bevy_rapier2d/plugin/narrow_phase.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
use crate::math::{Real, Vect};
use crate::plugin::context::{RapierContextColliders, RapierContextSimulation, RapierRigidBodySet};
use bevy::prelude::*;
use rapier::geometry::{Contact, ContactManifold, ContactPair, SolverContact, SolverFlags};
impl RapierContextSimulation {
/// All the contact pairs involving the non-sensor collider attached to the given entity.
///
/// The returned contact pairs identify pairs of colliders with intersecting bounding-volumes.
/// To check if any geometric contact happened between the collider shapes, check
/// [`ContactPairView::has_any_active_contact`].
pub fn contact_pairs_with<'a, 'b: 'a>(
&'a self,
context_colliders: &'b RapierContextColliders,
rigidbody_set: &'b RapierRigidBodySet,
collider: Entity,
) -> impl Iterator<Item = ContactPairView<'a>> {
context_colliders
.entity2collider
.get(&collider)
.into_iter()
.flat_map(|h| {
self.narrow_phase
.contact_pairs_with(*h)
.map(|raw| ContactPairView {
context_colliders,
rigidbody_set,
raw,
})
})
}
/// All the intersection pairs involving the collider attached to the given entity, where at least one collider
/// involved in the intersection is a sensor.
///
/// The returned contact pairs identify pairs of colliders (where at least one is a sensor) with
/// intersecting bounding-volumes. To check if any geometric overlap happened between the collider shapes, check
/// the returned boolean.
pub fn intersection_pairs_with<'a, 'b: 'a>(
&'a self,
rapier_colliders: &'b RapierContextColliders,
collider: Entity,
) -> impl Iterator<Item = (Entity, Entity, bool)> + 'a {
rapier_colliders
.entity2collider
.get(&collider)
.into_iter()
.flat_map(|h| {
self.narrow_phase
.intersection_pairs_with(*h)
.filter_map(|(h1, h2, inter)| {
let e1 = rapier_colliders.collider_entity(h1);
let e2 = rapier_colliders.collider_entity(h2);
match (e1, e2) {
(Some(e1), Some(e2)) => Some((e1, e2, inter)),
_ => None,
}
})
})
}
/// The contact pair involving two specific colliders.
///
/// If this returns `None`, there is no contact between the two colliders.
/// If this returns `Some`, then there may be a contact between the two colliders. Check the
/// result [`ContactPairView::has_any_active_contact`] method to see if there is an actual contact.
pub fn contact_pair<'a, 'b: 'a>(
&'a self,
context_colliders: &'b RapierContextColliders,
rigidbody_set: &'b RapierRigidBodySet,
collider1: Entity,
collider2: Entity,
) -> Option<ContactPairView<'a>> {
let h1 = context_colliders.entity2collider.get(&collider1)?;
let h2 = context_colliders.entity2collider.get(&collider2)?;
self.narrow_phase
.contact_pair(*h1, *h2)
.map(|raw| ContactPairView {
context_colliders,
rigidbody_set,
raw,
})
}
/// The intersection pair involving two specific colliders (at least one being a sensor).
///
/// If this returns `None` or `Some(false)`, then there is no intersection between the two colliders.
/// If this returns `Some(true)`, then there may be an intersection between the two colliders.
pub fn intersection_pair(
&self,
rapier_colliders: &RapierContextColliders,
collider1: Entity,
collider2: Entity,
) -> Option<bool> {
let h1 = rapier_colliders.entity2collider.get(&collider1)?;
let h2 = rapier_colliders.entity2collider.get(&collider2)?;
self.narrow_phase.intersection_pair(*h1, *h2)
}
/// All the contact pairs detected during the last timestep.
pub fn contact_pairs<'a, 'b: 'a>(
&'a self,
context_colliders: &'b RapierContextColliders,
rigidbody_set: &'b RapierRigidBodySet,
) -> impl Iterator<Item = ContactPairView<'a>> {
self.narrow_phase
.contact_pairs()
.map(|raw| ContactPairView {
context_colliders,
rigidbody_set,
raw,
})
}
/// All the intersection pairs detected during the last timestep.
