bevy_rapier3d/dynamics/rigid_body.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
use crate::math::Vect;
use bevy::prelude::*;
use rapier::prelude::{
Isometry, LockedAxes as RapierLockedAxes, RigidBodyActivation, RigidBodyHandle, RigidBodyType,
};
use std::ops::{Add, AddAssign, Sub, SubAssign};
#[cfg(doc)]
use rapier::dynamics::IntegrationParameters;
/// The Rapier handle of a [`RigidBody`] that was inserted to the physics scene.
#[derive(Copy, Clone, Debug, Component)]
pub struct RapierRigidBodyHandle(pub RigidBodyHandle);
/// A [`RigidBody`].
///
/// Related components:
/// - [`GlobalTransform`]: used as the ground truth for the bodies position.
/// - [`Velocity`]
/// - [`ExternalImpulse`]
/// - [`ExternalForce`]
/// - [`AdditionalMassProperties`]
/// - [`ReadMassProperties`]
/// - [`Damping`]
/// - [`Dominance`]
/// - [`Ccd`]: Helps prevent tunneling through thin objects or rigid bodies
/// moving at high velocities.
/// - [`LockedAxes`]
/// - [`RigidBodyDisabled`]
/// - [`GravityScale`]
#[derive(Copy, Clone, Debug, PartialEq, Eq, Component, Reflect, Default)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[reflect(Component, PartialEq)]
pub enum RigidBody {
/// A `RigidBody::Dynamic` body can be affected by all external forces.
#[default]
Dynamic,
/// A `RigidBody::Fixed` body cannot be affected by external forces.
Fixed,
/// A `RigidBody::KinematicPositionBased` body cannot be affected by any external forces but can be controlled
/// by the user at the position level while keeping realistic one-way interaction with dynamic bodies.
///
/// One-way interaction means that a kinematic body can push a dynamic body, but a kinematic body
/// cannot be pushed by anything. In other words, the trajectory of a kinematic body can only be
/// modified by the user and is independent from any contact or joint it is involved in.
KinematicPositionBased,
/// A `RigidBody::KinematicVelocityBased` body cannot be affected by any external forces but can be controlled
/// by the user at the velocity level while keeping realistic one-way interaction with dynamic bodies.
///
/// One-way interaction means that a kinematic body can push a dynamic body, but a kinematic body
/// cannot be pushed by anything. In other words, the trajectory of a kinematic body can only be
/// modified by the user and is independent from any contact or joint it is involved in.
KinematicVelocityBased,
}
impl From<RigidBody> for RigidBodyType {
fn from(rigid_body: RigidBody) -> RigidBodyType {
match rigid_body {
RigidBody::Dynamic => RigidBodyType::Dynamic,
RigidBody::Fixed => RigidBodyType::Fixed,
RigidBody::KinematicPositionBased => RigidBodyType::KinematicPositionBased,
RigidBody::KinematicVelocityBased => RigidBodyType::KinematicVelocityBased,
}
}
}
impl From<RigidBodyType> for RigidBody {
fn from(rigid_body: RigidBodyType) -> RigidBody {
match rigid_body {
RigidBodyType::Dynamic => RigidBody::Dynamic,
RigidBodyType::Fixed => RigidBody::Fixed,
RigidBodyType::KinematicPositionBased => RigidBody::KinematicPositionBased,
RigidBodyType::KinematicVelocityBased => RigidBody::KinematicVelocityBased,
}
}
}
/// The velocity of a [`RigidBody`].
///
/// Use this component to control and/or read the velocity of a dynamic or kinematic [`RigidBody`].
/// If this component isn’t present, a dynamic [`RigidBody`] will still be able to move (you will just
/// not be able to read/modify its velocity).
///
/// This only affects entities with a [`RigidBody`] component.
#[derive(Copy, Clone, Debug, Default, PartialEq, Component, Reflect)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[reflect(Component, PartialEq)]
pub struct Velocity {
/// The linear velocity of the [`RigidBody`].
pub linvel: Vect,
/// The angular velocity of the [`RigidBody`] in radian per second.
#[cfg(feature = "dim2")]
pub angvel: f32,
/// The angular velocity of the [`RigidBody`].
