a collider with a compound shape obtained from the decomposition of
/// the given trimesh (in 3D) or polyline (in 2D) into convex parts dilated with round corners.
pub fn round_convex_decomposition_with_params(
vertices: &[Vect],
indices: &[[u32; DIM]],
params: &VHACDParameters,
border_radius: Real,
) -> Self {
let vertices: Vec<_> = vertices.iter().map(|v| (*v).into()).collect();
SharedShape::round_convex_decomposition_with_params(
&vertices,
indices,
params,
border_radius,
)
.into()
}
/// Initializes a new collider with a 2D convex polygon or 3D convex polyhedron
/// obtained after computing the convex-hull of the given points.
pub fn convex_hull(points: &[Vect]) -> Option<Self> {
let points: Vec<_> = points.iter().map(|v| (*v).into()).collect();
SharedShape::convex_hull(&points).map(Into::into)
}
/// Initializes a new collider with a round 2D convex polygon or 3D convex polyhedron
/// obtained after computing the convex-hull of the given points. The shape is dilated
/// by a sphere of radius `border_radius`.
pub fn round_convex_hull(points: &[Vect], border_radius: Real) -> Option<Self> {
let points: Vec<_> = points.iter().map(|v| (*v).into()).collect();
SharedShape::round_convex_hull(&points, border_radius).map(Into::into)
}
/// Creates a new collider that is a convex polygon formed by the
/// given polyline assumed to be convex (no convex-hull will be automatically
/// computed).
#[cfg(feature = "dim2")]
pub fn convex_polyline(points: Vec<Vect>) -> Option<Self> {
let points = points.into_iter().map(|v| v.into()).collect();
SharedShape::convex_polyline(points).map(Into::into)
}
/// Creates a new collider that is a round convex polygon formed by the
/// given polyline assumed to be convex (no convex-hull will be automatically
/// computed). The polygon shape is dilated by a sphere of radius `border_radius`.
#[cfg(feature = "dim2")]
pub fn round_convex_polyline(points: Vec<Vect>, border_radius: Real) -> Option<Self> {
let points = points.into_iter().map(|v| v.into()).collect();
SharedShape::round_convex_polyline(points, border_radius).map(Into::into)
}
/// Creates a new collider that is a convex polyhedron formed by the
/// given triangle-mesh assumed to be convex (no convex-hull will be automatically
/// computed).
#[cfg(feature = "dim3")]
pub fn convex_mesh(points: Vec<Vect>, indices: &[[u32; 3]]) -> Option<Self> {
let points = points.into_iter().map(|v| v.into()).collect();
SharedShape::convex_mesh(points, indices).map(Into::into)
}
/// Creates a new collider that is a round convex polyhedron formed by the
/// given triangle-mesh assumed to be convex (no convex-hull will be automatically
/// computed). The triangle mesh shape is dilated by a sphere of radius `border_radius`.
#[cfg(feature = "dim3")]
pub fn round_convex_mesh(
points: Vec<Vect>,
indices: &[[u32; 3]],
border_radius: Real,
) -> Option<Self> {
let points = points.into_iter().map(|v| v.into()).collect();
SharedShape::round_convex_mesh(points, indices, border_radius).map(Into::into)
}
/// Initializes a collider with a heightfield shape defined by its set of height and a scale
/// factor along each coordinate axis.
#[cfg(feature = "dim2")]
pub fn heightfield(heights: Vec<Real>, scale: Vect) -> Self {
SharedShape::heightfield(DVector::from_vec(heights), scale.into()).into()
}
/// Initializes a collider with a heightfield shape defined by its set of height (in
/// column-major format) and a scale factor along each coordinate axis.
#[cfg(feature = "dim3")]
pub fn heightfield(heights: Vec<Real>, num_rows: usize, num_cols: usize, scale: Vect) -> Self {
assert_eq!(
heights.len(),
num_rows * num_cols,
"Invalid number of heights provided."