pub fn intersection_pairs<'a, 'b: 'a>(
&'a self,
rapier_colliders: &'b RapierContextColliders,
) -> impl Iterator<Item = (Entity, Entity, bool)> + 'a {
self.narrow_phase
.intersection_pairs()
.filter_map(|(h1, h2, inter)| {
let e1 = rapier_colliders.collider_entity(h1);
let e2 = rapier_colliders.collider_entity(h2);
match (e1, e2) {
(Some(e1), Some(e2)) => Some((e1, e2, inter)),
_ => None,
}
})
}
}
/// Read-only access to the properties of a contact manifold.
pub struct ContactManifoldView<'a> {
rigidbody_set: &'a RapierRigidBodySet,
/// The raw contact manifold from Rapier.
pub raw: &'a ContactManifold,
}
impl ContactManifoldView<'_> {
/// The number of points on this contact manifold.
pub fn num_points(&self) -> usize {
self.raw.points.len()
}
/// Retrieves the i-th point of this contact manifold.
pub fn point(&self, i: usize) -> Option<ContactView> {
self.raw.points.get(i).map(|raw| ContactView { raw })
}
/// The contacts points.
pub fn points(&self) -> impl ExactSizeIterator<Item = ContactView> {
self.raw.points.iter().map(|raw| ContactView { raw })
}
/// The contact normal of all the contacts of this manifold, expressed in the local space of the first shape.
pub fn local_n1(&self) -> Vect {
self.raw.local_n1.into()
}
/// The contact normal of all the contacts of this manifold, expressed in the local space of the second shape.
pub fn local_n2(&self) -> Vect {
self.raw.local_n2.into()
}
/// The first subshape involved in this contact manifold.
///
/// This is zero if the first shape is not a composite shape.
pub fn subshape1(&self) -> u32 {
self.raw.subshape1
}
/// The second subshape involved in this contact manifold.
///
/// This is zero if the second shape is not a composite shape.
pub fn subshape2(&self) -> u32 {
self.raw.subshape2
}
/// The first rigid-body involved in this contact manifold.
pub fn rigid_body1(&self) -> Option<Entity> {
self.raw
.data
.rigid_body1
.and_then(|h| self.rigidbody_set.rigid_body_entity(h))
}
/// The second rigid-body involved in this contact manifold.
pub fn rigid_body2(&self) -> Option<Entity> {
self.raw
.data
.rigid_body2
.and_then(|h| self.rigidbody_set.rigid_body_entity(h))
}
/// Flags used to control some aspects of the constraints solver for this contact manifold.
pub fn solver_flags(&self) -> SolverFlags {
self.raw.data.solver_flags
}
/// The world-space contact normal shared by all the contact in this contact manifold.
pub fn normal(&self) -> Vect {
self.raw.data.normal.into()
}
/// The contacts that will be seen by the constraints solver for computing forces.
pub fn num_solver_contacts(&self) -> usize {
self.raw.data.solver_contacts.len()
}
/// Gets the i-th solver contact.
pub fn solver_contact(&self, i: usize) -> Option<SolverContactView> {
self.raw
.data
.solver_contacts
.get(i)
.map(|raw| SolverContactView { raw })
}
/// The contacts that will be seen by the constraints solver for computing forces.
pub fn solver_contacts(&self) -> impl ExactSizeIterator<Item = SolverContactView> {
self.raw
.data
.solver_contacts
.iter()
.map(|raw| SolverContactView { raw })
}
/// The relative dominance of the bodies involved in this contact manifold.
pub fn relative_dominance(&self) -> i16 {
self.raw.data.relative_dominance
}
/// A user-defined piece of data.
pub fn user_data(&self) -> u32 {
self.raw.data.user_data
}
}
impl ContactManifoldView<'_> {
/// Returns the contact with the smallest distance (i.e. the largest penetration depth).
pub fn find_deepest_contact(&self) -> Option<ContactView> {
self.raw
.find_deepest_contact()
.map(|raw| ContactView { raw })
}
}
/// Read-only access to the properties of a single contact.
pub struct ContactView<'a> {
/// The raw contact from Rapier.
pub raw: &'a Contact,
}
impl ContactView<'_> {
/// The contact point in the local-space of the first shape.
pub fn local_p1(&self) -> Vect {
self.raw.local_p1.into()
}
/// The contact point in the local-space of the second shape.
pub fn local_p2(&self) -> Vect {
self.raw.local_p2.into()
}
/// The distance between the two contact points.
pub fn dist(&self) -> Real {
self.raw.dist
}
/// The feature ID of the first shape involved in the contact.
pub fn fid1(&self) -> u32 {
self.raw.fid1.0
}
/// The feature ID of the second shape involved in the contact.
pub fn fid2(&self) -> u32 {
self.raw.fid2.0
}
/// The impulse, along the contact normal, applied by this contact to the first collider's rigid-body.