#[cfg(feature = "dim3")]
pub angvel: Vect,
}
impl Velocity {
/// Initialize a velocity set to zero.
pub const fn zero() -> Self {
Self {
linvel: Vect::ZERO,
#[cfg(feature = "dim2")]
angvel: 0.0,
#[cfg(feature = "dim3")]
angvel: Vect::ZERO,
}
}
/// Initialize a velocity with the given linear velocity, and an angular velocity of zero.
pub const fn linear(linvel: Vect) -> Self {
Self {
linvel,
#[cfg(feature = "dim2")]
angvel: 0.0,
#[cfg(feature = "dim3")]
angvel: Vect::ZERO,
}
}
/// Initialize a velocity with the given angular velocity, and a linear velocity of zero.
#[cfg(feature = "dim2")]
pub const fn angular(angvel: f32) -> Self {
Self {
linvel: Vect::ZERO,
angvel,
}
}
/// Initialize a velocity with the given angular velocity, and a linear velocity of zero.
#[cfg(feature = "dim3")]
pub const fn angular(angvel: Vect) -> Self {
Self {
linvel: Vect::ZERO,
angvel,
}
}
/// Get linear velocity of specific world-space point of a [`RigidBody`].
///
/// # Parameters
/// - `point`: the point (world-space) to compute the velocity for.
/// - `center_of_mass`: the center-of-mass (world-space) of the [`RigidBody`] the velocity belongs to.
pub fn linear_velocity_at_point(&self, point: Vect, center_of_mass: Vect) -> Vect {
#[cfg(feature = "dim2")]
return self.linvel + self.angvel * (point - center_of_mass).perp();
#[cfg(feature = "dim3")]
return self.linvel + self.angvel.cross(point - center_of_mass);
}
}
/// Mass-properties of a [`RigidBody`], added to the contributions of its attached colliders.
///
/// This only affects entities with a [`RigidBody`] component.
#[derive(Copy, Clone, Debug, PartialEq, Component, Reflect)]
#[reflect(Component, PartialEq)]
pub enum AdditionalMassProperties {
/// This mass will be added to the [`RigidBody`]. The rigid-body’s total
/// angular inertia tensor (obtained from its attached colliders) will
/// be scaled accordingly.
Mass(f32),
/// These mass properties will be added to the [`RigidBody`].
MassProperties(MassProperties),
}
impl Default for AdditionalMassProperties {
fn default() -> Self {
Self::MassProperties(MassProperties::default())
}
}
/// Center-of-mass, mass, and angular inertia.
///
/// When this is used as a component, this lets you read the total mass properties of
/// a [`RigidBody`] (including the colliders contribution). Modifying this component won’t
/// affect the mass-properties of the [`RigidBody`] (the attached colliders’ `ColliderMassProperties`
/// and the `AdditionalMassProperties` should be modified instead).
///
/// This only reads the mass from entities with a [`RigidBody`] component.
#[derive(Copy, Clone, Debug, Default, PartialEq, Component, Reflect)]
#[reflect(Component, PartialEq)]
pub struct ReadMassProperties(MassProperties);
impl ReadMassProperties {
/// Get the [`MassProperties`] of this [`RigidBody`].
pub fn get(&self) -> &MassProperties {
&self.0
}
pub(crate) fn set(&mut self, mass_props: MassProperties) {
self.0 = mass_props;
}
}
impl std::ops::Deref for ReadMassProperties {
type Target = MassProperties;
fn deref(&self) -> &Self::Target {
self.get()
}
}
/// Entity that likely had their mass properties changed this frame.
#[derive(Deref, Copy, Clone, Debug, PartialEq, Event)]
pub struct MassModifiedEvent(pub Entity);
impl From<Entity> for MassModifiedEvent {
fn from(entity: Entity) -> Self {
Self(entity)
}
}
/// Center-of-mass, mass, and angular inertia.
///
/// This cannot be used as a component. Use the components `ReadMassProperties` to read a [`RigidBody`]’s
/// mass-properties or `AdditionalMassProperties` to set its additional mass-properties.
#[derive(Copy, Clone, Debug, Default, PartialEq, Reflect)]
#[reflect(PartialEq)]
pub struct MassProperties {
/// The center of mass of a [`RigidBody`] expressed in its local-space.
pub local_center_of_mass: Vect,
/// The mass of a [`RigidBody`].
pub mass: f32,
/// The principal angular inertia of the [`RigidBody`].
#[cfg(feature = "dim2")]
pub principal_inertia: f32,
/// The principal vectors of the local angular inertia tensor of the [`RigidBody`].