);
let heights = rapier::na::DMatrix::from_vec(num_rows, num_cols, heights);
SharedShape::heightfield(heights, scale.into()).into()
}
/// Takes a strongly typed reference of this collider.
pub fn as_typed_shape(&self) -> ColliderView {
self.raw.as_typed_shape().into()
}
/// Takes a strongly typed reference of the unscaled version of this collider.
pub fn as_unscaled_typed_shape(&self) -> ColliderView {
self.unscaled.as_typed_shape().into()
}
/// Downcast this collider to a ball, if it is one.
pub fn as_ball(&self) -> Option<BallView> {
self.raw.as_ball().map(|s| BallView { raw: s })
}
/// Downcast this collider to a cuboid, if it is one.
pub fn as_cuboid(&self) -> Option<CuboidView> {
self.raw.as_cuboid().map(|s| CuboidView { raw: s })
}
/// Downcast this collider to a capsule, if it is one.
pub fn as_capsule(&self) -> Option<CapsuleView> {
self.raw.as_capsule().map(|s| CapsuleView { raw: s })
}
/// Downcast this collider to a segment, if it is one.
pub fn as_segment(&self) -> Option<SegmentView> {
self.raw.as_segment().map(|s| SegmentView { raw: s })
}
/// Downcast this collider to a triangle, if it is one.
pub fn as_triangle(&self) -> Option<TriangleView> {
self.raw.as_triangle().map(|s| TriangleView { raw: s })
}
/// Downcast this collider to a triangle mesh, if it is one.
pub fn as_trimesh(&self) -> Option<TriMeshView> {
self.raw.as_trimesh().map(|s| TriMeshView { raw: s })
}
/// Downcast this collider to a polyline, if it is one.
pub fn as_polyline(&self) -> Option<PolylineView> {
self.raw.as_polyline().map(|s| PolylineView { raw: s })
}
/// Downcast this collider to a half-space, if it is one.
pub fn as_halfspace(&self) -> Option<HalfSpaceView> {
self.raw.as_halfspace().map(|s| HalfSpaceView { raw: s })
}
/// Downcast this collider to a heightfield, if it is one.
pub fn as_heightfield(&self) -> Option<HeightFieldView> {
self.raw
.as_heightfield()
.map(|s| HeightFieldView { raw: s })
}
/// Downcast this collider to a compound shape, if it is one.
pub fn as_compound(&self) -> Option<CompoundView> {
self.raw.as_compound().map(|s| CompoundView { raw: s })
}
/// Downcast this collider to a convex polygon, if it is one.
#[cfg(feature = "dim2")]
pub fn as_convex_polygon(&self) -> Option<ConvexPolygonView> {
self.raw
.as_convex_polygon()
.map(|s| ConvexPolygonView { raw: s })
}
/// Downcast this collider to a convex polyhedron, if it is one.
#[cfg(feature = "dim3")]
pub fn as_convex_polyhedron(&self) -> Option<ConvexPolyhedronView> {
self.raw
.as_convex_polyhedron()
.map(|s| ConvexPolyhedronView { raw: s })
}
/// Downcast this collider to a cylinder, if it is one.
#[cfg(feature = "dim3")]
pub fn as_cylinder(&self) -> Option<CylinderView> {
self.raw.as_cylinder().map(|s| CylinderView { raw: s })
}
/// Downcast this collider to a cone, if it is one.