///
/// The impulse applied to the second collider's rigid-body is given by `-impulse`.
pub fn impulse(&self) -> Real {
self.raw.data.impulse
}
/// The friction impulse along the vector orthonormal to the contact normal, applied to the first
/// collider's rigid-body.
#[cfg(feature = "dim2")]
pub fn tangent_impulse(&self) -> Real {
self.raw.data.tangent_impulse.x
}
/// The friction impulse along the vector orthonormal to the contact normal, applied to the first
/// collider's rigid-body.
#[cfg(feature = "dim3")]
pub fn tangent_impulse(&self) -> [Real; 2] {
self.raw.data.tangent_impulse.into()
}
}
/// Read-only access to the properties of a single solver contact.
pub struct SolverContactView<'a> {
/// The raw solver contact from Rapier.
pub raw: &'a SolverContact,
}
impl SolverContactView<'_> {
/// The world-space contact point.
pub fn point(&self) -> Vect {
self.raw.point.into()
}
/// The distance between the two original contacts points along the contact normal.
/// If negative, this is measures the penetration depth.
pub fn dist(&self) -> Real {
self.raw.dist
}
/// The effective friction coefficient at this contact point.
pub fn friction(&self) -> Real {
self.raw.friction
}
/// The effective restitution coefficient at this contact point.
pub fn restitution(&self) -> Real {
self.raw.restitution
}
/// The desired tangent relative velocity at the contact point.
///
/// This is set to zero by default. Set to a non-zero value to
/// simulate, e.g., conveyor belts.
pub fn tangent_velocity(&self) -> Vect {
self.raw.tangent_velocity.into()
}
/// Whether or not this contact existed during the last timestep.
pub fn is_new(&self) -> bool {
self.raw.is_new
}
}
/// Read-only access to the properties of a contact pair.
pub struct ContactPairView<'a> {
context_colliders: &'a RapierContextColliders,
rigidbody_set: &'a RapierRigidBodySet,
/// The raw contact pair from Rapier.
pub raw: &'a ContactPair,
}
impl ContactPairView<'_> {
/// The first collider involved in this contact pair.
pub fn collider1(&self) -> Entity {
self.context_colliders
.collider_entity(self.raw.collider1)
.unwrap()
}
/// The second collider involved in this contact pair.
pub fn collider2(&self) -> Entity {
self.context_colliders
.collider_entity(self.raw.collider2)
.unwrap()
}
/// The number of contact manifolds detected for this contact pair.
pub fn manifolds_len(&self) -> usize {
self.raw.manifolds.len()
}
/// Gets the i-th contact manifold.
pub fn manifold(&self, i: usize) -> Option<ContactManifoldView> {
self.raw.manifolds.get(i).map(|raw| ContactManifoldView {
rigidbody_set: self.rigidbody_set,
raw,
})
}
/// Iterate through all the contact manifolds of this contact pair.
pub fn manifolds(&self) -> impl ExactSizeIterator<Item = ContactManifoldView> {
self.raw.manifolds.iter().map(|raw| ContactManifoldView {
rigidbody_set: self.rigidbody_set,
raw,
})
}
/// Is there any active contact in this contact pair?
pub fn has_any_active_contact(&self) -> bool {
self.raw.has_any_active_contact
}
/// Finds the contact with the smallest signed distance.
///
/// If the colliders involved in this contact pair are penetrating, then
/// this returns the contact with the largest penetration depth.
///
/// Returns a reference to the contact, as well as the contact manifold
/// it is part of.
pub fn find_deepest_contact(&self) -> Option<(ContactManifoldView, ContactView)> {
self.raw.find_deepest_contact().map(|(manifold, contact)| {
(
ContactManifoldView {
rigidbody_set: self.rigidbody_set,
raw: manifold,
},
ContactView { raw: contact },
)
})
}
}