#[cfg(feature = "dim3")]
pub principal_inertia_local_frame: crate::math::Rot,
/// The principal angular inertia of the [`RigidBody`].
#[cfg(feature = "dim3")]
pub principal_inertia: Vect,
}
impl MassProperties {
/// Converts these mass-properties to Rapier’s `MassProperties` structure.
#[cfg(feature = "dim2")]
pub fn into_rapier(self) -> rapier::dynamics::MassProperties {
rapier::dynamics::MassProperties::new(
self.local_center_of_mass.into(),
self.mass,
#[allow(clippy::useless_conversion)] // Need to convert if dim3 enabled
self.principal_inertia.into(),
)
}
/// Converts these mass-properties to Rapier’s `MassProperties` structure.
#[cfg(feature = "dim3")]
pub fn into_rapier(self) -> rapier::dynamics::MassProperties {
rapier::dynamics::MassProperties::with_principal_inertia_frame(
self.local_center_of_mass.into(),
self.mass,
self.principal_inertia.into(),
self.principal_inertia_local_frame.into(),
)
}
/// Converts Rapier’s `MassProperties` structure to `Self`.
pub fn from_rapier(mprops: rapier::dynamics::MassProperties) -> Self {
#[allow(clippy::useless_conversion)] // Need to convert if dim3 enabled
Self {
mass: mprops.mass(),
local_center_of_mass: mprops.local_com.into(),
principal_inertia: mprops.principal_inertia().into(),
#[cfg(feature = "dim3")]
principal_inertia_local_frame: mprops.principal_inertia_local_frame.into(),
}
}
}
#[derive(Default, Debug, Component, Reflect, Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Hash)]
#[reflect(Component, PartialEq)]
/// Flags affecting the behavior of the constraints solver for a given contact manifold.
pub struct LockedAxes(u8);
bitflags::bitflags! {
impl LockedAxes: u8 {
/// Flag indicating that the [`RigidBody`] cannot translate along the `X` axis.
const TRANSLATION_LOCKED_X = 1 << 0;
/// Flag indicating that the [`RigidBody`] cannot translate along the `Y` axis.
const TRANSLATION_LOCKED_Y = 1 << 1;
/// Flag indicating that the [`RigidBody`] cannot translate along the `Z` axis.
const TRANSLATION_LOCKED_Z = 1 << 2;
/// Flag indicating that the [`RigidBody`] cannot translate along any direction.
const TRANSLATION_LOCKED = Self::TRANSLATION_LOCKED_X.bits() | Self::TRANSLATION_LOCKED_Y.bits() | Self::TRANSLATION_LOCKED_Z.bits();
/// Flag indicating that the [`RigidBody`] cannot rotate along the `X` axis.
const ROTATION_LOCKED_X = 1 << 3;
/// Flag indicating that the [`RigidBody`] cannot rotate along the `Y` axis.
const ROTATION_LOCKED_Y = 1 << 4;
/// Flag indicating that the [`RigidBody`] cannot rotate along the `Z` axis.
const ROTATION_LOCKED_Z = 1 << 5;
/// Combination of flags indicating that the [`RigidBody`] cannot rotate along any axis.
const ROTATION_LOCKED = Self::ROTATION_LOCKED_X.bits() | Self::ROTATION_LOCKED_Y.bits() | Self::ROTATION_LOCKED_Z.bits();
}
}
impl From<LockedAxes> for RapierLockedAxes {
fn from(locked_axes: LockedAxes) -> RapierLockedAxes {
RapierLockedAxes::from_bits(locked_axes.bits()).expect("Internal conversion error.")
}
}
/// Constant external forces applied continuously to a [`RigidBody`].
///
/// This force is applied at each timestep.
#[derive(Copy, Clone, Debug, Default, PartialEq, Component, Reflect)]
#[reflect(Component, PartialEq)]
pub struct ExternalForce {
/// The linear force applied to the [`RigidBody`].
pub force: Vect,
/// The angular torque applied to the [`RigidBody`].
#[cfg(feature = "dim2")]
pub torque: f32,
/// The angular torque applied to the [`RigidBody`].
#[cfg(feature = "dim3")]
pub torque: Vect,
}
impl ExternalForce {
/// A force applied at a specific world-space point of a [`RigidBody`].
///
/// # Parameters
/// - `force`: the force to apply.
/// - `point`: the point (world-space) where the impulse must be applied.