#[cfg(feature = "dim3")]
pub fn as_cone(&self) -> Option<ConeView> {
self.raw.as_cone().map(|s| ConeView { raw: s })
}
/// Downcast this collider to a mutable ball, if it is one.
pub fn as_ball_mut(&mut self) -> Option<BallViewMut> {
self.raw
.make_mut()
.as_ball_mut()
.map(|s| BallViewMut { raw: s })
}
/// Downcast this collider to a mutable cuboid, if it is one.
pub fn as_cuboid_mut(&mut self) -> Option<CuboidViewMut> {
self.raw
.make_mut()
.as_cuboid_mut()
.map(|s| CuboidViewMut { raw: s })
}
/// Downcast this collider to a mutable capsule, if it is one.
pub fn as_capsule_mut(&mut self) -> Option<CapsuleViewMut> {
self.raw
.make_mut()
.as_capsule_mut()
.map(|s| CapsuleViewMut { raw: s })
}
/// Downcast this collider to a mutable segment, if it is one.
pub fn as_segment_mut(&mut self) -> Option<SegmentViewMut> {
self.raw
.make_mut()
.as_segment_mut()
.map(|s| SegmentViewMut { raw: s })
}
/// Downcast this collider to a mutable triangle, if it is one.
pub fn as_triangle_mut(&mut self) -> Option<TriangleViewMut> {
self.raw
.make_mut()
.as_triangle_mut()
.map(|s| TriangleViewMut { raw: s })
}
/// Downcast this collider to a mutable triangle mesh, if it is one.
pub fn as_trimesh_mut(&mut self) -> Option<TriMeshViewMut> {
self.raw
.make_mut()
.as_trimesh_mut()
.map(|s| TriMeshViewMut { raw: s })
}
/// Downcast this collider to a mutable polyline, if it is one.
pub fn as_polyline_mut(&mut self) -> Option<PolylineViewMut> {
self.raw
.make_mut()
.as_polyline_mut()
.map(|s| PolylineViewMut { raw: s })
}
/// Downcast this collider to a mutable half-space, if it is one.
pub fn as_halfspace_mut(&mut self) -> Option<HalfSpaceViewMut> {
self.raw
.make_mut()
.as_halfspace_mut()
.map(|s| HalfSpaceViewMut { raw: s })
}
/// Downcast this collider to a mutable heightfield, if it is one.
pub fn as_heightfield_mut(&mut self) -> Option<HeightFieldViewMut> {
self.raw
.make_mut()
.as_heightfield_mut()
.map(|s| HeightFieldViewMut { raw: s })
}
// /// Downcast this collider to a mutable compound shape, if it is one.
// pub fn as_compound_mut(&mut self) -> Option<CompoundViewMut> {
// self.raw.make_mut()
// .as_compound_mut()
// .map(|s| CompoundViewMut { raw: s })
// }
// /// Downcast this collider to a mutable convex polygon, if it is one.
// #[cfg(feature = "dim2")]
// pub fn as_convex_polygon_mut(&mut self) -> Option<ConvexPolygonViewMut> {
// self.raw.make_mut()
// .as_convex_polygon_mut()
// .map(|s| ConvexPolygonViewMut { raw: s })
// }
// /// Downcast this collider to a mutable convex polyhedron, if it is one.
// #[cfg(feature = "dim3")]
// pub fn as_convex_polyhedron_mut(&mut self) -> Option<ConvexPolyhedronViewMut> {
// self.raw.make_mut()
// .as_convex_polyhedron_mut()
// .map(|s| ConvexPolyhedronViewMut { raw: s })
// }
/// Downcast this collider to a mutable cylinder, if it is one.
#[cfg(feature = "dim3")]
pub fn as_cylinder_mut(&mut self) -> Option<CylinderViewMut> {
self.raw
.make_mut()
.as_cylinder_mut()
.map(|s| CylinderViewMut { raw: s })
}
/// Downcast this collider to a mutable cone, if it is one.
#[cfg(feature = "dim3")]
pub fn as_cone_mut(&mut self) -> Option<ConeViewMut> {
self.raw
.make_mut()
.as_cone_mut()
.map(|s| ConeViewMut { raw: s })
}
/// Set the scaling factor of this shape.