/// - `center_of_mass`: the center-of-mass (world-space) of the [`RigidBody`] the impulse is being
/// applied to.
pub fn at_point(force: Vect, point: Vect, center_of_mass: Vect) -> Self {
Self {
force,
#[cfg(feature = "dim2")]
torque: (point - center_of_mass).perp_dot(force),
#[cfg(feature = "dim3")]
torque: (point - center_of_mass).cross(force),
}
}
}
impl Add for ExternalForce {
type Output = Self;
#[inline]
fn add(mut self, rhs: Self) -> Self::Output {
self += rhs;
self
}
}
impl Sub for ExternalForce {
type Output = Self;
#[inline]
fn sub(mut self, rhs: Self) -> Self::Output {
self -= rhs;
self
}
}
impl AddAssign for ExternalForce {
#[inline]
fn add_assign(&mut self, rhs: Self) {
self.force += rhs.force;
self.torque += rhs.torque;
}
}
impl SubAssign for ExternalForce {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
self.force -= rhs.force;
self.torque -= rhs.torque;
}
}
/// Instantaneous external impulse applied continuously to a [`RigidBody`].
///
/// The impulse is only applied once, and whenever it it modified (based
/// on Bevy’s change detection).
#[derive(Copy, Clone, Debug, Default, PartialEq, Component, Reflect)]
#[reflect(Component, PartialEq)]
pub struct ExternalImpulse {
/// The linear impulse applied to the [`RigidBody`].
pub impulse: Vect,
/// The angular impulse applied to the [`RigidBody`].
#[cfg(feature = "dim2")]
pub torque_impulse: f32,
/// The angular impulse applied to the [`RigidBody`].
#[cfg(feature = "dim3")]
pub torque_impulse: Vect,
}
impl ExternalImpulse {
/// An impulse applied at a specific world-space point of a [`RigidBody`].
///
/// # Parameters
/// - `impulse`: the impulse to apply.
/// - `point`: the point (world-space) where the impulse must be applied.
/// - `center_of_mass`: the center-of-mass (world-space) of the [`RigidBody`] the impulse is being
/// applied to.
pub fn at_point(impulse: Vect, point: Vect, center_of_mass: Vect) -> Self {
Self {
impulse,
#[cfg(feature = "dim2")]
torque_impulse: (point - center_of_mass).perp_dot(impulse),
#[cfg(feature = "dim3")]
torque_impulse: (point - center_of_mass).cross(impulse),
}
}
/// Reset the external impulses to zero.
pub fn reset(&mut self) {
*self = Default::default();
}
}
impl Add for ExternalImpulse {
type Output = Self;
#[inline]
fn add(mut self, rhs: Self) -> Self::Output {
self += rhs;
self
}
}
impl Sub for ExternalImpulse {
type Output = Self;
#[inline]
fn sub(mut self, rhs: Self) -> Self::Output {
self -= rhs;
self
}
}
impl AddAssign for ExternalImpulse {
#[inline]
fn add_assign(&mut self, rhs: Self) {
self.impulse += rhs.impulse;
self.torque_impulse += rhs.torque_impulse;
}
}
impl SubAssign for ExternalImpulse {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
self.impulse -= rhs.impulse;
self.torque_impulse -= rhs.torque_impulse;
}
}
/// Gravity is multiplied by this scaling factor before it's
/// applied to this [`RigidBody`].
#[derive(Copy, Clone, Debug, PartialEq, Component, Reflect)]
#[reflect(Component, PartialEq)]
pub struct GravityScale(pub f32);
impl Default for GravityScale {
fn default() -> Self {
Self(1.0)
}
}
/// Information used for Continuous-Collision-Detection.
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, Component, Reflect)]
#[reflect(Component, PartialEq)]
pub struct Ccd {
/// Is CCD enabled for this [`RigidBody`]?
pub enabled: bool,
}
impl Ccd {
/// Enable CCD for a [`RigidBody`].
pub fn enabled() -> Self {
Self { enabled: true }
}
/// Disable CCD for a [`RigidBody`].
///
/// Note that a [`RigidBody`] without the Ccd component attached
/// has CCD disabled by default.
pub fn disabled() -> Self {
Self { enabled: false }
}
}
/// Sets the maximum prediction distance Soft Continuous Collision-Detection.
///
/// When set to 0, soft-CCD is disabled. Soft-CCD helps prevent tunneling especially of
/// slow-but-thin to moderately fast objects. The soft CCD prediction distance indicates how
/// far in the object’s path the CCD algorithm is allowed to inspect. Large values can impact
/// performance badly by increasing the work needed from the broad-phase.
///
/// It is a generally cheaper variant of regular CCD (that can be enabled with
/// [`rapier::dynamics::RigidBody::enable_ccd`] since it relies on predictive constraints instead of
/// shape-cast and substeps.
#[derive(Copy, Clone, Debug, Default, PartialEq, Component, Reflect)]
#[reflect(Component, PartialEq)]
pub struct SoftCcd {
/// The soft CCD prediction distance.
pub prediction: f32,
}
/// The dominance groups of a [`RigidBody`].
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, Component, Reflect)]
#[reflect(Component, PartialEq)]
pub struct Dominance {
// FIXME: rename this to `group` (no `s`).
/// The dominance groups of a [`RigidBody`].
pub groups: i8,
}
impl Dominance {
/// Initialize the dominance to the given group.
pub fn group(group: i8) -> Self {
Self { groups: group }
}
}
/// The activation status of a body.
///
/// This controls whether a body is sleeping or not.
/// If the threshold is negative, the body never sleeps.
#[derive(Copy, Clone, Debug, PartialEq, Component, Reflect)]
#[reflect(Component, PartialEq)]
pub struct Sleeping {
/// The linear velocity below which the body can fall asleep.
///
/// The effictive threshold is obtained by multpilying this value by the
/// [`IntegrationParameters::length_unit`].
pub normalized_linear_threshold: f32,
/// The angular velocity below which the body can fall asleep.
pub angular_threshold: f32,
/// Is this body sleeping?
pub sleeping: bool,
}
impl Sleeping {
/// Creates a components that disables sleeping for the associated [`RigidBody`].
pub fn disabled() -> Self {
Self {
normalized_linear_threshold: -1.0,
angular_threshold: -1.0,
sleeping: false,
}
}
}
impl Default for Sleeping {
fn default() -> Self {
Self {
normalized_linear_threshold: RigidBodyActivation::default_normalized_linear_threshold(),
angular_threshold: RigidBodyActivation::default_angular_threshold(),
sleeping: false,
}
}
}
/// Damping factors to gradually slow down a [`RigidBody`].
#[derive(Copy, Clone, Debug, PartialEq, Component, Reflect)]
#[reflect(Component, PartialEq)]
pub struct Damping {
// TODO: rename these to "linear" and "angular"?
/// Damping factor for gradually slowing down the translational motion of the [`RigidBody`].
pub linear_damping: f32,
/// Damping factor for gradually slowing down the angular motion of the [`RigidBody`].
pub angular_damping: f32,
}
impl Default for Damping {
fn default() -> Self {
Self {
linear_damping: 0.0,
angular_damping: 0.0,
}
}
}
/// If the `TimestepMode::Interpolated` mode is set and this component is present,
/// the associated [`RigidBody`] will have its position automatically interpolated
/// between the last two [`RigidBody`] positions set by the physics engine.
#[derive(Copy, Clone, Debug, Default, PartialEq, Component)]
pub struct TransformInterpolation {
/// The starting point of the interpolation.
pub start: Option<Isometry<f32>>,
/// The end point of the interpolation.
pub end: Option<Isometry<f32>>,
}
impl TransformInterpolation {
/// Interpolates between the start and end positions with `t` in the range `[0..1]`.
pub fn lerp_slerp(&self, t: f32) -> Option<Isometry<f32>> {
if let (Some(start), Some(end)) = (self.start, self.end) {
Some(start.lerp_slerp(&end, t))
} else {
None
}
}
}
/// Indicates whether or not the [`RigidBody`] is disabled explicitly by the user.
#[derive(Copy, Clone, Default, Debug, PartialEq, Eq, Component, Reflect)]
#[reflect(Component, PartialEq)]
pub struct RigidBodyDisabled;
/// Set the additional number of solver iterations run for a rigid-body and
/// everything interacting with it.
///
/// Increasing this number will help improve simulation accuracy on this rigid-body
/// and every rigid-body interacting directly or indirectly with it (through joints
/// or contacts). This implies a performance hit.
///
/// The default value is 0, meaning exactly [`IntegrationParameters::num_solver_iterations`] will
/// be used as number of solver iterations for this body.
#[derive(Copy, Clone, Default, Debug, PartialEq, Eq, Component, Reflect)]
#[reflect(Component, PartialEq)]
pub struct AdditionalSolverIterations(pub usize);