///
/// If the scaling factor is non-uniform, and the scaled shape can’t be
/// represented as a supported smooth shape (for example scalling a Ball
/// with a non-uniform scale results in an ellipse which isn’t supported),
/// the shape is approximated by a convex polygon/convex polyhedron using
/// `num_subdivisions` subdivisions.
pub fn set_scale(&mut self, scale: Vect, num_subdivisions: u32) {
let scale = get_snapped_scale(scale);
if scale == self.scale {
// Nothing to do.
return;
}
if scale == Vect::ONE {
// Trivial case.
self.raw = self.unscaled.clone();
self.scale = Vect::ONE;
return;
}
if let Some(scaled) = self
.as_unscaled_typed_shape()
.raw_scale_by(scale, num_subdivisions)
{
self.raw = scaled;
self.scale = scale;
} else {
log::error!("Failed to create the scaled convex hull geometry.");
}
}
/// Projects a point on `self`, unless the projection lies further than the given max distance.
///
/// The point is assumed to be expressed in the local-space of `self`.
pub fn project_local_point_with_max_dist(
&self,
point: Vect,
solid: bool,
max_dist: Real,
) -> Option<PointProjection> {
self.raw
.project_local_point_with_max_dist(&point.into(), solid, max_dist)
.map(Into::into)
}
/// Projects a point on `self` transformed by `m`, unless the projection lies further than the given max distance.
pub fn project_point_with_max_dist(
&self,
translation: Vect,
rotation: Rot,
point: Vect,
solid: bool,
max_dist: Real,
) -> Option<PointProjection> {
let pos = (translation, rotation).into();
self.raw
.project_point_with_max_dist(&pos, &point.into(), solid, max_dist)
.map(Into::into)
}
/// Projects a point on `self`.
///
/// The point is assumed to be expressed in the local-space of `self`.
pub fn project_local_point(&self, point: Vect, solid: bool) -> PointProjection {
self.raw.project_local_point(&point.into(), solid).into()
}
/// Projects a point on the boundary of `self` and returns the id of the
/// feature the point was projected on.
pub fn project_local_point_and_get_feature(&self, point: Vect) -> (PointProjection, FeatureId) {
let (proj, feat) = self.raw.project_local_point_and_get_feature(&point.into());
(proj.into(), feat)
}
/// Computes the minimal distance between a point and `self`.
pub fn distance_to_local_point(&self, point: Vect, solid: bool) -> Real {
self.raw.distance_to_local_point(&point.into(), solid)
}
/// Tests if the given point is inside of `self`.
pub fn contains_local_point(&self, point: Vect) -> bool {
self.raw.contains_local_point(&point.into())
}
/// Projects a point on `self` transformed by `m`.
pub fn project_point(
&self,
translation: Vect,
rotation: Rot,
point: Vect,
solid: bool,
) -> PointProjection {
let pos = (translation, rotation).into();
self.raw.project_point(&pos, &point.into(), solid).into()
}
/// Computes the minimal distance between a point and `self` transformed by `m`.
#[inline]
pub fn distance_to_point(
&self,
translation: Vect,
rotation: Rot,
point: Vect,
solid: bool,
) -> Real {
let pos = (translation, rotation).into();
self.raw.distance_to_point(&pos, &point.into(), solid)
}
/// Projects a point on the boundary of `self` transformed by `m` and returns the id of the
/// feature the point was projected on.
pub fn project_point_and_get_feature(
&self,
translation: Vect,
rotation: Rot,
point: Vect,
) -> (PointProjection, FeatureId) {
let pos = (translation, rotation).into();
let (proj, feat) = self.raw.project_point_and_get_feature(&pos, &point.into());
(proj.into(), feat)
}
/// Tests if the given point is inside of `self` transformed by `m`.
pub fn contains_point(&self, translation: Vect, rotation: Rot, point: Vect) -> bool {
let pos = (translation, rotation).into();
self.raw.contains_point(&pos, &point.into())
}
/// Computes the time of impact between this transform shape and a ray.
pub fn cast_local_ray(
&self,
ray_origin: Vect,
ray_dir: Vect,
max_time_of_impact: Real,
solid: bool,
) -> Option<Real> {
let ray = Ray::new(ray_origin.into(), ray_dir.into());
self.raw.cast_local_ray(&ray, max_time_of_impact, solid)
}
/// Computes the time of impact, and normal between this transformed shape and a ray.
pub fn cast_local_ray_and_get_normal(
&self,
ray_origin: Vect,
ray_dir: Vect,
max_time_of_impact: Real,
solid: bool,
) -> Option<RayIntersection> {
let ray = Ray::new(ray_origin.into(), ray_dir.into());
self.raw
.cast_local_ray_and_get_normal(&ray, max_time_of_impact, solid)
.map(|inter| RayIntersection::from_rapier(inter, ray_origin, ray_dir))
}
/// Tests whether a ray intersects this transformed shape.
pub fn intersects_local_ray(
&self,
ray_origin: Vect,
ray_dir: Vect,
max_time_of_impact: Real,
) -> bool {
let ray = Ray::new(ray_origin.into(), ray_dir.into());
self.raw.intersects_local_ray(&ray, max_time_of_impact)
}
/// Computes the time of impact between this transform shape and a ray.
pub fn cast_ray(
&self,
translation: Vect,
rotation: Rot,
ray_origin: Vect,
ray_dir: Vect,
max_time_of_impact: Real,
solid: bool,
) -> Option<Real> {
let pos = (translation, rotation).into();
let ray = Ray::new(ray_origin.into(), ray_dir.into());
self.raw.cast_ray(&pos, &ray, max_time_of_impact, solid)
}
/// Computes the time of impact, and normal between this transformed shape and a ray.
pub fn cast_ray_and_get_normal(
&self,
translation: Vect,
rotation: Rot,
ray_origin: Vect,
ray_dir: Vect,
max_time_of_impact: Real,
solid: bool,
) -> Option<RayIntersection> {
let pos = (translation, rotation).into();
let ray = Ray::new(ray_origin.into(), ray_dir.into());
self.raw
.cast_ray_and_get_normal(&pos, &ray, max_time_of_impact, solid)
.map(|inter| RayIntersection::from_rapier(inter, ray_origin, ray_dir))
}
/// Tests whether a ray intersects this transformed shape.
pub fn intersects_ray(
&self,
translation: Vect,
rotation: Rot,
ray_origin: Vect,
ray_dir: Vect,
max_time_of_impact: Real,
) -> bool {
let pos = (translation, rotation).into();
let ray = Ray::new(ray_origin.into(), ray_dir.into());
self.raw.intersects_ray(&pos, &ray, max_time_of_impact)
}
}
impl Default for Collider {
fn default() -> Self {
Self::ball(0.5)
}
}
#[cfg(all(feature = "dim3", feature = "async-collider"))]
#[allow(clippy::type_complexity)]
fn extract_mesh_vertices_indices(mesh: &Mesh) -> Option<(Vec<na::Point3<Real>>, Vec<[u32; 3]>)> {
use rapier::na::point;
let vertices = mesh.attribute(Mesh::ATTRIBUTE_POSITION)?;
let indices = mesh.indices()?;
let vtx: Vec<_> = match vertices {
VertexAttributeValues::Float32(vtx) => Some(
vtx.chunks(3)
.map(|v| point![v[0] as Real, v[1] as Real, v[2] as Real])
.collect(),
),
VertexAttributeValues::Float32x3(vtx) => Some(
vtx.iter()
.map(|v| point![v[0] as Real, v[1] as Real, v[2] as Real])
.collect(),
),
_ => None,
}?;
let idx = match indices {
Indices::U16(idx) => idx
.chunks_exact(3)
.map(|i| [i[0] as u32, i[1] as u32, i[2] as u32])
.collect(),
Indices::U32(idx) => idx.chunks_exact(3).map(|i| [i[0], i[1], i[2]]).collect(),
};
Some((vtx, idx))
}